This application claims the benefit of priority to Japanese Patent Application No. 2019-040184 filed on Mar. 6, 2019. The entire contents of this application are hereby incorporated herein by reference.
The present invention relates to an acoustic wave device including an electrode layer that primarily includes Al.
To date, alloy layers primarily composed of Al have been widely used for interdigital transducers of acoustic wave devices. For example, Japanese Unexamined Patent Application Publication No. 2008-244523 discloses an interdigital transducer having a composition made by adding an additive, for example, Ni or Nd, to Al.
When an interdigital transducer composed of Al is placed under high-temperature conditions, there is a problem that hillocks occur and electric power handling capability deteriorates. As described in Japanese Unexamined Patent Application Publication No. 2008-244523, when an additive, for example, Nd, is added, Al crystal grains do not move smoothly. Therefore, it is considered that hillocks do not readily occur.
However, in practice, even when the additive described in Japanese Unexamined Patent Application Publication No. 2008-244523 is added to Al, exposure to a high temperature may cause hillocks with respect to the surface of an interdigital transducer so as to degrade electric power handling capability.
Preferred embodiments of the present invention provide acoustic wave devices each having excellent electric power handling capability.
According to a preferred embodiment of the present invention, an acoustic wave device includes a piezoelectric layer and an interdigital transducer disposed on the piezoelectric layer, in which the interdigital transducer primarily includes Al and includes an additive selected from a group consisting of Nd, Sc, and Ta, and a concentration of the additive in a region opposite to a piezoelectric-layer-side region of the interdigital transducer is higher than a concentration of the additive in the piezoelectric-layer-side region of the interdigital transducer.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
The present invention will be clarified below by describing specific preferred embodiments according to the present invention with reference to the drawings.
It is to be noted that each of the preferred embodiments described in the present specification is an example and that configurations shown in different preferred embodiments can be partially replaced or combined with each other.
The acoustic wave device 1 includes a piezoelectric substrate 2 defining and functioning as a piezoelectric layer. An electrode structure shown in
The piezoelectric substrate 2 is preferably made of, for example, a piezoelectric single crystal of LiNbO3, LiTaO3, or the like or piezoelectric ceramics. A piezoelectric layer defined by a thin piezoelectric film rather than the piezoelectric substrate 2 may be used, for example.
As shown in
A close-contact layer 8 defining and functioning as another metal layer is disposed between the interdigital transducer 3 and the piezoelectric substrate 2. The close-contact layer 8 is preferably made of Ti, for example. The close-contact layer 8 may be made of another metal, for example, NiCr or Cr.
In the acoustic wave device 1, the concentration of the additive in the periphery of the upper surface 3c, which is the region opposite to the periphery of the lower surface 3d defining and functioning as the piezoelectric-layer-2-side region, is higher than the concentration of the additive in the periphery of the lower surface 3d defining and functioning as the piezoelectric-layer-2-side region in the interdigital transducer 3, where the piezoelectric substrate 2 is a piezoelectric layer. In this regard, the concentration of the additive in the piezoelectric-layer-2-side region may be equal or substantially equal to the concentration of the additive in at least a portion of the piezoelectric-layer-2-side region, and the concentration of the additive in the region opposite to the piezoelectric-layer-2-side region may be equal or substantially equal to the concentration of the additive in at least a portion of the region opposite to the piezoelectric-layer-2-side region. That is, the portion having a relatively high concentration of the additive has to be located farther than the portion having a relatively low concentration of the additive from the piezoelectric substrate 2.
The inventor of preferred embodiments of the present invention performed research on the occurrence of hillocks. As a result, it was discovered that hillocks could be more effectively reduced or prevented from occurring when the concentration of the additive in the periphery of the upper surface 3c was higher than the concentration in the periphery of the lower surface 3d, and preferred embodiments of the present invention were conceived of and developed. It is considered that, in the region in which hillocks tend to occur compared with the piezoelectric-layer-2-side region and which is opposite to the piezoelectric-layer-2-side region, hillocks can be reduced or prevented from occurring because Al crystal grains do not readily move if an additive such as Nd, for example, is added, even when the Al crystal grains are exposed to a high temperature.
In this regard, it is difficult to measure the concentration of the upper surface 3c of the interdigital transducer 3. Even when such measurement can be performed, it is difficult to obtain a correct value because of significant noise. Therefore, the concentration of the additive at the position at a distance of about 20% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 is specified to be higher than the concentration of the additive at the position at a distance of about 80% of the thickness of the interdigital transducer 3 from the upper surface 3c. The above-described concentrations of the additive at the position at a distance of about 20% of the thickness of the interdigital transducer 3 and at the position at a distance of about 80% of the thickness can be readily measured with high accuracy compared with the concentration of the upper surface 3c of the interdigital transducer 3. In this regard, the concentration of the additive at the position at a distance of about 20% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 denotes the concentration of the additive at the position at a distance of about 20% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 when a cross section of the interdigital transducer 3 is viewed in the direction orthogonal or substantially orthogonal to the extension direction of the electrode finger in the interdigital transducer 3 (acoustic wave propagation direction). In other words, the above-described concentration denotes the concentration of the additive in a portion including at least one point on a straight line when the straight line is drawn so as to pass through positions at a distance of about 20% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 in a cross section of the interdigital transducer 3 cut in the acoustic wave propagation direction. Meanwhile, the concentration of the additive at the position at a distance of about 80% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 denotes the concentration of the additive at the position at a distance of about 80% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 when a cross section of the interdigital transducer 3 is viewed in the direction orthogonal or substantially orthogonal to the extension direction of the electrode finger in the interdigital transducer 3 (acoustic wave propagation direction). In other words, the above-described concentration denotes the concentration of the additive in a portion including at least one point on a straight line when the straight line is drawn so as to pass through positions at a distance of about 80% of the thickness of the interdigital transducer 3 from the upper surface 3c of the interdigital transducer 3 in a cross section of the interdigital transducer 3 cut in the acoustic wave propagation direction.
