The application relates generally to downhole drilling In particular, the application relates to measuring a velocity of a drilling fluid used during the downhole drilling.
During drilling operations for extraction of hydrocarbons, an accurate determination of a shape of a borehole is important. In particular, a number of other downhole measurements are sensitive to a stand-off of the downhole tools from the formation. Knowledge of the borehole shape may be required to apply corrections to these downhole measurements. A determination of the shape of the borehole has various other applications. For example, for completing a well, an accurate knowledge of the borehole shape is important in hole-volume calculations for cementing.
The embodiments are provided by way of example and not limitation in the figures of th.275e accompanying drawings, in which like references indicate similar elements and in which:
Methods, apparatus and systems for acoustic velocity measurements using tilted transducers are described. In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description. Some embodiments may be used in Measurement While Drilling (MWD), Logging While Drilling (LWD) and wireline operations.
In example embodiments, a downhole tool comprises tilted (angled) and non-tilted transducers relative to the outer surface of the downhole tool. These transducers may be acoustic transducers that are used to measure a velocity of sound (e.g., ultrasound) propagation in the drilling fluid in a downhole environment. In example embodiments, a downhole tool comprises a non-tilted transducer that operates in a pulse-echo mode to receive an echo of a pulse that is reflected off the formation wall or well bore. Further, the downhole tool may comprise a tilted transducer that operates in a pitch-catch mode with a different transducer. In some embodiments, the tilted transducer may operate in a pitch-catch mode with the non-tilted transducer that is also operating in the pulse-echo mode. Alternatively or in addition, the tilted transducer may operate in a pitch-catch mode with a different non-tilted transducer. While described such that the transducers are positioned in a downhole tool, some embodiments are not so limited. The transducers may be positioned at different locations along the drill string or wireline tool. For example, in some embodiments, one or more of the transducers may be positioned within the drill bit of the drill string.
In some embodiments, a single dual-element transducer may be used to measure the velocity of sound propagation in the drilling fluid. The dual-element transducer may comprise a first transducer element that is non-tilted relative to the outer surface of the downhole tool. The dual-element transducer may also comprise a second transducer element that is tilted relative to the outer surface of the downhole tool. As further described below, the use of tilted and non-tilted transducers provides measurements of sound paths that are two different lengths. The difference in arrival times of the two sound pulses can be used to determine an in-situ velocity of sound downhole. The velocity measurement may be used to calculate various downhole parameters (e.g., borehole diameters).
The downhole tool 104 comprises a transducer 106 and a transducer 108. The transducer 106 and the transducer 108 may emit and detect acoustic waves.
For example, the transducer 106 and the transducer 108 may emit and detect ultrasonic waves. Depending on the type of operation, in some embodiments, the transducer 106 and the transducer 108 may be only an emitter or a detector. In particular, if the transducer only provides for emission of acoustic waves, the transducer may be only an emitter. The transducer 106 and the transducer 108 include a face 107 and a face 109, respectively.
The face 107 of the transducer 106 is generally parallel to the face 120 of the formation 102. While the face 107 of the transducer 106 is at the outer diameter of the downhole tool 104, embodiments are not so limited. For example, in some embodiments, the transducer 106 may be embedded in the downhole tool 104 a given depth. The face of transducer may be covered by different material for protection of the face 107, while allowing for the emission of the acoustic waves without interference.
The face 109 of the transducer 108 is not parallel with the face 120 of the formation 102. The transducer 108 is tilted at some angle, θ, relative to the surface of the downhole tool 104 and the face 120 of the formation 102. In some embodiments, the angle may be in a range of 1 to 89 degrees. For examples, the angle may be approximately 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, etc. As shown, because of the angle of the transducer 108, an opening 125 is cut into the downhole tool 104. In some embodiments, the opening 125 is filled with different material to protect the face 109 while allowing for the emission of the acoustic waves without interference. The distance between the transducer 106 and the transducer 108 is L.
