The invention relates to a side cover for an engine providing an acoustic barrier.
Engines generate a substantial amount of noise. For example, diesel engines can be especially loud during a cold start. Minimizing engine noise helps to create a more pleasant driving experience. Additionally, an acoustically-treated engine may have higher combustion noise levels to improve fuel economy, emissions, power and torque, while still maintaining pleasing NVH (noise, vibration and harshness) characteristics. Any noise reduction strategy should be balanced against the increased cost and the potential reduction in fuel economy associated with added components, their additional mass, and any additional processing and assembly steps.
An apparatus for reducing engine noise includes a side cover configured to operatively connect to a side of an engine block. The cover has a first layer configured to be adjacent to the engine block. The first layer is made of a first acoustic-absorbing material. The cover also has a second layer configured to be adjacent to the first layer opposite the engine block. The second layer is a second substantially rigid material that acts as an acoustic barrier and is configured to operatively support at least one engine component such as an electrical or fluid line. The second layer may have an integrally-formed fastener or channel used to provide such support. By configuring the side cover to support engine components, the engine block may not require as many bosses that are typically used for mounting brackets for hoses, wiring harnesses, etc. Overall mass is thus reduced, with an associated increase in fuel economy, as the side cover is less dense than a boss formed by the engine block.
The second layer may be configured with an integrally-formed fastener or mounting bracket for supporting an engine conduit such as a wiring harness, an electrical line, or a fluid line or pipe. Alternatively or in addition, the second layer may be formed with a boss configured to secure a mounting bracket or fastener for an engine conduit. In at least some embodiments, the second layer may include an integrally-formed channel for supporting and guiding an engine conduit, such as a hydraulic or electrical line that press-fits within the channel. Both the first and second layers may also be formed to define apertures that align with bosses extending from the engine block so that the bosses extend through the apertures when the side cover is connected to the engine block, allowing access to the bosses.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numbers refer to like components,
A first side cover 18 is shown in exploded view adjacent an outer surface 20 of a side 22 of the engine block 12. A substantially similar second side cover (not shown) is operatively connected to a second side 24 (indicated in phantom) of the engine block 12. The side cover 18 has a first or inner layer 28 formed from an acoustic-absorbing material such as, but not limited to, polyurethane foam, melamine foam, fiberglass, or other known acoustic-absorbing materials. An “acoustic-absorbing material” is a material for which the ratio of the amplitude of the reflective sound wave to the amplitude of the incident sound wave is less than 1.0, as measured using standard measuring tests such as those according to ASTM (American Society for Testing and Materials) and SAE (Society of Automotive Engineers) standards. For example, ASTM E1050 is one test procedure for measuring absorption of an acoustic material. The amplitude of the wave incident on the material and the amplitude of the wave reflected on the material are measured at frequencies ranging from 0-20,000 Hertz. The ratio of reflected amplitude to incident amplitude is subtracted from 1. Absorption coefficients range from 0 to 1, with higher values being a more effective material.
The acoustic-absorbing material of the inner layer 28 is relatively compliant, and conforms to the outer surface 20 of the side 22 of engine block 12 when the side cover 18 is connected to the engine block 12. As shown, it is apparent that the inner layer 28 is a molded shape; however, the inner layer 28 may alternatively be a unitary substantially flat sheet, as its compliance will allow conformity to the irregular outer surface 20. Additionally, the inner layer 28 need not be coextensive with the outer shell layer 30. For example, the inner layer 28 may be a strip-like acoustic seal between the engine block 12 and the outer shell layer 30, located at all or most of the periphery of the surface of the outer shell layer facing the engine block 12. In such an embodiment, an air gap would exist between the engine block 12 and the outer shell layer 30 with the air gap bounded by the seal-like inner layer 28.
The first side cover 18 further includes a second or outer shell layer 30 molded from a substantially rigid, nonmetallic material, such as plastic, that establishes an acoustic barrier. An “acoustic barrier” is a material for which the ratio of amplitude of a sound wave transmitted through the material to the sound wave reflected off of the material is extremely low, for example, between 0 and 0.2. In the embodiment shown, the outer shell layer 30 is substantially coextensive with the inner layer 28. The outer shell layer 30 is operatively connected to the inner layer 28 by welding, bonding, positive attachment with well nuts, or any other suitable attachment mechanism, prior to connecting the side cover 18 to the engine block 12, as shown in
The outer shell layer 30 is formed with several features that permit the support of lightweight engine components, such as electrical wiring harnesses, electrical lines, and fuel or other fluid conduits, as described herein. For example, as is evident in
In another embodiment of an engine 110 shown in
The side cover 118 of
Referring again to
Referring again to
Although not shown in the view of
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/970,010, filed Sep. 5, 2007, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60970010 | Sep 2007 | US |