Noise control constitutes a rapidly growing economic and public policy concern for the construction industry. Areas with high acoustical isolation (commonly referred to as ‘soundproofed’) are requested and required for a variety of purposes. Apartments, condominiums, hotels, schools and hospitals all require walls, ceilings and floors that are specifically designed to reduce the transmission of sound in order to minimize or eliminate the disruption to people in adjacent rooms. Soundproofing is particularly important in buildings adjacent to public transportation including highways, airports and railroad lines. Additionally, theaters and home theaters, music practice rooms, recording studios and others require increased noise abatement for acceptable listening levels. Likewise, hospitals and general healthcare facilities have begun to recognize acoustical comfort as an important part of a patient's recovery time. One measure of the severity of multi-party residential and commercial noise control issues is the widespread emergence of model building codes and design guidelines that specify minimum Sound Transmission Class (STC) ratings for specific wall structures within a building. Another measure is the broad emergence of litigation between homeowners and builders over the issue of unacceptable noise levels. To the detriment of the U.S. economy, both problems have resulted in major builders refusing to build homes, condos and apartments in certain municipalities; and in cancellation of liability insurance for builders.
Various construction techniques and products have emerged to address the problem of noise control, such as: replacement of wooden framing studs with light gauge steel studs; alternative framing techniques such as staggered-stud and double-stud construction; additional gypsum drywall layers; the addition of resilient channels to offset and isolate drywall panels from framing studs; the addition of mass-loaded vinyl barriers; cellulose-based sound board; and the use of cellulose and fiberglass batt insulation in walls not requiring thermal control. All of these changes help reduce the noise transmission but not to such an extent that certain disturbing noises (e.g., those with significant low frequency content or high sound pressure levels) in a given room are prevented from being transmitted to a room designed for privacy or comfort. The noise may come from rooms above or below the occupied space, or from an outdoor noise source. In fact, several of the above named methods only offer a three to six decibel improvement in acoustical performance over that of standard construction techniques with no regard to acoustical isolation. Such a small improvement represents a just noticeable difference, not a soundproofing solution. A second concern with the above named techniques is that each involves the burden of either additional (sometimes costly) construction materials or extra labor expense due to complicated designs and additional assembly steps.
More recently, an alternative building noise control product has been introduced to the market in the form of a laminated damped drywall panel as disclosed in U.S. Pat. No. 7,181,891. That panel replaces a traditional drywall layer and eliminates the need for additional materials such as resilient channels, mass loaded vinyl barriers, additional stud framing, and additional layers of drywall. The resulting system offers excellent acoustical performance improvements of up to 15 decibels in some cases. However, the panel cannot be cut by scribing and breaking. Rather than using a box cutter or utility knife to score the panel for fracture by hand, the panels must be scored multiple times and broken with great force over the edge of a table or workbench. Often times, the quality of the resulting break (in terms of accuracy of placement and overall straightness) is poor. The reason for the additional force required to fracture the laminated panel is because the component gypsum layers have a liner back paper (or liner fiberglass nonwoven) that has a high tensile strength. Tests have shown that scored panels of this type require approximately 85 pounds of force to fracture versus the 15 pounds required to break scored ½ inch thick standard gypsum wallboard and the 46 pounds of force required to break scored ⅝ inch thick type X gypsum wallboard. This internal layer (or layers, in some cases) must be broken under tension via considerable bending force during a typical score and snap operation.
In many cases, the tradesman is forced to cut each panel with a power tool such as a circular saw or a rotary cutting tool to ensure a straight cut and a high quality installation. This adds time and labor costs to the panel installation and generates copious amounts of dust which act as a nuisance to the laborers and adds even more installation expense in the form of jobsite clean up.
A figure of merit for the sound reducing qualities of a material or method of construction is the material or wall assembly's Sound Transmission Class (STC). The STC rating is a classification which is used in the architectural field to rate partitions, doors and windows for their effectiveness in blocking sound. The rating assigned to a particular partition design as a result of acoustical testing represents a best fit type of approach to a curve that establishes the STC value. The test is conducted in such a way as to make it independent of the test environment and yields a number for the partition only and not its surrounding structure or environment. The measurement methods that determine an STC rating are defined by the American Society of Testing and Materials (ASTM). They are ASTM E 90, “Standard Test Method Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements,” and ASTM E413 “Classification for Sound Insulation,” used to calculate STC ratings from the sound transmission loss data for a given structure. These standards are available on the Internet at www.astm.org.