Regarding the acoustic wave device 1, since the above-described concentration gradient of Nd as the additive exists in the interdigital transducer 3, hillocks do not readily occur. Therefore, the electric power handling capability can be improved. This will be described with reference to specific experimental examples.
A piezoelectric substrate made of LiTaO3 was used as the piezoelectric substrate 2. A Ti film having a thickness of about 12 nm was formed as the close-contact layer 8 on the piezoelectric substrate 2 by using evaporation. Subsequently, an Al—Nd film was formed by using an evaporation method where the evaporation sources were Al and Nd. The concentration of Nd was set to be about 0.5 atomic percent of the entire interdigital transducer 3, and the thickness of the Al—Nd film was set to be about 145 nm.
The thus obtained acoustic wave device 1 was subjected to a power handling test.
As shown in
In the above-described preferred embodiment, Nd was used as the additive. However, it was ascertained that even when Sc or Ta was used, hillocks can be reduced or prevented and the electric power handling capability can be improved by setting the concentration gradient of the additive in the same or substantially the same manner as above.
The content of the additive, for example, Nd, in Al—Nd is preferably about 10 atomic percent or less and more preferably about 1 atomic percent or less, for example. In such a case, the electrical conductivity of the interdigital transducer 3 can be sufficiently improved. Therefore, a low-loss acoustic wave device can be provided.
The acoustic wave device 1 may include a support substrate 11 as indicated by alternate long and short dashed lines in
Further, an acoustic multilayer film or a high-acoustic-velocity material layer may be stacked between the support substrate and the piezoelectric layer. The acoustic multilayer film denotes a multilayer film in which a high-acoustic-impedance layer having relatively high acoustic impedance and a low-acoustic-impedance layer having relatively low acoustic impedance are stacked. The high-acoustic-velocity material layer denotes a layer made of a material through which a bulk wave propagates at an acoustic velocity higher than the acoustic velocity of a bulk wave that propagates through the piezoelectric substrate 2.
In addition, a low-acoustic-velocity material layer may be further stacked between the high-acoustic-velocity material layer and the piezoelectric substrate 2. The low-acoustic-velocity material layer denotes a layer made of a material through which a bulk wave propagates at an acoustic velocity lower than the acoustic velocity of a bulk wave that propagates through the piezoelectric substrate 2.
Preferred embodiments of the present invention can also be applied to acoustic wave filters, for example, a longitudinally coupled resonator acoustic wave filter.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2019-040184 | Mar 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7471027 | Kando | Dec 2008 | B2 |
11050406 | Maki | Jun 2021 | B2 |
20040095038 | Takase | May 2004 | A1 |
20050146249 | Miyazawa | Jul 2005 | A1 |
20050174012 | Ozaki | Aug 2005 | A1 |
20100181869 | Pereira da Cunha | Jul 2010 | A1 |
20120133246 | Yaoi | May 2012 | A1 |
20120256522 | Ito | Oct 2012 | A1 |
20130285768 | Watanabe | Oct 2013 | A1 |
20140232239 | Iwasaki | Aug 2014 | A1 |
20150325775 | Shimizu | Nov 2015 | A1 |
20170085246 | Shih | Mar 2017 | A1 |
20170085247 | Ruby | Mar 2017 | A1 |
20170214385 | Bhattacharjee | Jul 2017 | A1 |
20170222622 | Solal | Aug 2017 | A1 |
20170279429 | Iwamoto | Sep 2017 | A1 |
20170338796 | Morimoto | Nov 2017 | A1 |
20170366165 | Shih | Dec 2017 | A1 |
20180205403 | Konno | Jul 2018 | A1 |
20190140618 | Takamine | May 2019 | A1 |
20190149126 | Saji | May 2019 | A1 |
20200007107 | Daimon | Jan 2020 | A1 |
20200083862 | Makkonen | Mar 2020 | A1 |
20200162052 | Matsuoka | May 2020 | A1 |
20200295731 | Koyanagi | Sep 2020 | A1 |
20210083654 | Bertl | Mar 2021 | A1 |
20210135655 | Fukuhara | May 2021 | A1 |
20210152153 | Kishino | May 2021 | A1 |
20210367577 | Aigner | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
2008-244523 | Oct 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20200287516 A1 | Sep 2020 | US |