The present disclosure relates generally to improved techniques in acoustic transducer structures used in mid-air haptic systems.
As discussed herein, the term “phased array” refers to a group of transmitters which project into the same space and can be individually addressed. By selecting specific signals or, in the case of a monochromatic array, phases and amplitudes, the group of transmitters can shape the emitted field. In the case of an ultrasound phased array in air, the sound field can be focused, made to diverge, shaped into beams, and generally rearranged into many other forms. Uses for shaped and steered ultrasonic fields include mid-air haptics, directional audio, and the imaging of physical materials and scenes.
Steering via a phased array can encounter grating lobes when element spacing is above critical spacing. This results in sound energy being projected in unintended directions. To bring the array closer to critical spacing an acoustic waveguide structure can be used. Jager et al. (2017 IEEE) demonstrated beam steering using a waveguide structure. While Jager shows a reduction in grating lobes, it does not realize or demonstrate consequences with respect to haptics or parametric audio.
Further, described herein are array designs that are intended to capitalize on rectilinear transducer design, yet have the benefits of a transducer tiling that has irrational spacing to promote the spread of grating lobe energy.
Arranging the transducers of an emitting phased array system generates unwanted extra features depending on such parameters as wavelength, element size, separation distance between elements and geometric uniformity of spacing.
As the wavelength is decreased, the element size and separation distance when measured in wavelengths increases. Above a certain size, grating lobes appear and distort the output, which at the extremes creates extra output focus points that are unwanted.
For commercial reasons it may be necessary to set the frequency independently of the size and spacing of the elements, wherein with a structure with geometric uniformity of spacing, when actuated to produce a focus unwanted extra output focus points appear. In this case, the only modifiable parameter is the uniformity of the geometry. However, commercially, it is beneficial to create transducers that do not waste material, have high packing density and minimize the number and complexity of steps required for manufacture.
One key innovation disclosed herein is recognizing that approaching critical spacing is necessary for steering of parametric audio. When looking at ultrasound simulation or measurement data, it is not apparent that the diffuse phyllotactic grating lobe contributes as much audio as it does. Nor does measurement of the audio alone lead to the conclusion that grating lobes are to blame for the poor steering. It takes comparing steering measurements both with and without a waveguide to come to that conclusion. In addition, the waveguide needs to be functioning with correct phase offsets to achieve the steering required for performance.
In addition, Jager et al. only demonstrates operation using equal-length tubes and does not discuss other possibilities. In this disclosure, different-length tubes are equally functional and allow for a much wider variety of shapes. Also, arranging tubes so that the array configuration changes from rectilinear to another distribution is a non-obvious use and has benefits when the waveguide is short of critical spacing or constrained for space.
Further, this disclosure describes array designs intended to capitalize on rectilinear transducer design while having the benefits of a transducer tiling that has irrational spacing to promote the spread of grating lobe energy.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, serve to further illustrate embodiments of concepts that include the claimed invention and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
A. Introduction
A limitation encountered when working with an ultrasonic phased array is the phenomena of grating lobes. This is the effect wherein certain arrangements of transducers produce leakage of energy in unintended directions taking the form of an erroneous lobe of output. To illustrate this effect, consider a linear array of transducers with spacing a from center-to-center. When they are all producing ultrasound in phase, they produce a field similar to a line source, where a section taken perpendicularly to the array of transducers will reveal a circular diverging wave front, but in the plane of the transducers there will be a substantially linear wave front projecting directly away from the transducers. Now, consider another direction at angle 9 from the vertical in that plane. The distance along that direction before an emitted spherically diverging wave front from one transducer connects with another transducer is given by d=a sin θ. When this distance is equal to one wavelength then along that direction every wave is adding constructively. The result of this constructive interference at that angle is a grating lobe. The angle this occurs is given by
where λ is me wavelength of the ultrasound. This illustrates that the grating lobe, in this instance, is dependent on the spacing a and how it compares to the wavelength λ. If, for instance, a is smaller than λ, a solution does not exist and therefore a grating lobe will not exist in this arrangement and emission scenario.