A second figure of merit for the physical characteristics of construction panels is the material's flexural strength. This refers to the panel's ability to resist breaking when a force is applied to the center of a simply supported panel. Values of flexural strength are given in pounds of force (lbf) or Newtons (N). The measurement technique used to establish the flexural strength of gypsum wallboard or similar construction panels is ASTM C 473 “Standard Test Methods for the Physical Testing of Gypsum Panel Products”. This standard is available on the Internet at www.astm.org.
The desired flexural strength of a panel is dependant upon the situation. For a pristine panel, a high flexural strength is desirable since it allows for easy transportation and handling without panel breakage. However, when the panel is scored by the tradesman (for example, with a utility knife) for fitting and installation, a low flexural strength is desirable. In that case, a low value indicates that the scored panel may be easily fractured by hand without excessive force.
Accordingly, what is needed is a new material and a new method of construction to reduce the transmission of sound from a given room to an adjacent area while simultaneously minimizing the materials required and the cost of installation labor during construction.
In accordance with the present invention, a new laminar structure and associated manufacturing process are disclosed which significantly improve both the material's installation efficiency and the ability of a wall, ceiling, floor or door to reduce the transmission of sound from one architectural space (e.g. room) to an adjacent architectural space, or from the exterior to the interior of an architectural space (e.g. room), or from the interior to the exterior of an architectural space.
The material comprises a lamination of several different materials. In accordance with one embodiment, a laminar substitute for drywall comprises a sandwich of two outer layers of selected thickness gypsum board, each lacking the standard liner back paper, which are glued to each other using a sound dissipating adhesive wherein the sound dissipating adhesive is applied over all of the interior surfaces of the two outer layers. In one embodiment, the glue layer is a specially formulated QuietGlue™, which is a viscoelastic material, of a specific thickness. Formed on the interior surfaces of the two gypsum boards, the glue layer is about 1/32 inch thick. In one instance, a 4 foot×8 foot panel constructed using a 1/32 inch thick layer of glue has a total thickness of approximately ½ inches and has a scored flexural strength of 22 pounds force and an STC value of approximately 38. A double-sided wall structure constructed using single wood studs, R13 fiberglass batts in the stud cavity, and the laminated panel screwed to each side provides an STC value of approximately 49. The result is a reduction in noise transmitted through the wall structure of approximately 15 decibels compared to the same structure using common (untreated) gypsum boards of equivalent mass and thickness.
This invention will be more fully understood in light of the following drawings taken together with the following detailed description.
The following detailed description is meant to be exemplary only and not limiting. Other embodiments of this invention, such as the number, type, thickness, dimensions, area, shape, and placement order of both external and internal layer materials, will be obvious to those skilled in the art in view of this description.
The process for creating laminar panels in accordance with the present invention takes into account many factors: exact chemical composition of the glue; glue application process; pressing process; and drying and dehumidification process.
The gypsum board in top layer 101 typically is fabricated using standard well-known techniques and thus the method for fabricating the gypsum board will not be described. Next, the bottom face of gypsum layer 101 is an unfaced (without paper or fiberglass liner) interior surface 104. In other embodiments, surface 104 may be faced with a thin film or veil with a very low tensile strength. In one embodiment this thin film or veil can be a single use healthcare fabric as described more completely below in paragraph 21. Applied to surface 104 is a layer of glue 102 called “QuietGlue™. Glue 102, made of a viscoelastic polymer, has the property that the kinetic energy in the sound which interacts with the glue, when constrained by surrounding layers, will be significantly dissipated by the glue thereby reducing the sound's total energy across a broad frequency spectrum, and thus the sound energy which will transmit through the resulting laminar structure. Typically, this glue 102 is made of the materials as set forth in TABLE 1, although other glues having similar characteristics to those set forth directly below TABLE 1 can also be used in this invention.
The preferred formulation is but one example of a viscoelastic glue. Other formulations may be used to achieve similar results and the range given is an example of successful formulations investigated here.
