Systems and methods herein generally relate to three-dimensional (3-D) printing processes that use electrostatic printing processes.
Three-dimensional printing can produce objects using, for example, ink-jet printers and UV-curable material. In many systems, a platform moves below an ink-jet to form a layer of build and support materials, and each layer is hardened using a UV light source. These steps are repeated layer-by-layer. Support materials generally comprise acid-, base- or water-soluble polymers, which can be selectively rinsed from the build material after 3-D printing is complete.
The electrostatic (electro-photographic) process is a well-known means of generating two-dimensional digital images, which transfer materials onto an intermediate surface (such as a photoreceptor belt or drum). Advancements in the way an electro-photographic image is transferred can leverage the speed, efficiency and digital nature of printing systems.
Exemplary three-dimensional (3-D) printers include, among other components, an intermediate transfer surface (such as an intermediate transfer belt (ITB), or other photoreceptor), a first development station positioned to electrostatically transfer build material to the intermediate transfer surface, and a second development station positioned to electrostatically transfer support material to a location of the intermediate transfer surface where the build material is located on the intermediate transfer surface. Each of the layers is on a discrete area of the intermediate transfer surface and is in a pattern. The support material dissolves in solvents that do not affect the build material.
Additionally, in order to conserve the amount of support material used, the second development station can form the pattern of support material that surrounds the build material to only have a specific thickness (where this “specific thickness” is measured in a direction parallel to the intermediate transfer surface) and to not be thicker or thinner than the specific thickness. Thus, with methods and devices herein, just enough support material is used around the build material to keep the build material in the pattern created by the first development station, at least through the processing point where the build material is transferred off the intermediate transfer surface.
Such printers also include a transfer station that can include, for example, at least one roller, on a first side of the intermediate transfer surface, supporting the intermediate transfer surface, and a transmission device on the same “first” side of the intermediate transfer surface. A charge neutralizer is included on a second side of the intermediate transfer surface (the first side of the intermediate transfer surface is opposite the second side). The charge neutralizer outputs an opposite charge to neutralize existing electrostatic charge on a layer of the build material and the support material on the intermediate transfer surface, before the layer reaches the transfer station.
Additionally, a platen moves relative to the intermediate transfer surface. The intermediate transfer surface transfers the layer to the platen each time the platen contacts the second side of the intermediate transfer surface, at the transfer station, to successively form layers of the build material and the support material on the platen. The transmission device outputs acoustic waves cause the layer to move from the intermediate transfer surface to the platen, or to the layers on the platen. The transmission device is an acoustic device vibrating the intermediate transfer surface using acoustic waves. Thus, the transmission device physically vibrates (or acoustically drives) the layers off the intermediate transfer surface and on to the platen, or on to the layers that have been previously transferred to the platen.
Other features include an fuser/heater that is positioned to heat the layers and join each of the layers together after the layers have been transferred to the platen by the transfer station and/or a similar fuser/pressure roller positioned to press each of the layers together after the layers have been transferred to the platen by the transfer station. Further, a curing station can be positioned to apply light to the layers to cure the layers to one another on the platen. Also, a support material removal station can be positioned to receive the layers. The support material removal station can apply a solvent that dissolves the support material (without affecting the build material) to leave the layers made of only the build material.
Exemplary three-dimensional (3-D) printing methods herein electrostatically transfer build material to an intermediate transfer surface using a first development station, and electrostatically transfer support material to a location of the intermediate transfer surface where the build material is located on the intermediate transfer surface, using a second development station. A solvent dissolves the support material (without affecting the build material) to leave the layers made of only the build material.
More specifically, in such processing, these methods control the second development station to form a pattern of the support material around the build material within each of the layers to have a specific thickness. The specific thickness is in a direction parallel to the intermediate transfer surface. Thus, these methods can control the second development station to form the pattern of the support material around the build material to only have the specific thickness, and to not be thicker or thinner than the specific thickness.
Such methods can also output an opposite charge to neutralize existing static charge on a layer of the build material and the support material on the intermediate transfer surface, before the layer reaches a transfer station. As noted above, the transfer station can include, for example, at least one roller on a first side of the intermediate transfer surface, supporting the intermediate transfer surface, and a transmission device on the first side of the intermediate transfer surface. The charge neutralizer is on a second side of the intermediate transfer surface, and the first side is opposite the second side.
