The subject matter described herein relates generally to atomizers and more specifically to an atomizer that atomizes materials using acoustic waves.
An atomizer may refer to a device for delivering and/or distributing a material by atomizing the material into small aerosol droplets. For example, an atomizer may deliver and/or distribute a fluent material such as, for example, a liquid, a mixture, a solution, a colloid, a suspension, and/or the like. Alternatively and/or additionally, solid materials may also be delivered and/or distributed using an atomizer.
Articles of manufacture, including apparatuses, and methods for an acoustic wave atomizer are provided. An apparatus for acoustic wave based atomization may include a monocrystalline piezoelectric substrate having a surface patterned with at least one wetting region. The monocrystalline piezoelectric substrate may be configured to respond to an electric signal by at least generating a first plurality of acoustic waves. The first plurality of acoustic waves may atomize at least a portion of a material collected within the at least one wetting region.
In some variations, one or more features disclosed herein including the following features can optionally be included in any feasible combination. The first plurality of acoustic waves may be associated with a first frequency. The monocrystalline piezoelectric substrate may be further configured to respond to the electric signal by at least generating a second plurality of acoustic waves associated with a second frequency. The first plurality of acoustic waves comprise and/or the second plurality of acoustic waves may include surface acoustic waves, Bluestein-Gulayev waves, Lamb waves, Love waves, flexural waves, thickness mode vibrations, mixed-mode waves, longitudinal waves, shear mode vibrations, and/or bulk wave vibrations.
In some variations, the monocrystalline piezoelectric substrate may generate the first plurality of acoustic waves associated with the first frequency at a same time as the second plurality of acoustic waves associated with the second frequency.
In some variations, the monocrystalline piezoelectric substrate may generate the first plurality of acoustic waves associated with the first frequency at a different time as the second plurality of acoustic waves associated with the second frequency.
In some variations, a first region of the monocrystalline piezoelectric substrate may generates the first plurality of acoustic waves associated with the first frequency and a second region of the monocrystalline piezoelectric substrate may generate the second plurality of acoustic waves associated with the second frequency.
In some variations, the generation of the first plurality of acoustic waves associated with the first frequency and the second plurality of acoustic waves associated with the second frequency may control and/or vary a droplet size and/or a droplet size distribution of the atomized material.
In some variations, the monocrystalline piezoelectric substrate may generate the first plurality of acoustic waves associated with the first frequency when the monocrystalline piezoelectric substrate is associated with a first resonant frequency. The monocrystalline piezoelectric substrate may generate the second plurality of acoustic waves associated with the second frequency when the monocrystalline piezoelectric material is associated with a second resonant frequency. The first resonant frequency and/or the second resonant frequency may correspond to a geometry of the monocrystalline piezoelectric substrate and/or a material forming the monocrystalline piezoelectric substrate.
In some variations, the apparatus may further include one or more electrodes configured to couple the monocrystalline piezoelectric substrate to a power supply. The one or more electrodes may include a planar electrode that is patterned over to reveal a portion of the surface of the monocrystalline piezoelectric substrate in order to encourage a deposit of a thin film of the material at a location of atomization.
In some variations, the one or more electrodes may include a combination of different types of electrodes such that the first plurality of acoustic waves includes a combination of different types of acoustic waves. The combination of different types of electrodes may include a planar electrode and/or interdigital electrodes.
In some variations, the monocrystalline piezoelectric substrate may be coupled to the one or more electrodes via one or more contacts. The one or more contacts may include one or more pins.
In some variations, a power input associated with the power supply may be determined based at least on a viscosity of the material.
In some variations, the apparatus may further include a transfer medium coupling the surface of the monocrystalline piezoelectric substrate to a reservoir including the material. The material may be transferred, via the transfer medium, from the reservoir to the surface of the monocrystalline piezoelectric substrate. The transfer medium may be a wick. A point of contact between the transfer medium and the monocrystalline piezoelectric substrate may be positioned towards an edge of the monocrystalline piezoelectric substrate in order to prevent at least a portion of the first plurality of acoustic waves from being absorbed by the transfer medium and/or the reservoir. A tip and/or a stiffness of the transfer medium may be configured to prevent at least a portion of the first plurality of acoustic waves from being absorbed by the transfer medium and/or the reservoir.