The physical solid-state characteristics of QuietGlue™ include:
Gypsum board layer 103 is placed on the bottom of the structure and carefully pressed in a controlled manner with respect to uniform pressure (pounds per square inch), temperature and time. The top face of gypsum layer 103 is an unfaced (without paper or fiberglass liner) interior surface 105. In other embodiments, surface 105 may be faced with a thin film or veil with a very low tensile strength. The maximum very low tensile strength for the thin film or veil is approximately six (6) psi but the preferred very low tensile strength for this material is as low as approximately one (1) psi. In one embodiment this thin film can be a fabric such as a single use healthcare fabric as described more completely in paragraph 21. Such fabrics are typically used for surgical drapes and gowns.
Finally, the assembly is subjected to dehumidification and drying to allow the panels to dry, typically for forty-eight (48) hours.
In one embodiment of this invention, the glue 102, when spread over the bottom of top layer 101, is subject to a gas flow for about forty-five seconds to partially dry the glue. The gas can be heated, in which case the flow time may be reduced. The glue 102, when originally spread out over any material to which it is being applied, is liquid. By partially drying out the glue 102, either by air drying for a selected time or by providing a gas flow over the surface of the glue, the glue 102 becomes a pressure sensitive adhesive, much like the glue on a tape. The second panel, for example the bottom layer 103, is then placed over the glue 102 and pressed against the material beneath the glue 102 (as in the example of
In
Examples of materials for the constraining layer 202 include polyester non-wovens, fiberglass non-woven sheets, cellulosic nonwovens, or similar products. The tensile strength of these materials varies with the length of the constituent fibers and the strength of the fiber/binder bond. Those with shorter fibers and weaker bond strengths have lower tensile strengths. A good example of such materials are the plastic-coated cellulosic nonwoven materials commonly used as single use healthcare fabrics, known for their poor tensile strengths. Single use healthcare fabrics are available from the 3M Corporation of St. Paul, Minn., DuPont of Wilmington, Del. and Ahlstrom of Helsinki, Finland. The preferred maximum very low tensile strength for these materials is approximately six (6) psi but the preferred very low tensile strength for these materials is approximately one (1) psi. The weight of these materials can vary from a high of approximately four (4) ounces per square yard down to a preferred weight of approximately eight tenths (0.8) of an ounce per square yard. Alternate materials can be of any type and any appropriate thickness with the condition that they have acceptably low tensile strength properties. In the example of
The flexural strength value of the finished laminate 100 significantly decreases with the elimination of the paper facings at surfaces 104 and 105.
In comparison, scored typical prior art gypsum sheets (F1 to F4 and E1 to E4) with interior paper faced surfaces, have an average flexural strength of 15 pounds force for ½ inch thick and 46 pounds force for ⅝ inch thick respectively. These prior art laminated panels can be scored and fractured in the standard manner used in construction but lack the acoustic properties of the structures described herein. The other prior art structures shown in
In fabricating the structure of
In fabricating the structure of
Accordingly, the laminated structures of this invention provide a significant improvement in the sound transmission class number associated with the structures and thus reduce significantly the sound transmitted from one room to adjacent rooms while simultaneously providing for traditional scoring and hand fracture during installation.
The dimensions given for each material in the laminated structures of this invention can be varied as desired to control cost, overall thickness, weight, anticipated moisture and temperature control requirements, and STC results. The described embodiments and their dimensions are illustrative only and not limiting. Other materials than gypsum can be used for one or both of the external layers of the laminated structures shown in
Other embodiments of this invention will be obvious in view of the above description.