Such methods move a platen to contact the intermediate transfer surface. The intermediate transfer surface transfers the layer to the platen each time the platen contacts the second side of the intermediate transfer surface at the transfer station to successively form layers of the build material and the support material on the platen. Additionally, these methods output acoustic waves from the transmission device to cause the layer to move from the intermediate transfer surface to the platen, or to the existing layers on the platen. More specifically, the transmission device is an acoustic device vibrating the intermediate transfer surface using acoustic waves, and these methods can control the transmission device to physically vibrate the layers off the intermediate transfer surface and on to the platen, or on to the layers on the platen.
After transfer, such methods can use a heater to heat the layers to join each of the layers together after the layers have been transferred to the platen by the transfer station and/or a use a pressure roller to press each of the layers together after the layers have been transferred to the platen by the transfer station. Further, these methods can use a curing station to apply light to the layers to cure the layers to one another on the platen. Additionally, such methods can apply a solvent that dissolves the support material (without affecting the build material) to leave the layers made of only the build material.
These and other features are described in, or are apparent from, the following detailed description.
Various exemplary systems and methods are described in detail below, with reference to the attached drawing figures, in which:
As mentioned above, electrostatic printing process are well-known means of generating two-dimensional (2-D) digital images, and the methods and devices herein use such processing for the production of 3-D items (for 3-D printing). However, when performing 3-D printing using electrostatic processes (especially those that use an ITB), the mechanical integrity of the printed material may be compromised if it is very thin, and the transfer process can impose stripping shear forces that damage or smear the material. Also, transfer of newly developed layers on the ITB to the existing layers on the platen can become difficult using only electrostatic forces, especially as the stack of layers on the platen grows and becomes taller.
In view of these and other issues, the methods and devices herein use acoustic vibrational energy to launch build and support material across small transfer gaps, from the ITB and onto the previously formed 3-D part layers, and such is especially useful when the previously formed 3-D part layers have high formation (irregular surface), such as when the previously formed 3-D part layers do not have a smooth, planar surface. Thus, the methods and devices herein use acoustic waves to launch build and support material from the ITB to the previously formed 3-D part layers on the platen, and these methods and devices use control processes and material selections to ensure the production of a high-quality 3-D printed part.
In order to address such issues, as shown, for example, in
In addition, these printers include a transfer or transfuse station 138 having at least one roller 112 on one side of the ITB 110 supporting the ITB 110, and an acoustic transmission device 144 on the same side of the ITB 110 that aids transfer of the build and support materials to the platen 118. A charge neutralizer 140 is included on the opposite side of the intermediate transfer surface. The charge neutralizer 140 outputs an opposite charge to neutralize existing static charge on a layer 102 of the build material and the support material on the intermediate transfer surface 110, before the layer 102 reaches the transfer station 138.
The ITB 110 can be a flat, continuous belt supported on rotating rollers 112. A movable platen 118 (which can be a surface or belt) is adjacent the ITB 110. Also, such structures include a heater/pressure roller 120, and a curing station 124 that is positioned to apply light (e.g. UV light) using a light source. The structure can also include an optional support material removal station 148. A cooling station 142 is shown positioned adjacent the transfuse station 138.
As shown in
The support material dissolves in solvents that do not affect the build material to allow the printed 3-D structure formed of the build material to be separated from the support material used in the printing process. In the drawings, the combination of the build material and the support material is shown as element 102, and is sometimes referred to as a developed layer. The developed layer 102 of the build material and the support material is on a discrete area of the ITB 110 and is in a pattern corresponding to the components of the 3-D structure in that layer (and its associated support elements), where the 3-D structure is being built, developed layer 102 by developed layer 102.
As shown in
As shown by the vertical arrow in
Such build and support material are printed in a pattern on the ITB by each separate development device 150-158, and combine together in the developed layers 102 to represent a specific pattern having a predetermined length. Thus, each of the developed layers 102 has a leading edge 134 oriented toward the processing direction in which the ITB 110 is moving (represented by arrows next to the ITB 110) and a trailing edge 136 opposite the leading edge 134.
More specifically, as shown in
The process of developing the build and support materials in a pattern on the ITB by each separate development device 150-158 leaves an electrostatic charge in the layer 102. However, the existing electrostatic charge in the layer 102 can increase the attraction of the layer 102 toward the ITB 110, which in turn can increase the difficulty of transferring to layer 102 from the ITB 110 to the platen 118. In view of this, the methods and devices herein remove or neutralize the existing electrostatic charge from the layer 102 before the layer 102 reaches the transfuse station 138.
