The present invention relates to acoustic transducers, and more particularly to ultrasonic transducers integrated onto a semiconductor chip.
In a typical ultrasonic transducer array, each transducing unit cell, sometimes known as a subelement, in the array is conductively connected to one another so that they may all be simultaneously driven as one acoustic element. To focus such an array, it is conventional to make use of a lens. The lens can be made of organic polymer akin to rubber, e.g. Room-Temperature-Vulcanizing (RTV) silicone elastomers. During the assembly process of the transducer array, this polymer needs to be cured to turn into a durable form thanks to the addition of sulfur. This process needs to be tightly controlled, often requiring manual manipulation by a human operator. The overall process is thus time consuming and expensive.
An acoustic element is made up of an array of transducing unit cells. Each individual transducing unit cell includes a pair of plates or electrodes, at least one in each pair being deformable so as to move reciprocally closer to and further from the other in the pair. This movement creates the acoustic signal. An acoustic transducer chip may include many acoustic elements juxtaposed to form the long axis of the chip in azimuth. The short axis of the chip is the elevation axis, which extends across the transducing unit cells in an array within an acoustic element.
Focusing or beam steering an acoustic transducer chip in azimuth is accomplished by adjusting the time delay for each signal sent to or received from each of the acoustic elements on the chip. The electronics may thus be used to shape or steer the beam. U.S. Pat. No. 7,087,023 (Daft et al.) illustrates how electronics can be used to focus an acoustic transducer array in elevation. The arrays are configured so that the DC bias can be separately applied to the transducers at any given row in elevation. A pattern of positive and negative bias voltages applied to different elevation rows can be used to create a desired focal zone in elevation.
In accordance with embodiments of the invention, focusing and/or beam steering is integrated into the acoustic transducer itself. In one embodiment, there is provided an acoustic transducer chip having at least one array of at least three acoustic transducing unit cells electrically coupled by a signal path having independently defined time delay elements between consecutively coupled acoustic transducing unit cells so as to acoustically focus the acoustic beam emitted by the array. Each acoustic transducing unit cell includes a pair of electrodes. At least one electrode of each pair is deformable. The electrodes of a capacitive micromachined ultrasonic transducer (CMUT) embodiment operate within a vacuum cavity. In one embodiment, the electrodes are formed by doped polysilicon. In another embodiment, the electrodes are formed by doped amorphous silicon. In a still further embodiment, the electrodes are metal.
The variety of time delays is achieved in the structure of the acoustic transducer chip. The time delays can be varied by varying the electrical resistances between acoustic transducing unit cells along the array or varying the capacitances of the acoustic transducing unit cells or by doing both. A variety of electrical resistances can be achieved on the acoustic transducer chip by creating a location-dependent doping profile. The variety of electrical resistances can alternatively be achieved by forming the conductive paths between the acoustic transducing unit cells with different sizes or shapes to create the different resistances. The electrical resistance values can be modified after fabrication by permitting selection from a library of possible resistors or through use of programmable resistors. A programmable resistor may be made so that it can be trimmed after fabrication. Alternatively, programmable resistors can be formed by transistors whose effective resistance can be controlled with a signal that adjusts gate voltage. The variety of capacitances on an acoustic transducer chip can be achieved by varying the sizes of the electrode pairs.
In accordance with an embodiment of the invention, focusing and/or beam steering is incorporated into an acoustic transducer chip made up of CMUTs. In alternative embodiments, the transducer chip may be made up of piezoelectric transducing unit cells, such as piezoelectric micromachined ultrasonic transducers (PMUTs). The variety of time delay elements may be configured so as to focus the acoustic transducer array to generate a spherical phase front. The varied delay elements can be used to focus the acoustic transducer array to generate a shaped amplitude front.
Beam steering could be achieved with as few as two acoustic transducing unit cells in the array. Thus, according to a further embodiment there is provided an acoustic transducer chip having a top surface with an array of at least two acoustic transducing unit cells electrically coupled by a resistive signal path between adjacent acoustic transducing unit cells so as to acoustically steer an acoustic beam non-normal to the top surface of the acoustic transducer chip. In a particular embodiment, the at least two acoustic transducing unit cells are aligned in elevation and the beam is steered in elevation.
In further embodiments, the acoustic transducer chip, may include one or more additional arrays of acoustic transducing unit cells so as to form a two dimensional array of acoustic transducing unit cells.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Referring now to
It is typically desirable for each array of transducing unit cells to be aligned in the elevational direction. All of the cells in an array may be located directly on an axis of alignment. In other embodiments, substantial alignment of the cells may be sufficient. The cells are said to be substantially aligned if they are all within a distance from an axis of alignment by no more than half of the acoustic operating wavelength of the transducer. Thus, for an acoustic transducer with a range of acoustic operating frequencies, the cells in an array should be no more than half of the wavelength of the highest operating frequency in the range away from the axis of alignment.