This application is a continuation of U.S. application Ser. No. 11/697,691 filed Apr. 6, 2007, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2811906 | Chappell | Nov 1957 | A |
3160549 | Caldwell et al. | Dec 1964 | A |
3215225 | Kirschner | Nov 1965 | A |
3336710 | Raynes | Aug 1967 | A |
3399104 | Ball, III et al. | Aug 1968 | A |
3424270 | Hartman et al. | Jan 1969 | A |
3462899 | Sherman | Aug 1969 | A |
3513009 | Austin et al. | May 1970 | A |
3579941 | Tibbals | May 1971 | A |
3642511 | Cohn et al. | Feb 1972 | A |
3828504 | Egerborg et al. | Aug 1974 | A |
3960580 | Stierli et al. | Jun 1976 | A |
4003752 | Osohata et al. | Jan 1977 | A |
RE29157 | Petersen et al. | Mar 1977 | E |
4112176 | Bailey | Sep 1978 | A |
4134956 | Suzuki et al. | Jan 1979 | A |
4156615 | Cukier et al. | May 1979 | A |
4174229 | Boberski et al. | Nov 1979 | A |
4347912 | Flocke et al. | Sep 1982 | A |
4375516 | Barrall | Mar 1983 | A |
4474840 | Adams | Oct 1984 | A |
4487793 | Haines et al. | Dec 1984 | A |
4557970 | Holtrop et al. | Dec 1985 | A |
4618370 | Green et al. | Oct 1986 | A |
4642951 | Mortimer | Feb 1987 | A |
4663224 | Tabata et al. | May 1987 | A |
4678515 | Green et al. | Jul 1987 | A |
4685259 | Eberhart et al. | Aug 1987 | A |
4759164 | Abendroth et al. | Jul 1988 | A |
4778028 | Staley | Oct 1988 | A |
4786543 | Ferm | Nov 1988 | A |
4924969 | K'Heureux | May 1990 | A |
4956321 | Barrall | Sep 1990 | A |
4967530 | Clunn | Oct 1990 | A |
5016413 | Counihan | May 1991 | A |
5026593 | O'Brien | Jun 1991 | A |
5033247 | Clunn | Jul 1991 | A |
5063098 | Niwa et al. | Nov 1991 | A |
5110660 | Wolf et al. | May 1992 | A |
5125475 | Duchame et al. | Jun 1992 | A |
5158612 | Savoly et al. | Oct 1992 | A |
5240639 | Diez et al. | Aug 1993 | A |
5256223 | Alberts et al. | Oct 1993 | A |
5258585 | Juriga | Nov 1993 | A |
5334806 | Avery | Aug 1994 | A |
5342465 | Bronowicki et al. | Aug 1994 | A |
5368914 | Barrett | Nov 1994 | A |
5439735 | Jamison | Aug 1995 | A |
5473122 | Kodiyalam et al. | Dec 1995 | A |
5502931 | Munir | Apr 1996 | A |
5601888 | Fowler | Feb 1997 | A |
5603192 | Dickson | Feb 1997 | A |
5629503 | Thomasen | May 1997 | A |
5643666 | Eckart et al. | Jul 1997 | A |
5664397 | Holz | Sep 1997 | A |
5691037 | McCutcheon et al. | Nov 1997 | A |
5695867 | Saitoh et al. | Dec 1997 | A |
5768841 | Swartz et al. | Jun 1998 | A |
5824973 | Haines et al. | Oct 1998 | A |
5867957 | Holtrop | Feb 1999 | A |
5910082 | Bender et al. | Jun 1999 | A |
5945208 | Richards et al. | Aug 1999 | A |
5954497 | Cloud et al. | Sep 1999 | A |
6077613 | Gaffigan | Jun 2000 | A |
6123171 | McNett et al. | Sep 2000 | A |
6133172 | Sevenish et al. | Oct 2000 | A |
6213252 | Ducharme | Apr 2001 | B1 |
6240704 | Porter | Jun 2001 | B1 |
6266427 | Mathur | Jul 2001 | B1 |
6286280 | Fahmy et al. | Sep 2001 | B1 |
6290021 | Standgaard | Sep 2001 | B1 |
6309985 | Virnelson et al. | Oct 2001 | B1 |
6342284 | Yu | Jan 2002 | B1 |
6381196 | Hein et al. | Apr 2002 | B1 |
6389771 | Moller | May 2002 | B1 |
6391958 | Luongo | May 2002 | B1 |
6443256 | Baig | Sep 2002 | B1 |
6632550 | Yu | Oct 2003 | B1 |
6676744 | Merkley et al. | Jan 2004 | B2 |
6699426 | Burke | Mar 2004 | B1 |
6715241 | Gelin et al. | Apr 2004 | B2 |
6758305 | Gelin et al. | Jul 2004 | B2 |
6790520 | Todd et al. | Sep 2004 | B1 |
6800161 | Takigawa | Oct 2004 | B2 |
6803110 | Drees et al. | Oct 2004 | B2 |
6815049 | Veramasuneni | Nov 2004 | B2 |
6822033 | Yu | Nov 2004 | B2 |
6825137 | Fu et al. | Nov 2004 | B2 |
6877585 | Tinianov | Apr 2005 | B2 |
6913667 | Nudo et al. | Jul 2005 | B2 |
6920723 | Downey | Jul 2005 | B2 |