In order to remove this existing electrostatic charge in the layer 102, the charge neutralizer 140 outputs an opposite charge (e.g., outputs a charge opposite to the electrostatic charge; or, in other words, a charge matching the existing electrostatic charge, but opposite in polarity, to the existing electrostatic charge of the layer 102) to neutralize existing electrostatic charge on a layer 102 of the build material and the support material on the intermediate transfer surface 110, before the layer 102 reaches the transfer station 138. The charge generator 140 can be any type of charge generating device, such as a corona charge device generating charges and projecting (spraying) the charges. With the layer 102 having little or no electrostatic charge, the acoustic energy output by the acoustic transmission device 144 is more effective in driving the layer 102 off the ITB 110 and onto the platen 118.
As shown in
Then, as the ITB 110 moves in the processing direction, the platen 118 moves at the same speed and in the same direction as the ITB 110, until the trailing edge 136 of the developed layer 102 reaches the end of the transfuse station 138, at which point the platen 118 moves away from the ITB 110 and over to the heater/pressure roller 120, as shown in
As shown in
In one example, the build material 104 can be UV curable toners. Curing station 124 cures such materials by heating the materials to a temperature between their glass transition temperature and their melting temperature, and applying UV light to cross-link polymers within at least the build materials (and possibly within the support materials also) thereby creating a rigid structure. Those ordinarily skilled in the art would understand that other build and support materials could utilize other bonding processing and bonding components, and that the foregoing is presented only as one limited example; and the devices and methods herein are applicable to all such bonding methods and components, whether currently known or developed in the future.
In
The platen 118 can move to the heater/pressure roller 120, and/or cooling station 142 after each time the ITB 110 transfers each of the developed layers 102 to the platen 118 to independently heat and press each of the developed layers 102 and successively join each the developed layer 102 to the platen 118 and to any previously transferred developed layers 102 on the platen 118. In other alternatives, the platen 118 may only move to the heater/pressure roller 120 after a specific number (e.g., 2, 3, 4, etc.) of the developed layers 102 have been placed on the platen 118 to allow multiple developed layers 102 to be simultaneously bonded to the platen 118 and to each other by the heater/pressure roller 120.
Thus, the processing in
As noted above, the particles of build materials 104 and support material 105 within each developed layer 102 (shown as particles (not drawn to scale) in
The height of the stack 106 will make the distance between the build and support particles 102 greater than the ability of the electrostatic charges to attract the particles 102 (and this height will vary, depending upon the strength of the various charges) when performing electrostatic transfer at the transfuse station. Therefore, instead of performing electrostatic transfer at the transfuse station, the transmission device 144 is used to acoustically drive the particles 102 using acoustic waves. In other words, the transmission device 144 physically vibrates the layers 102 off the ITB 110 and on to the existing stack 106 on the platen 118. Further, as can be seen in
For example, the transmission device 144 can be any form of resonator, speaker, vibrator, etc., that is suitable for generating vibratory energy, as such is arranged in line with (and may contact) the back side of the ITB 110 surface for uniformly applying vibratory energy to the ITB 110 such that the layer 102 will be released from the forces adhering it to the ITB 110 at the transfuse station 138. Thus, the layers 102 are transferred across the transfuse station 138 gap by the vibratory energy output from the transmission device 144.
As the stack 106 of the developed layers 102 grows, additional developed layers 102 are formed on top of the stack 106, as shown in
In
More specifically, in
In similar operations to that discussed above, as shown in
Alternatively, as shown in
The input/output device 214 is used for communications to and from the 3-D printing device 204 and comprises a wired device or wireless device (of any form, whether currently known or developed in the future). The tangible processor 224 controls the various actions of the printing device 204. A non-transitory, tangible, computer storage medium device 210 (which can be optical, magnetic, capacitor based, etc., and is different from a transitory signal) is readable by the tangible processor 224 and stores instructions that the tangible processor 224 executes to allow the computerized device to perform its various functions, such as those described herein. Thus, as shown in
The 3-D printing device 204 includes at least one marking device (printing engine(s)) 240 that deposits successive layers of build and support material on a platen as described above, and are operatively connected to a specialized image processor 224 (that is different than a general purpose computer because it is specialized for processing image data). Also, the printing device 204 can include at least one accessory functional component (such as a scanner 232) that also operates on the power supplied from the external power source 220 (through the power supply 218).
