The present invention relates generally to the field of windows and, in particular, to noise transmission, noise reduction, and acoustic control in windows.
Windows normally include one or more transparent panels (or panes), e.g., of glass, plastic, or the like. Windows are used in buildings, automobiles, airplanes, etc. for admitting light while protecting against heat loss or gain, moisture loss or gain, noise, or the like. One problem with many windows is that they do not always provide adequate protection against noise. To this end, techniques have been developed for reducing sound transmission through windows.
One technique for reducing sound transmission through a window involves a double-paned window with each of the panes having a different thickness for blocking out noise over a broader range of frequencies than two-paned windows with panes having the same thickness. Another technique involves a two-paned window with each of the panes having a different density for blocking out noise over a broader range of frequencies than two-paned windows with panes having the same density. For some techniques, a vibration dampening material is disposed between two windowpanes of different thickness and/or density for dampening vibrations of either windowpane. One problem with these techniques for reducing sound transmission through windows is that they usually require increased frame sizes and more glass compared to conventional two-paned windows, which results in increased costs. Also, these techniques may result in relatively heavier windows and thus may be more difficult to install than conventional windows. Moreover, these techniques are limited to two-paned windows.
Another technique for reducing sound transmission through a window involves laminated windowpanes for reducing sound transmission. However, laminated windowpanes are more expensive than non-laminated windows, e.g., usually about 30 to 60 percent more expensive. Moreover, laminated windows and two-paned windows having panes of different density may alter optical properties of the window.
For the reasons stated above, and for other reasons stated below that will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for alternative noise suppressing windows.
One embodiment of the present invention provides a window having a frame with a windowpane disposed therein. A first impedance discontinuity element is disposed between the windowpane and the frame adjacent a portion of a periphery of the windowpane. A second impedance discontinuity element is disposed adjacent another portion of the periphery of the windowpane. The first and second impedance discontinuity elements have different impedances.
Another embodiment of the present invention provides a window having a frame. A plurality of windowpanes is disposed within the frame. Each of the plurality of windowpanes is substantially parallel to another of the plurality of windowpanes, and each of the plurality of windowpanes is separated from another of the plurality of windowpanes by a gap. First and second impedance discontinuity elements are disposed adjacent a periphery of each of the plurality of windowpanes. The first and second impedance discontinuity elements have different impedances. The first and second impedance discontinuity elements of adjacent windowpanes of the plurality of windowpanes are staggered relative to one another.
Another embodiment of the present invention provides a window having a frame with a windowpane disposed therein. A passive impedance discontinuity element is disposed adjacent a portion of a periphery of the windowpane. An active impedance discontinuity element is disposed between the windowpane and the frame adjacent another portion of the periphery of the windowpane. The active impedance discontinuity element is activated so that the active and passive impedance discontinuity elements have different impedances.
Another embodiment of the present invention provides a window having a frame with a windowpane disposed therein. An actuator is disposed between the windowpane and the frame adjacent a periphery of the windowpane. A sensor is disposed between the windowpane and the frame adjacent the periphery of the windowpane. The window also includes a controller having an input electrically coupled to the sensor and an output electrically coupled to the actuator.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
Sound waves impinging on a windowpane cause the windowpane to vibrate. The vibrating windowpane radiates sound at a sound pressure level (SPL) that increases with increasing vibration energy of the windowpane. In addition, radiated sound from a windowpane depends on the distribution of vibration energy within the windowpane and frame structures. Therefore, decreasing the vibration energy of a vibrating windowpane or modifying the vibration energy distribution can reduce sound radiation from the windowpane. Distribution of vibration energy within a vibrating windowpane depends upon conditions at boundaries (or a periphery) of the windowpane. That is, the vibration energy and its distribution within a vibrating windowpane depend upon the way the windowpane is supported at its periphery.
Embodiments of the present invention provide “acoustically intelligent windows” that have impedance (or stiffness) discontinuities at a periphery of a windowpane that act to modify a vibration energy distribution within the windowpane when the windowpane vibrates due to impinging sound waves. In some embodiments, the impedance discontinuities act to reduce the vibration energy of the windowpane. The impedance discontinuities at the periphery of the windowpane can be produced by passive and/or active impedance discontinuity elements that for one embodiment act to reduce the vibration energy through energy management, e.g., redistributing the vibration energy within the windowpane, and energy dissipation. In various embodiments, an impedance discontinuity element is anything that creates an elasticity change in a material or a structure.