In some variations, a hydrophilic material, a hydrophobic material, a superhydrophilic material, a superhydrophobic material, an oleophilic material, and/or an oleophobic material may be deposited on the surface of the monocrystalline piezoelectric substrate. The hydrophilic material, the hydrophobic material, the superhydrophilic material, the superhydrophobic material, the oleophilic material, and/or the oleophobic material may be patterned to encourage a deposit of a thin film of the material at a location of atomization.
In some variations, the monocrystalline piezoelectric material may include lithium niobate (LiNbO3), quartz (SiO2), lithium tantalate (LiTaO3), and/or langasite (La3Ga5SiO14).
In some variations, the material collected within the at least one wetting region may form a meniscus. The first plurality of acoustic waves may atomize at least the portion of the material by at least destabilizing the meniscus to form capillary waves. The capillary waves may break up to form a plurality of aerosol droplets of the material. A mist of the material may be formed by the plurality of aerosol droplets of the material being ejected from the meniscus.
In some variations, the apparatus may be configured to determine, based at least on a feedback associated with the first plurality of acoustic waves, a status of the meniscus. The apparatus may be configured to cease operation when the status of the meniscus indicates that the meniscus is nonexistent, the meniscus is placed incorrectly, the meniscus is sized incorrectly, and/or the wetting region is contaminated. The feedback may correspond to a reflection and/or a transmission of the first plurality of acoustic waves.
In some variations, the at least one wetting region may be a channel and/or a well. A cross section of the at least one wetting region may be semicircular, rectangular, and/or triangular in shape.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims. While certain features of the currently disclosed subject matter are described for illustrative purposes in relation to a rechargeable battery, it should be readily understood that such features are not intended to be limiting. The claims that follow this disclosure are intended to define the scope of the protected subject matter.
The accompanying drawings, which are incorporated in and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the disclosed implementations. In the drawings,
When practical, similar reference numbers denote similar structures, features, and/or elements.
By breaking a material (e.g., a fluent material, a solid material, and/or the like) into small aerosol droplets, an atomizer may create a fine mist of the material. This transformation of the material from a liquid and/or a solid into a fine mist may be necessary for the delivery and/or distribution the material. For example, an atomizer may be used to administer a liquid medication by transforming the liquid medication into an inhalable mist. However, conventional atomizers may have limited applications due to a number of shortcomings. For instance, mechanical atomizers may only be capable of producing fixed sized droplets. As such, a mechanical atomizer cannot be adapted to suit a variety of different applications. Meanwhile, jet collision atomizers, which rely on compressed air jets to atomize a material, may be too noisy and heavy for portable applications and may generate too wide a distribution of droplet sizes for some applications. Accordingly, in some example embodiments, an acoustic wave atomizer may be configured to atomize a material using acoustic waves. By being portable, energy efficient, and capable of producing a large range of droplet sizes in a narrow distribution, the acoustic wave atomizers may be suitable for any application.
In some example embodiments, the acoustic wave atomizer may include a substrate formed from a monocrystalline piezoelectric material including, for example, lithium niobate (LiNbO3), quartz (SiO2), lithium tantalate (LiTaO3), langasite (La3Ga5SiO14), and/or the like. Furthermore, the monocrystalline piezoelectric substrate may be coupled with one or more electrodes for transmitting an electric signal to the monocrystalline piezoelectric substrate. The monocrystalline piezoelectric substrate may convert electric energy from the electric signal into mechanical energy in the form of acoustic waves. The acoustic waves may atomize a material (e.g., a fluent material, a solid material, and/or the like) that is deposited on a surface of the monocrystalline piezoelectric substrate and/or upon thin films that have been disposed on the surface of the monocrystalline piezoelectric substrate. For example, the material may be deposited on the surface of the monocrystalline piezoelectric substrate via a transfer medium coupling the surface of the monocrystalline piezoelectric substrate to a reservoir holding the material. Once deposited on the surface of the monocrystalline piezoelectric substrate, the material may collect at least partially within one or more wetting regions patterned on the surface of the monocrystalline piezoelectric substrate. The acoustic waves may atomize the material by at least destabilizing the meniscus that is formed by the material collected in the wetting regions on the surface of the monocrystalline piezoelectric substrate.