6941720 | Deford et al. | Sep 2005 | B2 |
7041377 | Miura et al. | May 2006 | B2 |
7068033 | Sellers et al. | Jun 2006 | B2 |
7181891 | Surace et al. | Feb 2007 | B2 |
7197855 | Della pepa | Apr 2007 | B2 |
7255907 | Feigin et al. | Aug 2007 | B2 |
7745005 | Tinianov | Jun 2010 | B2 |
7799410 | Tinianov | Sep 2010 | B2 |
7883763 | Tinianov | Feb 2011 | B2 |
8424251 | Tinianov | Apr 2013 | B2 |
20040016184 | Huebsch et al. | Jan 2004 | A1 |
20040168853 | Gunasekera et al. | Sep 2004 | A1 |
20040214008 | Dobrusky et al. | Oct 2004 | A1 |
20050103568 | Sapoval et al. | May 2005 | A1 |
20050263925 | Heseltine et al. | Dec 2005 | A1 |
20060048682 | Wagh et al. | Mar 2006 | A1 |
20060057345 | Surace et al. | Mar 2006 | A1 |
20060059806 | Gosling et al. | Mar 2006 | A1 |
20060108175 | Surace et al. | May 2006 | A1 |
20070094950 | Surace et al. | May 2007 | A1 |
20070107350 | Surace et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
2219785 | Oct 1996 | CA |
1154087 | Nov 2001 | EP |
09-203153 | Aug 1997 | JP |
WO 9634261 | Oct 1996 | WO |
WO 9719033 | May 1997 | WO |
WO 0024690 | May 2000 | WO |
Entry |
---|
CertainTeed, “QuietRock 510 Installation Instructions”, Jul. 2010, (date accessed Aug. 13, 2014), https://www.certainteed.com/resources/CTG_2823_QR510_Installation_E.pdf. |
“Damping of plate flexural vibrations by means of viscoelastic laminae” by D. Ross, E.E. Ungar, and E.M. Kerwin—Structural Damping, Section III, ASME, 1959, New York (41 pages). |
A Guide to Airborne, Impact, and Structureborne Noise Control in Multifamily Dwellings, U.S. Department of Housing and Urban Development, Prepared for the National Bureau of Standards, Washington, D.C., Jan. 1963 (5 pages). |
A Study of Techniques to Increase the Sound of Insulation of Building Elements, Wyle Laboratories, Prepared for Dept. of Housing and Urban Development, Jun. 1973 (16 pages). |
A Study of Techniques to Increase the Sound of Insulation of Building Elements, Wyle Laboratories, Prepared for Dept. of Housing and Urban Development, Jun. 1973 (12 pages). |
Architectural Acoustics, M. David Egan, J. Ross Publishing (Reprint 2007) p. 211; originally published McGraw-Hill, 1998 (5 pages). |
Architectural Acoustics, Principles and Practice, John Wiley & sons, 1992, Cavanaugh, Williams J. and Wilkes, Joseph A. (editors) (332 pages). |
ASC WallDamp materials from Acoustic Sciences Corporation http://web.archive.org/web/20021013031149/www.asc-soundproof.com/index-walldamp . . . May 18, 2007 (21 pages). |
Barbara C. Lippiatt, National Institute of Standards and Technology. BEES 3.0, “Building for Environmental and Economic Sustainability Technical Manual and User Guide”, Oct. 2002, (198 pages). |
Chamber Science and Technology Dictionary, by Professor Peter M.B. Walker, W & R Chambers Ltd and Cambridge University Press, 1988 (3 pages). |
dB-Ply materials Sound Reducing Panels from Greenwood Forest Products, Inc., Apr. 24, 1997 (9 pages). |
Dictionary of Architecture & Construction 2200 illustrations, Third Edition, Edited by Cyril M. Harris, Professor Emeritus of Architecture Columbia University, McGraw-Hill, 2000 (7 pages). |
Dictionary of Engineering Materials, Harald Keller, Uwe Erb, Wiley-Interscience by John Wiley & Sons, Inc. 2004 (4 pages). |
Dynamat materials http://web.archive.org/web/20010525113753/www.admteschusa.com/Dynamat.htm Jun. 12, 2007, ADM Tech—Dynamic Control (15 pages). |
English Language Abstract, JP Patent First Publication No. 09-203153, Aug. 5, 1997, (2 pages). |
Field Sound Insulation Evaluation of Load-Beating Sandwich Panels for Housing, Final Report, Prepared by Robert E. Jones, Forest Products Laboratory, Forest Serv., U.S. Dept. of Agriculture, Aug. 1975 (53 pgs.). |