Grating lobes in phased arrays have been studied extensively and careful analysis shows that all grating lobes will be eliminated regardless of arrangement when the spacing of transducers is equal to or smaller than half of the wavelength (½λ) (Wooh & Shi, 1999). This is referred to as ‘critical spacing’. A linear or planar array with transducers spaced at critical spacing will be able to achieve desired fields without grating lobe artefacts. As demonstrated above, grating lobes for a beam produced at a right angle directly away from the array, vanish as the system approaches a wavelength (λ) spacing, or double that of critical spacing. If moving or steering the beam in any direction other than directly perpendicular however, in that arrangement, grating lobes will immediately appear when the system starts to steer. In between wavelength spacing (λ) and critical spacing (½λ) there exists a class of arrays which can steer to increasingly larger angles without grating lobes. This could be beneficial if large steering angles are not required as larger transducers tend to provide stronger acoustic fields. So, fewer would be required, simplifying the design of the system.
The geometry of ultrasonic transducers is dictated by many factors including the materials used, the actuating element, matching layers, resonant cavities, and many other aspects of the transducer element design. It can be difficult to design a transducing element which can achieve critical spacing. In addition, an oddly shaped elements may prevent arrangements which mitigate secondary focusing from grating lobes such as a phyllotactic spiral. The invention presented here is a series of tubes, or waveguide paths, which can be mounted directly atop a transducer or array of transducers which direct the acoustic output to a second aperture at the opposite end of the waveguide. From the perspective of the produced acoustic field, it is as if the transducer aperture has been substantially replaced by this second aperture in terms of the geometric arrangement of the phased array. In one such geometric arrangement, the waveguide can be used to adjust the spatial arrangement of transducers from, for example, rectilinear to a phyllotactic spiral. In another arrangement, the open aperture can be reduced so that critical spacing can be achieved.
Specifically, this waveguide couples to a 16×16 rectilinear array 120 of 1 cm diameter circular transducers spaced at 1.03 cm which operate at 40 kHz. The waveguide forms straight-line tapering paths to circular openings with 5 mm spacing. At sea level and standard conditions, the wavelength of 40 kHz is 8.6 mm. The waveguide therefore transforms the apparent geometry of the array from 1.2λ spacing to 0.58λ spacing, much closer to the 0.5λ critical spacing. In other words, this shows an example waveguide that transforms a 16×16 rectilinear array of 10 mm 40 kHz transducers to near critical (5 mm) spacing.
In
A further experimental verification is shown in
B. Waveguides for Focused Ultrasound
Mid-air haptics uses specialized high-pressure acoustic fields, typically modulated foci, to produce a vibrotactile sensation on the human body. Grating lobes can cause secondary fields which are also modulated, thereby creating haptics in unintended places.
One method to prevent grating lobes from forming secondary foci is to arrange the emitting array into a pseudo-random arrangement.
One distinct downside of the phyllotactic arrangement is the large spacing required. The inset square 540 in
Using a waveguide structure, it is possible to use connect a rectilinear transducer array to a phyllotactic spiral-arranged or similarly pseudo-random exit pattern which distributes grating lobe energy. In one arrangement, design consists of a straight-line tube from each transducer to the closest exit aperture. Depending on the size and shape of the exit arrangement, this may require iterative design to prevent crossing of tubes. This will also likely create different length tubes requiring measured or simulated phase offsets to be included in steering calculations (discussed below).
A pseudo-random arrangement is not required, however, when the exit apertures are near critical spacing. For haptics, however, this can lead to some drawbacks. For instance, with a reduced exit aperture, the effective depth of focus will increase at similar distances. Without a tight focus, peak pressure will be lower and potentially provide a reduced haptic effect. At the same time, with increased steering ability provided by the critical spacing, focus shape will be maintained through large steering angles close to the array. Depending on the application, a waveguide can be designed which optimizes the interplay between reduced grating lobes, depth of focus, and exit aperture size.