In some example embodiments, the monocrystalline piezoelectric substrate may be configured to vibrate at multiple frequencies, thereby producing a mixture of different types of acoustic waves including, for example, surface acoustic waves, Bluestein-Gulayev waves, Lamb waves, Love waves, flexural waves, thickness mode vibrations, mixed-mode waves, longitudinal waves, shear mode vibrations, bulk wave vibrations, and/or the like. For instance, the monocrystalline piezoelectric substrate may vibrate at two or more different frequencies simultaneously and/or with spatiotemporal separation. By vibrating at multiple frequencies, the acoustic wave atomizer may prevent the production of certain droplet sizes, which may be unsuitable for a particular application. Alternatively and/or additionally, the acoustic wave atomizer may vibrate at multiple frequencies in order to change the size and/or the size distribution of the aerosol droplets produced by the acoustic wave atomizer.
In some example embodiments, the acoustic wave atomizer may include different combinations of types of electrodes including, for example, planar electrodes, interdigital electrodes, and/or the like. Variations in the types of electrodes coupled with the monocrystalline piezoelectric substrate may alter the types of acoustic waves generated by the monocrystalline piezoelectric substrate. For example, by coupling the monocrystalline piezoelectric substrate with one or more different types of electrodes, the monocrystalline piezoelectric substrate may produce one or more different types of acoustic waves including, for example, surface acoustic waves, Bluestein-Gulayev waves, Lamb waves, Love waves, flexural waves, thickness mode vibrations, mixed-mode waves, longitudinal waves, shear mode vibrations, bulk wave vibrations, and/or the like. As noted, a meniscus may be formed on the surface of the monocrystalline piezoelectric substrate, when material is deposited on the surface of the monocrystalline piezoelectric substrate via a transfer medium that couples the surface of the monocrystalline piezoelectric substrate to a reservoir holding the material. A combination of different types of acoustic waves may facilitate the formation of the meniscus, such that the meniscus may be suitable for atomization by the acoustic wave atomizers. Alternatively and/or additionally, the combination of different types of acoustic waves may provide feedback on a status of the meniscus.
As shown in
In some example embodiments, the transfer medium 140 may be a wick that is configured to deposit the fluent material 160 onto the surface of the piezoelectric substrate 110. The wick may be formed from a network of fibrous polymer strands contained within a plastic sheath or a glass capillary tube, such that the wick is exposed only where the wick is in contact the piezoelectric substrate 110 and/or where the wick interfaces with the material 160 contained in the reservoir 130.
According to some example embodiments, a tapered tip at the contact point between the piezoelectric substrate 110 and the transfer medium 140 as well as the stiffness of the transfer medium may prevent the acoustic waves generated by the piezoelectric substrate 110 from being absorbed by the transfer medium 140 and/or the reservoir 130. To further reduce the absorption of the acoustic waves, the point of contact between the transfer medium 140 and the piezoelectric substrate 110 may be positioned towards an edge of the piezoelectric substrate, along a surface that is parallel to the direction of propagation of the acoustic waves. Reducing and/or preventing the absorption of acoustic waves by the transfer medium 140 and/or the reservoir 130 may maximize the acoustic energy available for atomizing the material 160.