Handbook of Acoustical Measurements and Noise Control, Edited by Cyril Harris, Chapter 32; Structureborne Sound Isolation, Chapter33; Noise Control in Buildings, McGraw-Hill, Inc. 1991, (36 pages). |
Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison, Application of Small Structures and Materials 1996: Passive Damping and Isolation (7 pages). |
IES 2000 Dampening and Visocelastic Membranes (Jul. 2, 2003) Atlanta.com/product (pp. 1-6). |
Nashif, Ahid D.; Jones, David I. G.; Henderson, John P., Vibration Damping, pp. 290-305, John Wiley & Sons, 1985 (18 pages). |
Noise and Vibration Control, Chapter Fourteen, Damping of Panels, Ungar, Eric E., pp. 434-473, McGraw Hill, 1971, Beranek, Leo L. (editor) (7 pages). |
Noise and Vibration Control, Engineering, Principles and Application, pp. 466-479, John Wiley & Sons, 1992 Beranek, Leo L. and Ver, Istvan L. (editors) (9 pages). |
Noise and Vibration Control, Revised Edition, pp. 306-315, Institute of Noise Control Engineering, 1988, Beranek, Leo L. (editor) (9 pages). |
Noise Killer: Pro Damping Compound Materials http://www.tnt-audio.com/clinica/noise.html May 18, 2007, 1998 (3 pages). |
Non-Final Office Action dated May 3, 2013 from related U.S. Appl. No. 11/697,691, 15 pages. |
Nordisk Akustik A/S materials, http://web.archive.org/web/200206240933724/www.nordisk-akustik.dk/html_uk/prod03.ht . . . Jun. 11, 2007 (4 pages). |
Noxon, Arthur M., the Chain Is as Strong as Its Weakest Link, An article written for the first Hong Kong HiFi Show, 1993, Translated and Published in Chinese, http://www.acousticsciences.com/articles/chain.htm (7 pages). |
Patent Examination Report No. 1 dated Apr. 24, 2013 from related Australian Application No. 2008237205, 5 pages. |
Quiet Lightweight Floor Systems, Reprint from Sound and Vibration Magazine, Jul. 1992, by David A. Harris, Building & Acoustic Design Consultants (7 pages). |
Ross Marty, CPed, CO, “Data support use of P-Cell in diabetic footwear”, CMP Media LLC, Mar. 1, 2003. |
Sound Studio Construction on a Budget, F. Alton Everest, McGraw-Hill, 1997 (7 pages). |
Takada, et al., Effect in Reducing Floor Impact Noise of Recycled Paper Damper Members, Bulletin of Tokyo Metropolitan Industrial Technology Research Institute, No. 2 (1999) [certified English translation] (13 pages). |
Transmission Loss of Leaded Building Materials, Pail B. Ostergaard, Richmond L. Cardinell, and Lewis S. Goodfriend, The Journal of the Acoustical Society of America, vol. 35, No. 6, Jun. 1963 (7 pages). |
Unified Facilities Criteria (UFC) Noise and Vibration Control, UFC 3-450-01. May 15, 200, Department of Defense (156 pages). |
United States Gypsum, Architectural and Construction Services, Design Data for Acousticians, Feb. 1986 (4 pages). |
Van Vuure, A.W.; Verpoest, I., Ko, F.K., Sandwich-Fabric Panels as Spacers in a Constrained Layer Structural Damping Application, Composites Part B 32 (2001) 11-19, Elsevier Science Ltd. (9 pages). |
Vandersall, H.L., “Intumescent Coating Systems, Their development and Chemistry” J. Fire & Flammability, vol. 2 (Apr. 1971) pp. 97-140 (45 pages). |
Waybackmachine search results for Jan. 1, 1996-Jun. 12, 2007 (1 page). |
Waybackmachine search results for Jan. 1, 1996-May 3, 2006 (1 page). |
Wood Handbook/Wood as an Engineering Material, United States Department of Agriculture, Forest Service, General Technical Report FPL-FGTR-113, Mar. 1999 (24 pages). |
Number | Date | Country | |
---|---|---|---|
20130240291 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11697691 | Apr 2007 | US |
Child | 13783165 | US |