The transducer 106 and the transducer 108 may comprise a piezoelectric ceramic or a magnetostrictive material that converts electric energy into vibration and vice versa. The transducer 106 may operate both as a transmitter and a receiver. In operation, in some embodiments, the transducer 106 operates in a pulse-echo mode. The transducer 106 is configured to emit a pulse (e.g., in a collimated fashion) in a direction substantially toward the surface 120 of the formation 102. The transducer 106 then receives the reflection of the vibration off the surface 120 (the echo). The transducer 106 may determine the travel time (tA) of the reflected pulse.
In operation, in some embodiments, the transducer 108 operates in a pitch-catch mode. The transducer 108 is configured to emit a pulse towards the face 120 of the formation 102 at an angle, θ (the pitch). The pulse is then reflected, according to Snell's law. The reflection is received by the transducer 106 (the catch). The travel time (tB) of the reflected pulse may be determined. The difference in the two travel times, tA and tB is due to a difference in the path length in the drilling fluid for the two pulses. Therefore, these two measurements may be used to calculate an acoustic velocity (v) in the drilling fluid. In particular,
t
A..=2d/v
and
t
B..2((L/2)2+d2)1/2/v
Therefore:
v=L(tB2−tA2)−1/2
Electronics (such as a processor) may determine the velocity (v). Such electronics may be downhole, at the surface (local or remote to the drilling site) or a combination thereof.
In some embodiments, to remove the impact of a bad measurement, a “moving-average” speed of sound will be maintained, based on a fixed number of previous good measurements. The current speed of sound measurement will be compared to this average. If the current speed and the average differ by a given amount, the current speed is discarded. In some embodiments, if the current speed does not differ by the given amount, the current speed is considered a good measurement and is used to update the moving average. The current moving average speed of sound may be used to convert the travel time measured by the transducer 106 in the “pulse-echo” mode into a stand-off to the borehole wall. This measurement of the stand-off may be used by other instruments or tools in the drill string.
In some embodiments, three or more transducers may be used to determine the acoustic velocity.
The downhole tool 204 comprises a transducer 206, a transducer 208 and a transducer 211. The transducer 206, the transducer 208 and the transducer 211 may emit and detect acoustic waves. For example, the transducer 206, the transducer 208 and the transducer 211 may emit and detect ultrasonic waves. Depending on the type of operation, in some embodiments, the transducer 206, the transducer 208 and the transducer 211 may be only an emitter or a detector. In particular, if the transducer only provides for emission of acoustic waves, the transducer may be only an emitter. The transducer 206, the transducer 208 and the transducer 211 include a face 207, a face 209 and a face 225, respectively.
The face 207 of the transducer 206 is generally parallel to the face 220 of the formation 202. While the face 207 of the transducer 206 is at the outer diameter of the downhole tool 204, embodiments are not so limited. For example, in some embodiments, the transducer 206 may be embedded in the downhole tool 204 a given depth. The face of transducer may be covered by different material for protection of the face 207, while allowing for the emission of the acoustic waves without interference.
In an option, the face 209 and the face 225 are not parallel with the face 220 of the formation 202. The transducer 208 and the transducer 211 are tilted at some angle, 0, relative to the surface of the downhole tool 204 and the face 220 of the formation 202. In some embodiments, the distance from the transducer 211 to the transducer 206 and the distance from the transducer 225 to the transducer 206 are the same. In some embodiments, such distances are different. Moreover, the angle, 0, for the transducer 211 and the transducer 225 may be the same or different. In some embodiments, the angles may be in a range of 1 to 89 degrees. For examples, the angles may be approximately 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, etc. As shown, because of the angles of the transducer 108 and the transducer 211, an opening 125 is cut into the downhole tool 104. In some embodiments, the opening 125 is filled with different material to protect the faces 209 and 225 while allowing for the emission of the acoustic waves without interference.
The transducer 206, the transducer 208 and the transducer 211 may comprise a piezoelectric ceramic or a magnetostrictive material that converts electric energy into vibration and vice versa. The transducer 206 may operate both as a transmitter and a receiver. In operation, in some embodiments, the transducer 206 operates in a pulse-echo mode. The transducer 206 is configured to emit a pulse (e.g., in a collimated fashion) in a direction substantially toward the surface 220 of the formation 202. The transducer 206 then receives the reflection of the vibration off the surface 220 (the echo). The transducer 206 may determine the travel time (tA) of the reflected pulse.