In some example embodiments, the surface of the piezoelectric substrate 110 may be patterned with one or more wetting regions such as, for example, a wetting region 170. The one or more wetting regions may be channels, wells, and/or the like. Furthermore, while
According to some example embodiments, the piezoelectric substrate 110 may be formed from a crystal lithium niobate (LiNbO3) wafer. Prior to patterning the crystal lithium niobate (LiNbO3) wafer, the crystal lithium niobate (LiNbO3) wafer may first be cleaned, for example, using isopropyl alcohol, acetone, and deionized water in succession and in a class 10,000 clean room before being dried under dry nitrogen (N) gas flow. Standard ultraviolet (UV) photolithography may subsequently be used to pattern the wetting regions on the crystal lithium niobate (LiNbO3) wafer. A positive-tone photoresist may be used with a standard mask for defining, via ultraviolet (UV) light, a pattern on one side of the crystal lithium niobate (LiNbO3) wafer. For instance, the pattern may include wetting regions having a semicircular cross section (e.g., the wetting region 170 and/or the like) as well as a 1-millimeter gap along each dicing line later used to cut individual piezoelectric substrates (e.g., the piezoelectric substrate 110 and/or the like) from the crystal lithium niobate (LiNbO3) wafer. After development, the photoresist may remain in the regions to prevent metal deposition in those regions. Plasma vapor deposition may be used to coat both sides of the crystal lithium niobate (LiNbO3) wafer, one side at a time, with 5-10 nanometers of titanium (Ti) and/or chromium (Ch) followed by 1-2 microns (μm) of aluminum (Al) and/or gold (Au). The coated crystal lithium niobate (LiNbO3) wafer may be immersed in an ultrasonic bath filled with acetone for 5 minutes in order to release the remaining photoresist and any residual metal on top of the photoresist. One or more piezoelectric substrates (e.g., the piezoelectric substrate 110 and/or the like), each of which may be 2×2 millimeters in size to 20×10 millimeters in size, may be diced from the crystal lithium niobate (LiNbO3) wafer using, for example, a diamond wafer saw. Residual metal may also be removed from the dicing lines in order to facilitate subsequent separation into individual pieces of piezoelectric substrates. Alternatively and/or additionally, the metals may be deposited on a clean wafer and subsequently patterned using an eximer laser.
In some example embodiments, when the material 160 is deposited onto the surface of the piezoelectric substrate 110, the material 160 may collect at least partially within each of the one or more wetting regions. Moreover, the material 160 collected within each of the one or more wetting regions may have a meniscus, which may refer to a curved surface of a liquid disposed inside a region. To further illustrate,
As noted, the piezoelectric substrate 110 may be coupled to the power supply 150 via the one or more electrodes 120. Accordingly, the one or more electrodes 120 may transmit an electric signal from the power supply 150 to the piezoelectric substrate 110. Meanwhile, the piezoelectric material 110 may respond to the electric signal by at least converting electric energy from the electric signal into mechanical energy in the form of acoustic waves. For example, the piezoelectric material 110 may convert the electric energy from the electric signal into surface acoustic waves, Bluestein-Gulayev waves, Lamb waves, Love waves, flexural waves, thickness mode vibrations, mixed-mode waves, longitudinal waves, shear mode vibrations, bulk wave vibrations, and/or the like. The acoustic waves may atomize the material 160 collected in the plurality of wetting regions patterned on the surface of the piezoelectric substrate 110. For example, the acoustic waves may atomize the material 160 collected in the wetting region 170 by at least destabilizing the meniscus 180 to form capillary waves that then break up to form aerosol droplets of the material 160. A fine mist of the material 160 may be formed when aerosol droplets of the material 160 are ejected from the meniscus 180.
In some example embodiments, the piezoelectric substrate 110 may be configured to generate acoustic waves having different frequencies in order to control and/or vary the size of the aerosol droplets produced by the acoustic waves. For example, the piezoelectric substrate 110 may be configured to generate acoustic waves having a first frequency at a same time as acoustic waves having a second frequency. Alternatively and/or additionally, the piezoelectric substrate 110 may be configured to generate acoustic waves having the first frequency and the acoustic waves having the second frequency with spatial and/or temporal separation. For instance, the acoustic waves having the first frequency may be generated at a different time than the acoustic waves having the second frequency. Alternatively and/or additionally, the acoustic waves having the first frequency may be generated by a different region of the piezoelectric substrate 110 than the acoustic waves having the second frequency.
As noted, the piezoelectric substrate 110 may respond to the electric signal by at least converting electric energy from the electric signal into mechanical energy in the form of acoustic waves. The frequency of the acoustic waves generated by the piezoelectric substrate 110 may correspond to a resonant frequency of the piezoelectric substrate 110, which may vary depending on a geometry of the piezoelectric substrate 110 and/or the materials forming the piezoelectric substrate 110.