C. Waveguides for Parametric Audio
Parametric audio is an effect whereby audible sound is produced by nonlinear distortion in the air when ultrasound at varying frequencies is present. By controlling the short-wavelength field of ultrasound, the resulting audio can be controlled to a degree not possible using conventional loudspeakers.
The most common use of the parametric audio effect is to produce beams of audio which follow beams of ultrasound. Within the beam, audio is being produced in every volume element in proportion to the magnitude and relative frequencies present. After the audible sound is produced, it spreads out more due to its larger wavelength relative to the ultrasound. The largest magnitude of audible sound, however, will exist within the ultrasound beam, so only in a direction that will be reinforced through further parametric audio generation.
This measurement shows the audio sound level measured at a given angle with respect to the normal of the array in a large room. Even with a relatively small 10° steering angle (
Fortunately, arrays approaching critical spacing do help with steering parametric audio due to their complete lack of grating lobe energy.
Thus
D. Waveguide Design and Operation
Enabling proper operation of a phased array with a waveguide requires adjusting the output to compensate for the waveguide itself. In other words, just like the phase of each and amplitude for each transducer must be coordinated and driven precisely, any relative change caused by a waveguide path must also be compensated for. For instance, if one waveguide path causes a phase offset of π/4 while another in for the same array causes a π/2 shift, then this offset must be subtracted from the desired phase of each transducer respectively when calculating activation coefficients for a given field. If both amplitude and phase for each transducer are considered as a complex number, and the attenuation and phase delay of the waveguide tube a further complex number, then the application of the correction factor for the waveguide may be realized as the division of the first by the second. Without this compensation, the field will be malformed and distorted by the waveguide. In addition, if activation coefficients are produced using a model which accounts for time-of-flight, any time-delay caused by the waveguide must be compensated for as coefficients are calculated.
Phase offsets and time-delays can be derived using empirical or simulated methods. The simplest approach, albeit time-consuming, is to measure the phase offsets and time-delays associated with each waveguide path directly. In one arrangement, phase can be measured with continuous, monochromatic drive with reference to a control signal, while time delay can be measured with an impulse, chirp or comparison to a control path. Another approach is to calculate the phase and time delay with simulation. This could be done with something as sophisticated as a finite element model (FEA) or an analytic model of a pipe or appropriate structure. In the data presented in previous sections, the phase offsets were calculated using the length of each waveguide path, where this was divided through by the wavelength of the ultrasonic excitation in free air resulting in a remainder that describes the appropriate phase offset. This was then refined by measuring the strength and location of a focus generated directly above the array at 15 cm and compared to a model. Increasing the effective length of each tube by 8% resulted in a good fit to simulation. As stated above, without this compensation, the waveguide structure will not produce the expected field.
Most of the discussion here has been about waveguides for transmit, but they also work for receive. A receiver placed at one end of a waveguide will only receive and produce a signal when ultrasound is directed at the aperture at the opposing end of the waveguide. A receive system at critical spacing will be free from aliased ghost images created by grating lobe artefacts. In addition, shaping the open aperture of the waveguide into a horn or similar structure could provide increased sensitivity compared to the receive element in open air.
The waveguide shown in
The waveguide can be composed of a variety of materials. This includes metals, plastic, and even flexible polymers. The acoustic impedance of the construction material needs to be sufficiently higher than that of air to prevent ultrasound from passing from one waveguide path to another (cross talk within the array). This is not difficult as most solids are at least two orders of magnitude higher acoustic impedance compared to air. This enables the possibility of using flexible materials such as plastic tubing as a portion of the waveguide. For instance, an exit aperture array, composed of metal or hard plastic could be coupled to an input array of transducers with plastic or polymer tubing. Then each could be mounted independently, allowing the flexible tubes to bridge the connection. The polymer tubes could remain flexible during their operating life or be cured in some way (UV for instance) after installation. Given that the length and shape will be fixed during assembly, the phase offset and time delay should remain mostly unchanged regardless of the exact details of placement, within reason. Extreme angles or pinched/obstructed tubes will obviously cause distortions. If more accuracy is required, measurement or simulation could provide the 2nd-order corrections necessary.