The one or more printing engines 240 are intended to illustrate any marking device that applies build and support materials (toner, etc.) whether currently known or developed in the future and can include, for example, devices that use an intermediate transfer belt 110 (as shown in
Thus, as shown in
One exemplary individual electrostatic development station 150-158 is shown in
Additionally, in order to conserve the amount of support material 105 used but still allow the support material 105 to prevent the pattern of build material 104 from being disturbed, the second development station 150 can form the pattern of support material 105 that surrounds the build material 104 to only have a specific thickness (where this “specific thickness” is measured in a direction parallel to said intermediate transfer surface) and to not be thicker or thinner than the specific thickness. For example, as shown in
The acoustic energy output by the acoustic transmission device 144 may cause the outer areas of the layer 102 to disperse somewhat as they are transferred to the platen 118. Therefore, the thickness 160 (in the direction parallel to the surface of the intermediate transfer surface 110) of the support material 105 should be sufficient to allow some of the support material 105 to be dispersed by the acoustic energy, without allowing the pattern of build material 104 to be changed or affected by the acoustic energy. However, the thickness 160 of the support material 105 should be controlled to avoid using an excess amount of support material. Therefore,
More specifically, when developing the support material in item 302, these methods control the second development station to form a pattern of the support material around the build material within each of the layers to have a minimum thickness. The minimum thickness is in a direction parallel to the intermediate transfer surface. Also, in item 302, these methods can control the second development station to form the pattern of the support material around the build material to only have the uniform thickness, and to not be thicker or thinner than the uniform thickness.
In item 304, such methods can also output an opposite charge to neutralize existing static charge on a layer of the build material and the support material on the intermediate transfer surface, before the layer reaches a transfer station. As noted above, the transfer station can include, for example, at least one roller on a first side of the intermediate transfer surface, supporting the intermediate transfer surface, and a transmission device on the first side of the intermediate transfer surface. The charge neutralizer is on a second side of the intermediate transfer surface, and the first side is opposite the second side.
In item 306, such methods move a platen to contact the intermediate transfer surface. The intermediate transfer surface transfers a layer to the platen each time the platen contacts the second side of the intermediate transfer surface at the transfer station to successively form layers of the build material and the support material on the platen.
Additionally, in item 306, these methods output acoustic energy (waves) from the transmission device to cause the layer to move from the intermediate transfer surface to the platen, or to the existing layers on the platen. More specifically, the transmission device is an acoustic device vibrating the intermediate transfer surface using acoustic waves, and these methods can control the transmission device to physically vibrate the layers off the intermediate transfer surface and on to the platen, or on to the layers on the platen in item 306.
After transfer, in item 308, such methods can use a heater to heat the layers to join each of the layers together after the layers have been transferred to the platen by the transfer station and/or a use a pressure roller to press each of the layers together after the layers have been transferred to the platen by the transfer station. Further, these methods can use a curing station to apply light to the layers to cure the layers to one another on the platen. Additionally, in item 308, such methods can apply a solvent that dissolves the support material (without affecting the build material) to leave the layers made of only the build material.
While some exemplary structures are illustrated in the attached drawings, those ordinarily skilled in the art would understand that the drawings are simplified schematic illustrations and that the claims presented below encompass many more features that are not illustrated (or potentially many less) but that are commonly utilized with such devices and systems. Therefore, Applicants do not intend for the claims presented below to be limited by the attached drawings, but instead the attached drawings are merely provided to illustrate a few ways in which the claimed features can be implemented.
As shown in U.S. Pat. No. 8,488,994, an additive manufacturing system for printing a 3-D part using electrophotography is known. The system includes a photoconductor component having a surface, and a development station, where the development station is configured to developed layers of a material on the surface of the photoconductor component. The system also includes a transfer medium configured to receive the developed layers from the surface of the rotatable photoconductor component, and a platen configured to receive the developed layers from the transfer component in a layer-by-layer manner to print the 3-D part from at least a portion of the received layers.