In some example embodiments, the one or more electrodes 120 may couple with the piezoelectric substrate 110 via one or more contacts. For instance, the one or more electrodes 120 may be coupled with the piezoelectric substrate 110 via pin contacts (e.g., pogo pin contacts and/or the like), which may facilitate replacement of the electrodes 120 and/or the piezoelectric substrate 110. Pin contacts may further optimize performance of the acoustic wave atomizer 100, for example, by minimizing mechanical contact between the one or more electrodes 120 and the corresponding electrical contact mechanism. Furthermore, the one or more electrodes 120 may include a combination of different types of electrodes including, for example, planar electrodes, interdigital electrodes, and/or the like. According to some example embodiments, planar electrodes may be patterned over the piezoelectric substrate 110 such that a portion of the surface of the piezoelectric substrate 110 is exposed to encourage the deposit of only a thin film of the material 160 at a location of atomization.
In some example embodiments, variations in the types of electrodes coupled with the piezoelectric substrate 110 may alter the types of acoustic waves generated by the piezoelectric substrate 110. For example, by coupling the piezoelectric substrate 110 with different types of electrodes, the piezoelectric substrate 110 may produce a combination of different types of acoustic waves including, for example, surface acoustic waves, Bluestein-Gulayev waves, Lamb waves, Love waves, flexural waves, thickness mode vibrations, mixed-mode waves, longitudinal waves, shear mode vibrations, bulk wave vibrations, and/or the like.
As shown in
For example, the acoustic wave atomizer 100 may include a controller (not shown) configured to determine, based at least on the acoustic waves that are reflected from and/or transmitted through the meniscus 180, an existence of the meniscus 180. The controller may further control an operation of the acoustic wave atomizer 100 depending on the status of the meniscus 180. For instance, the acoustic wave atomizer 100 may cease operation when the meniscus 180 is nonexistent (e.g., no material 160 left to atomize), when the wetting region 170 is contaminated and/or require cleaning, and/or when a placement and/or a size of the meniscus 180 is incorrect due to user error and/or device malfunction. Feedback on the status of the meniscus 180 may be provided, for example, to the controller, via the direct piezoelectric effect in the one or more electrodes 120 on the piezoelectric substrate 110 to the driver.
As shown in
It should be appreciated that the ability of the acoustic wave atomizer 100 to atomize liquids having different viscosities and/or densities may be dependent on the rate of energy transfer from the power supply 150. For example, the power input required to atomize a fluid may be dependent on the atomization Reynolds number ReA defined by Equation (1) below. The atomization Reynolds number ReA of a liquid may be a dimensionless quantity in fluid mechanics used to depict a transition from laminar flow to turbulent flow.
R
eA
=ρu
v
L/μ (1)
wherein ρ, L, μ, and uv may denote fluid density. It should be appreciated that the flow rate of a liquid may be in direct correlation with its atomization Reynolds number. Furthermore, the power input (e.g., from the power supply 150) required by the acoustic wave atomizer 100 to atomize a liquid may also be in direct correlation with the atomization Reynolds number of the liquid. To further illustrate, Table 1 below depicts the relationship between the atomization Reynolds number, flow rate, and power input associated with liquids of different viscosity. Table 1 shows that higher viscosity liquids (e.g., 25% triethylene glycol (TEG), 50% triethylene glycol (TEG), and/or the like) may have lower atomization Reynolds numbers and maximum flow rate than lower viscosity liquids (e.g., methanol, acetone, and/or the like). As such, the acoustic wave atomizer 100 may require a higher power input to atomize higher viscosity liquids (e.g., 25% triethylene glycol (TEG), 50% triethylene glycol (TEG), and/or the like) than lower viscosity liquids (e.g., methanol, acetone, and/or the like).