In addition to plastic or polymers, metal can be used for a portion or all of the waveguide. Metal has the benefit of acting as a heat-sink as the waveguide can readily trap air, causing excessive heat storage.
The waveguide cross-section need not be a decreasing-radius curve or act as a simple tube. It is possible to design a relatively sudden decrease in radius along a waveguide path to produce a Helmholtz resonator-like design. Using this methodology, the larger-volume chambers could provide a boost to the output efficiency of the transducers while the exit apertures could be packed together to approach critical spacing.
The volume within the waveguide paths need not be completely empty. Filling material such as Aerogel could be packed into the waveguide to provide a different acoustic impedance if so desired. Besides acoustic impedance matching, different materials could provide environmental proofing like water resistance.
Manufacturing the waveguides can be done with a variety of techniques. The array design shown in
The disclosure presented here allows for the transformation of ultrasonic phased arrays to transform from one arrangement to another without significant loss of output or field-synthesis ability. This enables critically spaced or pseudo-random arrangements from arbitrary-sized transducing elements.
The goal of this disclosure is to produce an estimate of the acoustic pressure from an ultrasound phased array which reasonably matches the measurement of a stationary or slow-moving microphone at a similar location.
There are methods that detail ways to calculate instantaneous pressure or intensity or other metrics in the field. Here a series of algorithms efficiently use computational resources to calculate time-averaged metrics. These are useful for determining and regulating hot spots and higher-than desired pressure.
Estimating the field strength from an ultrasonic phased array can be done by summing the contribution of each transducer to the point of interest. This contribution is already calculated when creating a converging spherical wave. We can reuse this calculation to add a virtual microphone to the system. By monitoring this microphone and moving it along with new focus points, a robust system of field estimates and regulation can be established.
E. Additional Disclosure
1. An ultrasonic array consisting of:
A) A plurality of ultrasonic transducers;
B) An operating acoustic wavelength;
C) A plurality of acoustic cavities;
D) Wherein each cavity has a input opening and an exit opening;
E) Wherein each input opening accepts ultrasound from a single transducer;
F) Wherein at least 2 of the geometric centers of the cavity exit openings are situated less than one wavelength from one another;
G) Wherein the ultrasound emerging from the exit opening has a phase offset relative to when it entered the input opening; and
H) Wherein at least 2 cavities have different phase offsets.
2. The apparatus as in ¶1, wherein the phase offset for at least one cavity is inverted and applied to the phase of at least one transducer drive before emission.
3. The apparatus as in ¶2, wherein the ultrasound is modulated to produce audible sound.
4. The apparatus as in ¶2, wherein the ultrasound is modulated to produce a mid-air haptic effect.
5. The apparatus as in ¶2, wherein the ultrasound is used to levitate an object.
6. The apparatus as in ¶2, wherein the ultrasound emerging from the exit opening has a different amplitude relative to when it entered the input opening.
7. The apparatus as in ¶6, wherein the amplitude offset is used to modify the amplitudes of at least one transducer before emission.
8. The apparatus as in ¶3, wherein the exit openings are substantially co-planar.
9. The apparatus as in ¶8, wherein the audio is directed at an angle greater than 15 degrees from the normal to the plane.
10. The apparatus as in ¶8, wherein the audio is directed at an angle greater than 30 degrees from the normal to the plane.
11. The apparatus as in ¶8, wherein the audio is directed at an angle greater than 45 degrees from the normal to the plane.
12. The apparatus as in ¶8, wherein the audio is directed at an angle greater than 60 degrees from the normal to the plane.