As shown schematically in
The electrode pair of each acoustic transducing unit cell is further characterized by a capacitance between the electrodes. Indeed, the electrodes are typically referred to as plates in CMUTs. For a given DC bias between the top and bottom electrodes, each electrode pair will have a determined bias capacitance. As the electrodes are deformed during operation the capacitance value changes about the operating bias capacitance. The electrical resistances between the acoustic transducing unit cells and the capacitances of the transducing unit cells combine to form an RC network. Thus, a signal introduced to the array will encounter a variety of time delay elements in series as it passes from one transducing unit cell to the next along the array of acoustic transducing unit cells.
By varying the electrical resistances between transducing unit cells and/or varying the bias capacitances of the electrode pairs in the array, the acoustic transducer chip can be designed to shape a beam in the axis of alignment of the acoustic transducing unit cells in any predetermined desired shape. One way for varying the capacitances is to vary the size of the electrode pairs of the transducing unit cells in the array. This can be accomplished by varying the electrode diameters or varying the thickness of the electrodes. Methods for varying electrical resistances are described in more detail below. The variety of time delays imposed by the varied time delay elements will affect the phase front in elevation of a beam produced by the array. The resistances between the acoustic transducing unit cells may also impose attenuation on the signal through the signal path and may thus be used to shape the amplitude of the beam.
As shown in
In making an acoustic transducer chip according to the embodiments of the invention, it can be advantageous to use doping of a semiconductor to produce the top electrode path and/or bottom electrode path between the acoustic transducing unit cells. The variety of electrical resistances can be determined by the type and amount of dopant used in the manufacturing process in the path between any two given acoustic transducing unit cells. In particular embodiments, doped amorphous silicon or doped polysilicon are the materials used for the resistive paths.
Referring now to
In
The acoustic transducing unit cell includes a cavity or chamber into which the deformable electrode can flex. In specific embodiments, the cavity 35 may be formed by removing a sacrificial conductive layer. Illustrative embodiments remove the sacrificial layer by means of a dry gas phase etch. For example, xenon difluoride may be applied to a sacrificial layer made of silicon. The insulator material around the sacrificial layer prevents the xenon difluoride from affecting other conductive layers. The insulator material therefore acts as a barrier for the other conductive layers. Such a barrier should not be necessary if any of the other conductive layers is not sensitive to the xenon difluoride (e.g. if the sacrificial layer is formed by a different material from that forming the other conductive layers). If the sacrificial layers are formed by a metal, however, illustrative embodiments may use a wet metal etch.
After removing the sacrificial layers to form the cavity 35, the cavity is sealed by depositing plugs 38 over the etch holes. In the case of making a capacitive micromachined ultrasonic transducer (CMUT), the cavity 35 is evacuated. The plug would thus be deposited while the chip is in an environment having a pressure that is lower than atmospheric pressure. Indeed, a vacuum may be used. Preferably, the seal formed by plugs 38 is hermetic. In particular embodiments, the seal 38 may be formed by deposition of a nitride or an oxynitride layer to fill the etch holes.
The electrical signal path between top electrodes can be achieved with the exemplary embodiment of
In other embodiments, the variety of resistances between adjacent acoustic transducing unit cells can be programmable after chip fabrication. One method of modifying resistances is through resistance trimming of trimmable resistors provided so as to be electrically coupled between the transducing unit cells. In another embodiment, a library of possible resistances may be fabricated into the chip permitting selection of the resistances post-fabrication. Resistances would be selected by cutting links with a laser or other such semiconductor processing equipment. In a still further embodiment, the resistances can be provided by transistors whose effective resistance can be controlled with a signal that adjusts the gate voltage. As such, the chip would be readily programmable after fabrication.
As shown in
In addition or instead of beam shaping and focusing, acoustic transducer chips may be fabricated with integrated beam steering. Beam steering could be simply implemented with an array of as few as two acoustic transducing unit cells. Additional aligned acoustic transducing unit cells may achieve a beam steering as shown in
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. For example, instead of using CMUTs, acoustic transducer chips can be made with piezoelectric transducers or piezoelectric micromachined ultrasonic transducers (PMUTs). All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
The present application claims priority from U.S. provisional application Ser. No. 61/426,847, filed Dec. 23, 2010, the full disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61426847 | Dec 2010 | US |