In some example embodiments, the efficacy of delivering and/or distributing a disinfectant using the acoustic wave atomizer 100 may be further evaluated for different surfaces and/or different bacteria strains. For instance, referring again to
To further illustrate,
At 602, a material may be deposited on a surface of a piezoelectric substrate forming an acoustic wave atomizer via a transfer medium coupling the surface of the piezoelectric substrate to a reservoir including the material. In some example embodiments, the acoustic wave atomizer 100 may include the piezoelectric substrate 110, which may be formed from a monocrystalline piezoelectric material such as, for example, lithium niobate (LiNbO3), quartz (SiO2), lithium tantalate (LiTaO3), langasite (La3Ga5SiO14), and/or the like. The surface of the piezoelectric substrate 110 may be coupled, via the transfer medium 140, to the reservoir 130. Accordingly, as shown in
At 604, the piezoelectric substrate may atomize the material by at least generating one or more acoustic waves in response to an electric signal transmitted to the piezoelectric substrate via one or more electrodes coupling the piezoelectric substrate to a power supply. For example, as shown in
In some example embodiments, the piezoelectric substrate 110 may generate acoustic waves having different frequencies in order to control and/or vary the size of the aerosol droplets produced by the acoustic waves. The frequency of the acoustic waves generated by the piezoelectric substrate 110 may correspond to a resonant frequency of the piezoelectric substrate 110. As noted, the resonant frequency of the piezoelectric substrate 110 may vary depending on a geometry of the piezoelectric substrate 110 and/or the materials forming the piezoelectric substrate 110. Thus, the piezoelectric substrate 110 may be configured to generate acoustic waves having a first frequency at a same time and/or a different time as acoustic waves having a second frequency. Alternatively and/or additionally, one region of the piezoelectric substrate 110 may be configured to generate acoustic waves having the first frequency while another region of the piezoelectric substrate 110 may be configured to generate acoustic waves having the second frequency. One or more regions of the piezoelectric substrate 110 may also be configured to generate different types of acoustic waves than other regions of the piezoelectric substrate 110.
In some example embodiments, the one or more electrodes 120 coupled with the piezoelectric material 110 may include a combination of different types of electrodes including, for example, planar electrodes, interdigital electrodes, and/or the like. As noted, varying the types of electrodes coupled with the piezoelectric substrate 110 may alter the types of acoustic waves generated by the piezoelectric substrate 110. For example, by coupling the piezoelectric substrate 110 with different types of electrodes, the piezoelectric substrate 110 may produce a combination of different types of acoustic waves including, for example, surface acoustic waves, Bluestein-Gulayev waves, Lamb waves, Love waves, flexural waves, thickness mode vibrations, mixed-mode waves, longitudinal waves, shear mode vibrations, bulk wave vibrations, and/or the like.
As shown in
The memory 720 is a computer readable medium such as volatile or non-volatile that stores information within the computing system 700. The memory 720 can store data structures representing configuration object databases, for example. The storage device 730 is capable of providing persistent storage for the computing system 700. The storage device 730 can be a floppy disk device, a hard disk device, an optical disk device, a tape device, a solid state device, and/or other suitable persistent storage means. The input/output device 740 provides input/output operations for the computing system 700. In some example embodiments, the input/output device 740 includes a keyboard and/or pointing device. In various implementations, the input/output device 740 includes a display unit for displaying graphical user interfaces.
According to some example embodiments, the input/output device 740 can provide input/output operations for a network device. For example, the input/output device 740 can include Ethernet ports or other networking ports to communicate with one or more wired and/or wireless networks (e.g., a local area network (LAN), a wide area network (WAN), the Internet).
In some example embodiments, the computing system 700 can be used to execute any type of software applications. These applications can be used to perform various functionalities including add-in functionalities standalone functionalities, and/or the like. Upon activation within the applications, the functionalities can be used to generate the user interface provided via the input/output device 740. The user interface can be generated and presented to a user by the computing system 700 (e.g., on a computer screen monitor, etc.).
One or more aspects or features of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs, field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof. These various aspects or features can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. The programmable system or computing system may include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
These computer programs, which can also be referred to as programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program item, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid-state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example, as would a processor cache or other random access memory associated with one or more physical processor cores.
To provide for interaction with a user, one or more aspects or features of the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) or a light emitting diode (LED) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user may be received in any form, including acoustic, speech, or tactile input. Other possible input devices include touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive track pads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.
In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.” Use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.
The subject matter described herein can be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described above can be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed above. In addition, the logic flows depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. Other implementations may be within the scope of the following claims.
This application claims priority to U.S. Provisional Patent Application No. 62/535,686 filed on Jul. 21, 2017 and entitled “NEBULIZER INCLUDING VIBRATION MECHANISM,” the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US18/43162 | 7/20/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62535686 | Jul 2017 | US |