13. The apparatus as in ¶6, wherein the amplitude offset is within 2 dB.
14. The apparatus as in ¶1, wherein the cavities consist of straight cylinders with a decreasing radius from input to exit opening.
15. The apparatus as in ¶14, wherein the wavelength is less than 9 mm.
16. The apparatus as in ¶14, wherein the pitch of the exit cavities is less than 6 mm.
17. The apparatus as in ¶2, wherein the phase offsets are stored in memory on the apparatus.
18. The apparatus as in ¶6, wherein the amplitude offsets are stored in memory on the apparatus.
Previous disclosures have described the phyllotactic spiral as an example of a non-uniform structure that splits the grating lobe structures into many pieces. However, for ease of manufacture it is difficult to use, as can be seen when looking at the Voronoi diagram of the point set 1500, as shown in
As can be seen form this Voronoi diagram of a point set in a phyllotactic spiral, the ‘seed shape’ moves between a diamond-like shape and a hexagon-like shape in bands that appear to roughly follow the Fibonacci sequence in thickness. As there is no one single shape in the limit, it is clear that there is no one optimal transducer shape for a design based on this approach.
While the continuously changing shape of the Voronoi cells results in a reasonable design for an array of transducing elements which are non-resonant with a broadband response as the function of output will then vary little with this small change in shape, when narrowband resonant structures are considered, this would require careful tuning of each structure which is currently commercially infeasible. Resonant devices cover a large proportion of existing technologies, including devices based on the piezoelectric effect; passing electricity through crystal structures to create mechanical bending.
Shown in
Square transducers are more difficult to position as a simple arrangement that does not require rotation yields the arrangement shown in
Shown in
Using singulated unit transducers in a phyllotactic arrangement, only allowing rectilinear alignment of the set of square transducers, results in a configuration that is over twice the area of the equivalent uniform square packing that has no wasted space. This is a problem, because the power output of the array is reduced by this factor per unit area. The greater the packing density, the less energy per unit area is lost to the unoccupied regions.
This can be improved if the singulated units are allowed to rotate, breaking the rectilinearly aligned arrangement, as shown in
A dense packing of transducers mounted on a surface is equivalent to a tiling of the plane. As the grating effects that need to be reduced or removed are effectively the result of wave phenomena interacting with the ‘lattice’ of transducer emission locations, so the effect can be determined ahead of time by taking the Fourier transform of the arrangement, yielding an equivalent to a modelled Bragg diffraction pattern. Then, to find a pattern that is effective, a ‘lattice’ of transducer emission locations must be found that has a weak and disperse Bragg diffraction pattern.
The Bragg diffraction of the rectilinear system yields the corresponding grating lobe configuration with the central focus surrounded by extra false images separated again by the rectilinear grid, as shown in
As many interesting planar aperiodic tilings of the plane have been studied due to their properties as molecular models of crystalline systems and especially as models of quasi-crystals and mixtures of metals, there is literature that describes the Bragg diffractions of tilings as analogues of problems in X-ray crystallography. Due to this, considering the paper, Senechal, M. “Tilings, Diffraction and Quasi-crystals”, the most interesting two tiling systems studied alongside their Bragg diffractions are the binary and pinwheel systems for tiling the plane.
The first system considered is that of the ‘binary’ tiling, where transducing elements may take the two shapes of the fat and thin rhombus present in the tiling, as shown in
Shown in
Shown in
The pinwheel tiling is also a fractal in that there is a set of five right angle triangles with sides measuring ratios of 1, 2 and √5 which fit perfectly in the area of a single triangle of the same shape but with five times the area of one of these fitted triangles.
Shown in
Also shown are the left and right chiral constructions of the fractal pinwheel tiling, and also shown is the format that allows for complete structures to be potentially fabricated from a single sheet or attached together at the points shown. Further shown are lightly shaded locations to which a vibrating plate may be attached to generate a wave or may alternatively topologically illustrate a potential method to choose vent locations. If they are manufactured singly, then these right-angle triangle fractal tiles have the drawback that they do not use an equal number of left and right-handed right angle single elements, which may cause logistical difficulties if not considered.