With respect to UV curable toners, as disclosed in U.S. Pat. No. 7,250,238 it is known to provide a UV curable toner composition, as are methods of utilizing the UV curable toner compositions in printing processes. U.S. Pat. No. 7,250,238 discloses various toner emulsion aggregation processes that permit the generation of toners that in embodiments can be cured, that is by the exposure to UV radiation, such as UV light of has about 100 nm to about 400 nm. In U.S. Pat. No. 7,250,238, the toner compositions produced can be utilized in various printing applications such as temperature sensitive packaging and the production of foil seals. In U.S. Pat. No. 7,250,238 embodiments relate to a UV curable toner composition comprised of an optional colorant, an optional wax, a polymer generated from styrene, and acrylate selected from the group consisting of butyl acrylate, carboxyethyl acrylate, and a UV light curable acrylate oligomer. Additionally, these aspects relate to a toner composition comprised of a colorant such as a pigment, an optional wax, and a polymer generated from a UV curable cycloaliphatic epoxide.
Moreover, U.S. Pat. No. 7,250,238 discloses a method of forming a UV curable toner composition comprising mixing a latex containing a polymer formed from styrene, butyl acrylate, a carboxymethyl acrylate, and a UV curable acrylate with a colorant and wax; adding flocculant to this mixture to optionally induce aggregation and form toner precursor particles dispersed in a second mixture; heating the toner precursor particles to a temperature equal to or higher than the glass transition temperature (Tg) of the polymer to form toner particles; optionally washing the toner particles; and optionally drying the toner particles. A further aspect relates to the toner particles produced by this method.
While some exemplary structures are illustrated in the attached drawings, those ordinarily skilled in the art would understand that the drawings are simplified schematic illustrations and that the claims presented below encompass many more features that are not illustrated (or potentially many less) but that are commonly utilized with such devices and systems. Therefore, Applicants do not intend for the claims presented below to be limited by the attached drawings, but instead the attached drawings are merely provided to illustrate a few ways in which the claimed features can be implemented.
Many computerized devices are discussed above. Computerized devices that include chip-based central processing units (CPU's), input/output devices (including graphic user interfaces (GUI), memories, comparators, tangible processors, etc.) are well-known and readily available devices produced by manufacturers such as Dell Computers, Round Rock Tex., USA and Apple Computer Co., Cupertino Calif., USA. Such computerized devices commonly include input/output devices, power supplies, tangible processors, electronic storage memories, wiring, etc., the details of which are omitted herefrom to allow the reader to focus on the salient aspects of the systems and methods described herein. Similarly, printers, copiers, scanners and other similar peripheral equipment are available from Xerox Corporation, Norwalk, Conn., USA and the details of such devices are not discussed herein for purposes of brevity and reader focus.
The terms printer or printing device as used herein encompasses any apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, etc., which performs a print outputting function for any purpose. The details of printers, printing engines, etc., are well-known and are not described in detail herein to keep this disclosure focused on the salient features presented. The systems and methods herein can encompass systems and methods that print in color, monochrome, or handle color or monochrome image data. All foregoing systems and methods are specifically applicable to electrostatographic and/or xerographic machines and/or processes.
For the purposes of this invention, the term fixing means the drying, hardening, polymerization, crosslinking, binding, or addition reaction or other reaction of the coating. In addition, terms such as “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “upper”, “lower”, “under”, “below”, “underlying”, “over”, “overlying”, “parallel”, “perpendicular”, etc., used herein are understood to be relative locations as they are oriented and illustrated in the drawings (unless otherwise indicated). Terms such as “touching”, “on”, “in direct contact”, “abutting”, “directly adjacent to”, etc., mean that at least one element physically contacts another element (without other elements separating the described elements). Further, the terms automated or automatically mean that once a process is started (by a machine or a user), one or more machines perform the process without further input from any user. In the drawings herein, the same identification numeral identifies the same or similar item.
It will be appreciated that the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. Unless specifically defined in a specific claim itself, steps or components of the systems and methods herein cannot be implied or imported from any above example as limitations to any particular order, number, position, size, shape, angle, color, or material.