In operation, in some embodiments, the transducer 208 and the transducer 211 operate in a pitch-catch mode. The transducer 208 and the transducer 211 are configured to emit a pulse towards the face 220 of the formation 202 at an angle, θ (the pitch). The pulse is then reflected, according to Snell's law. The reflections are received by the transducer 206 (the catch). The travel time (tB) and the travel time (tc) for the pulse from the transducer 208 and the transducer 211, respectively, of the reflected pulses may be determined. The pairs of measurements (tA, tB) and (tA, tC) may be used to calculate two values for the acoustic velocity. Each of the two values for the acoustic velocity may be compared to the moving-average speed of sound (as described above). While described with two and three transducers, some embodiments may incorporate any number of transducers therein.
The downhole tool 304 comprises a dual-element transducer 306. The dual-element transducer 306 includes a casing 310. The casing 310 encloses a first acoustic element 316 and a second acoustic element 318. The dual-element transducer 306 also includes a backing material 314 for both element 316 and 318. An acoustic matching material 322 is positioned in front of the second acoustic element 318 (relative to the face of the dual-element transducer 306). A wear plate 312 is positioned in front of both first acoustic transducer element 316 and the second acoustic transducer element 318.
The first acoustic transducer element 316 and the second acoustic transducer element 318 may emit and detect acoustic waves. For example, the transducer element 316 and the transducer element 318 may emit and detect ultrasonic waves. Depending on the type of operation, in some embodiments, the transducer element 316 and the transducer element 318 may be only an emitter or a detector. In particular, if the transducer only provides for emission of acoustic waves, the transducer may be only an emitter. The transducer element 316 and the transducer element 318 include a face 370 and a face 372, respectively.
The face 370 of the transducer element 316 is essentially parallel to the face 303 of the formation 302. While the face 370 of the transducer element 316 is at the outer diameter of the downhole tool 304, embodiments are not so limited. For example, in some embodiments, the transducer element 316 may be embedded in the downhole tool 304 a given depth.
The face 372 of the transducer element 318 is not parallel with the face 303 of the formation 302. The transducer element 318 is tilted at some angle, θ, relative to the surface of the downhole tool 304 and the face 303 of the formation 302. In some embodiments, the angle may be in a range of 1 to 89 degrees. For examples, the angle may be approximately 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, etc. The distance between the transducer element 316 and the transducer element 318 is L.
The transducer element 316 and the transducer element 318 may comprise a piezoelectric ceramic or a magnetostrictive material that converts electric energy into vibration and vice versa. The transducer element 316 may operate both as a transmitter and a receiver. In operation, in some embodiments, the transducer element 316 operates in a pulse-echo mode. The transducer element 316 is configured to emit a pulse (e.g., in a collimated fashion) in a direction substantially toward the surface 303 of the formation 302. The transducer element 316 then receives the reflection of the vibration off the surface 302 (the echo). The transducer element 316 may determine the travel time (tA) of the reflected pulse.
In operation, in some embodiments, the transducer element 318 operates in a pitch-catch mode. The transducer element 318 is configured to emit a pulse towards the face 303 of the formation 302 at an angle, θ (the pitch). The pulse is then reflected, according to Snell's law. The reflection is received by the transducer element 316 (the catch). The travel time (tB) of the reflected pulse may be determined. The difference in the two travel times, tA and tB is due to a difference in the path length in the drilling fluid for the two pulses. Therefore, these two measurements may be used to calculate an acoustic velocity (v) in the drilling fluid. In particular,
t
A..=2d/v
and
t
B..=2((L/2)2+d2)1/2/v
Therefore:
v=L(tB−tA2)−1/2
Electronics (such as a processor) may determine the velocity (v). Such electronics may be downhole, at the surface (local or remote to the drilling site) or a combination thereof.
In some embodiments, to remove the impact of a bad measurement, a “moving-average” speed of sound will be maintained, based on a fixed number of previous good measurements. The current speed of sound measurement will be compared to this average. If the current speed and the average differ by a given amount, the current speed is discarded. In some embodiments, if the current speed does not differ by the given amount, the current speed is considered a good measurement and is used to update the moving average. The current moving average speed of sound may be used to convert the travel time measured by the transducer 106 in the “pulse-echo” mode into a stand-off to the borehole wall. This measurement of the stand-off may be used by other instruments or tools in the drill string.