The larger fractal tiles which by nature also have sides measuring ratios of 1, 2 and √5 may be reconstructed into rectangular arrays with 1:2 aspect ratio as shown in
These arrays may contain an integer power of five multiplied by two elements (10, 50, 250 etc.) as shown and because they are purely asymmetric must require an equal number of left and right-handed triangles. This is preferable in the case of single element manufacture, as there are then fewer special cases to consider during processing.
From these rectangular sub-tiles of different chirality 25102520253025402550256025702580 shown in
These aforementioned array tiling designs should not preclude any partial tessellations as produced by taking a subsection of the pinwheel tiling to use for its superior diffraction characteristics.
The one remaining barrier to this design is that if the edges of the transducing element are clamped and there is a boundary condition, the structure bonded to the piezoelectric crystal may not flex with sufficient displacement to produce efficient output.
By simulating the eigenmodes using the Helmholtz equation as shown in
Specifically,
Shown in
Shown in
As any device that behaves with the correct center of mass may make use of this tiling procedure, it is in this case only required to create a wave generating technology with this physical footprint. The exact technology is not required to be piezoelectric transducing elements, and may be electrostatic, MEMs, CMUTs, PMUTs or any other prevailing technology or process. This invention may be applied to any transducer process to produce a complete or partial spatial packing of a two-dimensional plane with substantially reduced or eliminated element-to-element gaps.
Additional disclosure includes: 1. An array of triangular transducers wherein the locations of physical features can be described by barycentric coordinates applied to a triangle with sides forming the ratio 1:2:√5.
2. The array of ¶1, wherein the transducers comprise acoustic transducers.
3. The array of ¶1, wherein the transducers comprise an array of antennae for beamforming electromagnetic signals.
4. The array of ¶1, wherein the triangles whose sides form the ratio 1:2:√5 to which the barycentric coordinates are applied to yield the feature locations are themselves subdivisions of other triangles whose sides form the ratio 1:2:√5.
5. An array comprising one or more tiles of transducers each comprised of many square transducers in a partial phyllotactic spiral pattern wherein two opposite corners of the transducer and a point in space common to the acoustic transducer elements on the tile are collinear.
6. The array of ¶5, wherein the transducers comprise acoustic transducers.
7. The array of ¶5, wherein the transducers comprise an array of antennae for beamforming electromagnetic signals.
8. The array of ¶5, wherein the common point in space collinear to opposite corners of each transducer does not lie on the tile of transducer elements.
9. A device comprising one or more asymmetric transducers, wherein the field generated at a plurality of frequencies from a plurality of stable asymmetric resonant modes is used to localize a transducer detecting the field at a plurality of frequencies.
10. The device of ¶9, wherein the transducers comprise acoustic transducers.
11. The device of ¶9, wherein the transducers comprise an array of antennae for beamforming electromagnetic signals.
12. The device of ¶9, wherein the transducer is of a triangular shape, wherein the locations of physical features can be described by barycentric coordinates applied to a triangle with sides forming the ratio 1:2:√5.
13. The device of ¶9, wherein the transducer detecting the field is also an asymmetric transducer with a plurality of stable asymmetric resonant modes which are capable of detecting the field at a plurality of frequencies.
14. The device of ¶9, wherein the acoustic field detected using a plurality of stable asymmetric resonant modes at a plurality of resonant frequencies of the detector may be any arbitrary acoustic field.
Square shaped transducers are ideal for rectilinear arrangements resulting in zero wasted area. They can suffer from grating lobes, however, if they are of comparable size to the emitted wavelength. Placing square transducers into a phyllotactic spiral can break up secondary foci but necessities a reduction in packing density of at least 40%. To achieve the 40% parameter, individual transducers need to be singulated which increases cost of manufacture.