Number | Name | Date | Kind |
---|---|---|---|
4063808 | Simpson | Dec 1977 | A |
4100884 | Mochizuki et al. | Jul 1978 | A |
4187774 | Iwasa et al. | Feb 1980 | A |
4510223 | Kuehnle et al. | Apr 1985 | A |
4987456 | Snelling | Jan 1991 | A |
5016055 | Pietrowski et al. | May 1991 | A |
5088047 | Bynum | Feb 1992 | A |
5103263 | Moore | Apr 1992 | A |
5282006 | Fletcher | Jan 1994 | A |
5339147 | Snelling | Aug 1994 | A |
5477315 | Mashtare | Dec 1995 | A |
5966559 | May | Oct 1999 | A |
6066285 | Kumar | May 2000 | A |
6141524 | Berkes | Oct 2000 | A |
6157804 | Richmond | Dec 2000 | A |
6775504 | Godlove et al. | Aug 2004 | B2 |
7184698 | Tombs | Feb 2007 | B2 |
7250238 | Fromm et al. | Jul 2007 | B2 |
7270408 | Odell et al. | Sep 2007 | B2 |
7851549 | Sacripante et al. | Dec 2010 | B2 |
8265536 | Condello et al. | Sep 2012 | B2 |
8306443 | DiRubio et al. | Nov 2012 | B2 |
8396404 | Tabb et al. | Mar 2013 | B2 |
8470231 | Dikovsky et al. | Jun 2013 | B1 |
8488994 | Hanson et al. | Jul 2013 | B2 |
8548621 | Gross et al. | Oct 2013 | B2 |
8718522 | Chillscyzn | May 2014 | B2 |
8836911 | Flores | Sep 2014 | B2 |
8879957 | Hanson et al. | Nov 2014 | B2 |
9029058 | Martin | May 2015 | B2 |
9193110 | Pridoehl et al. | Nov 2015 | B2 |
20080131800 | Marsh et al. | Jun 2008 | A1 |
20100140849 | Comb et al. | Jun 2010 | A1 |
20100227184 | Swift et al. | Sep 2010 | A1 |
20120276233 | Napendensky | Nov 2012 | A1 |
20130075013 | Chillscyzn et al. | Mar 2013 | A1 |
20130078013 | Chillscyzn et al. | Mar 2013 | A1 |
20130186558 | Comb et al. | Jul 2013 | A1 |
20140134334 | Pridoehl et al. | May 2014 | A1 |
20150024169 | Martin | Jan 2015 | A1 |
20150024309 | Martin | Jan 2015 | A1 |
20150024317 | Drrock et al. | Jan 2015 | A1 |
20150142159 | Chang | May 2015 | A1 |
20150145174 | Comb | May 2015 | A1 |
20150266241 | Batchelder | Sep 2015 | A1 |
20150352786 | Pruett et al. | Dec 2015 | A1 |
20160243764 | Hays et al. | Aug 2016 | A1 |
20170015063 | Hanyu | Jan 2017 | A1 |
20170192377 | Batchelder et al. | Jul 2017 | A1 |
20170299973 | Frauens | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
104890241 | Sep 2015 | CN |
2015133641 | Sep 2015 | WO |
Entry |
---|
U.S. Appl. No. 15/147,971, Office Action Communication dated Jun. 26, 2018, pp. 1-11. |
European Application No. 17169600.8, European Search Report dated Sep. 7, 2017, pp. 1-7. |
U.S. Appl. No. 15/152,659, Restriction Requirement dated Dec. 26, 2017, pp. 1-6. |
U.S. Appl. No. 15/152,659, Office Action Communication dated Feb. 22, 2018, pp. 1-16. |
U.S. Appl. No. 15/152,659, Office Action Communication dated Jun. 19, 2018, pp. 1-20. |
U.S. Appl. No. 15/152,659, Advisory Action dated Aug. 28, 2018, pp. 1-3. |
U.S. Appl. No. 15/152,631, Restriction Requirement dated Nov. 15, 2017, p. 1-7. |
U.S. Appl. No. 15/152,631, Office Action Communication dated Dec. 20, 2017, pp. 1-9. |
U.S. Appl. No. 15/152,631, Office Action Communication dated May 2, 2018, pp. 1-26. |
U.S. Appl. No. 15/152,631, Notice of Allowance Communication dated Jul. 6, 2018, pp. 1-8. |
U.S. Appl. No. 15/152,659, Notice of Allowance dated Oct. 3, 2018, pp. 1-6. |
U.S. Appl. No. 15/147,971, Notice of Allowance dated Oct. 4, 2018, pp. 1-7. |
U.S. Appl. No. 16/059,496, Office Action Communication dated Dec. 13, 2018, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20170320269 A1 | Nov 2017 | US |