In an example, for instance shown in
In another example, as shown in
In a further option, the surface of the piston acts as the reflector for the acoustic energy from the transducer 512. In yet another option, a transducer is also on the piston 520, resulting in a transmitter and receiver arrangement. The piston 520 can have multiple positions and in an option is disposed in two or more positions, such as at least a first position and a second position. In an example, the piston 520 is disposed in positions d1 and d2, as shown in
t
1=(2d1/v)+e
and
t
2..=(2d2/v)+e
The difference in the two travel times, t1 and t2 is due to a difference in the path length in the drilling fluid for the two pulses. Therefore, by subtracting the measured values of these two measurements t1 and t2, the offset error e can be eliminated.
In a further option, the embodiments can be used to detect downhole gas. For instance, when gas bubbles are entering the mud downhole, the acoustic velocity of the mud will decrease. In detecting a decrease in the acoustic velocity of the mud, this can be used as an early warning that gas may be in the system. In measuring the velocity of the mud downhole, the information regarding the decrease in velocity, or potential presence of gas, can be obtained earlier than when the measurements are taken from the surface.
Wellsite operating environments, according to some embodiments in which the above-described measurement techniques and systems can be used, are now described.
The bottom hole assembly 420 may include drill collars 422, a downhole tool 424, and a drill bit 426. The drill bit 426 may operate to create a borehole 412 by penetrating the surface 404 and subsurface formations 414. The downhole tool 424 may comprise any of a number of different types of tools including MWD (measurement while drilling) tools, LWD (logging while drilling) tools, and others.
During drilling operations, the drill string 408 (perhaps including the Kelly 416, the drill pipe 418, and the bottom hole assembly 420) may be rotated by the rotary table 410. In addition to, or alternatively, the bottom hole assembly 420 may also be rotated by a motor (e.g., a mud motor) that is located downhole. The drill collars 422 may be used to add weight to the drill bit 426. The drill collars 422 also may stiffen the bottom hole assembly 420 to allow the bottom hole assembly 420 to transfer the added weight to the drill bit 426, and in turn, assist the drill bit 426 in penetrating the surface 404 and subsurface formations 414.
During drilling operations, a mud pump 432 may pump drilling fluid (sometimes known by those of skill in the art as “drilling mud”) from a mud pit 434 through a hose 436 into the drill pipe 418 and down to the drill bit 426. The drilling fluid can flow out from the drill bit 426 and be returned to the surface 404 through an annular area 440 between the drill pipe 418 and the sides of the borehole 412. The drilling fluid may then be returned to the mud pit 434, where such fluid is filtered. In some embodiments, the drilling fluid can be used to cool the drill bit 426, as well as to provide lubrication for the drill bit 426 during drilling operations. Additionally, the drilling fluid may be used to remove subsurface formation 414 cuttings created by operating the drill bit 426.
In the description, numerous specific details such as logic implementations, opcodes, means to specify operands, resource partitioning/sharing/duplication implementations, types and interrelationships of system components, and logic partitioning/integration choices are set forth in order to provide a more thorough understanding of the present invention. It will be appreciated, however, by one skilled in the art that embodiments of the invention may be practiced without such specific details. In other instances, control structures, gate level circuits and full software instruction sequences have not been shown in detail in order not to obscure the embodiments of the invention. Those of ordinary skill in the art, with the included descriptions will be able to implement appropriate functionality without undue experimentation.
References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
In view of the wide variety of permutations to the embodiments described herein, this detailed description is intended to be illustrative only, and should not be taken as limiting the scope of the invention. What is claimed as the invention, therefore, is all such modifications as may come within the scope of the following claims and equivalents thereto. Therefore, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. Page 4
Number | Date | Country | Kind |
---|---|---|---|
PCT US2009 002905 | May 2009 | US | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/050859 | 7/16/2009 | WO | 00 | 4/5/2012 |