The invention presented here details a recursive technique to adjust the placement of square transducers in order to achieve an adjustable balance between packing density and effectiveness of reducing grating lobe magnitude.
Shown in
Unit 1=[−r+a,r+d]
Unit 2=[r+a,r−b]
Unit 3=[r−c,−r−b]
Unit 4=[−r−c,−r+d],
where the notation is given by [x-location, y-location]. Careful choices of the adjustment parameters (a,b,c,d) can give arrangements of all the elements which breaks symmetry.
Shown in
Shown in
Determining which arrangements are most effective must be done through simulation. This can be as computationally sophisticated as a full non-linear finite-element approach or as simple as a linear Huygens model. As an example, array activation coefficients can be calculated so that a focus is steered to [x,y,z]=[40 mm,0,200 mm], and a Huygens model calculates the field to some large extent in that plane. If the array is less dense than critical-spacing, a grating lobe secondary focus will appear somewhere in that plane. If the array arrangement is effective, this focus will be distributed in space and the peak secondary pressure (not the focus) will be low compared to the focus. The contrast between the focus pressure and the peak secondary pressure forms a metric for comparison of different arrangements. One can search through a large number of skew values with and without rotation or mirroring and pick the best performer for a given packing density.
One advantage of this technique compared to a phyllotactic spiral arrangement is that the array can be built in tiles. Each recursive arrangement step which quadruples the array size uses the previous unit cell as its basis—only rotating, mirroring, and skewing the arrangement as its placed into a new square. As a result, this unit cell (and its mirror, if used) can be manufactured as a unit and assembled into the larger array.
While this technique generates square arrays, when a satisfactory square arrangement is found, it can be sectioned to non-square sub-arrays which will be nearly as effective at spreading out grating lobe foci as the original square arrangement. These non-square arrangements can be used together to make larger non-square shapes. Only when the number of sub-units starts is comparable to the number of transducers within each sub-unit does the possibility of grating lob problems resurfacing become an issue.
The key advantage of the invention presented here is that the search space for effective solutions is far reduced compared to random, arbitrary placement. The parameters which can vary in this system are the offsets for each round of recursion and the decision to mirror, rotate, or both. This allows for a tightly bounded search space and reduces the computation required to a manageable subset.
Other points included on the plot are closely-packed rectilinear (square array 3550), a phyllotactic spiral with rotated square elements (square rotated sunflower 3580), and estimates 3 triangle-element arrays 3560 (discussed elsewhere) with equal emission to the squares, as well as decreased emission at −3 dB 3570 and −4 dB 3590.
Additional disclosure includes: 1. An array comprising of many tiles comprising of a plurality of transducers wherein the physical transducer locations are perturbed through rigid transformations such that the new footprint of each element intersects the footprint before the transformation is applied, wherein the original footprint of each comprises a uniform layout of acoustic transducers.
2. The array of ¶1, wherein the transducers comprise acoustic transducers.
3. The array of ¶5, wherein the transducers comprise an array of antennae for beamforming electromagnetic signals.
4. The array of ¶1, wherein the physical tile locations are perturbed through rigid transformations, wherein the new footprint of each tile intersects the footprint before the transformation is applied.
5. The array of ¶1, wherein the transformations are applied recursively to smaller tile arrangements that make up larger tile arrangements.
6. The array of ¶1, wherein a single tile is replicated to produce a plurality of tiles, which are then arranged using rigid transformations to produce an array.
7. The array of ¶1, wherein the transformed arrangement reduces grating lobe intensity.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
Moreover, in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not listed.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
This application claims the benefit of: (1) U.S. Provisional Patent Application No. 62/953,577, filed Dec. 25, 2019; and (2) U.S. Provisional Patent Application No. 62/954,171, filed on Dec. 27, 2019, both of which are incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62954171 | Dec 2019 | US | |
62953577 | Dec 2019 | US |