In one embodiment, frame 130 includes slots 152 and 154. First and second impedance discontinuity elements 162 and 164 that have different impedances (or resistances to motion) are respectively disposed within slots 152 and 154 adjacent a periphery 140 of each of windowpanes 1101 and 1102. Impedance discontinuity element 162 forms an interface between windowpane 1101 and frame 130, while impedance discontinuity element 164 forms an interface between windowpane 1102 and frame 130. Impedance discontinuity elements 162 and 164 respectively contact windowpanes 1101 and 1102 adjacent a periphery 140 of each of windowpanes 1101 and 1102 and support windowpanes 1101 and 1102 within frame 130. In one embodiment, either impedance discontinuity element 162 or 164 is frame 130 or is of the same material as frame 130.
Impedance discontinuity elements 162 and 164 are not limited to continuous elements, as illustrated in
In one embodiment, the first and second impedance discontinuity elements are passive impedance discontinuity elements, e.g., the first and second impedance discontinuity elements can be a solid of steel, an elastomer, wood, etc., a spring, such as coil, leaf, ring, plate, etc., or the like, as long as the first and second impedance discontinuity elements are of different stiffness. For example, in one embodiment, a first impedance discontinuity element is a steel solid, while the second impedance discontinuity element is a wood solid, an elastomeric solid, a spring, or the like. In another embodiment, the first and second impedance discontinuity elements are springs of different stiffness. In some embodiments, the first and second impedance discontinuity elements are holes, slots, notches, or the like in portions of frame 130 for changing the elasticity in the respective portions of the frame. In one embodiment, the first and second discontinuity elements are a damping material, e.g., a viscoelastic material.
In other embodiments, the first and second impedance discontinuity elements are active impedance discontinuity elements (or actuators). In one embodiment, the first and second impedance discontinuity elements are piezoelectric actuators comprising a formulation of lead, magnesium, and niobate (PMN), a formulation of lead, zirconate, and titanate (PZT), or the like. Piezoelectric construction and operation are well known to those in the art. A detailed discussion, therefore, of specific constructions and operation is not provided herein. It will be appreciated that when a voltage is applied to piezoelectric actuators deployed as first and second impedance discontinuity elements, the first and second impedance discontinuity elements impart a force to a windowpane 110 and to a frame 130. In one embodiment, the force produces impedance (or resistance to motion) between a windowpane 110 and frame 130. Applying different voltages to piezoelectric actuators deployed as first and second impedance discontinuity elements causes the first and second impedance discontinuity elements to produce different impedances.
For one embodiment, first and second impedance discontinuity elements 562 and 564 include piezoelectric layers 5001 to 500N separated by electrodes 502, e.g., of metal, as illustrated in
For other embodiments, the first and second impedance discontinuity elements are piezoelectric benders that operate similarly to a bimetallic strip in a thermostat. For another embodiment, the first and second impedance discontinuity elements are configured as a laminar piezoelectric actuator comprising parallel piezoelectric strips. The displacement of these actuators is perpendicular to the direction of polarization and the electric field. The maximum travel is a function of the length of the strips, and the number of parallel strips determines the stiffness and stability of the element.
In another embodiment, first and second impedance discontinuity elements 762A and 764A (
When a voltage Vin is applied to piezoelectric actuator 720, it imparts a force to a windowpane 110 and frame 130 that produces an impedance discontinuity between the windowpane 110 and frame 130. Conversely, when a windowpane 110 imparts a vibratory motion or a force to piezoelectric sensor 710, either directly for the embodiment of
In another embodiment, the first and second impedance discontinuity elements are actuators formed from shape memory alloys (SMAs). SMAs are materials that have an ability to return to their original shapes through a phase transformation that can take place by inducing heat in the SMA materials. When an SMA is below its transformation temperature, it has very low yield strength and can be easily deformed into a new shape (which it will retain). However, when an SMA is heated above its transformation temperature, it will return to the original shape. If the SMA encounters any resistance during this transformation, it can generate large forces. The most common and useful shape memory materials are Nickel-titanium alloys called Nitinol (Nickel Titanium Naval Ordnance Laboratory).
In one embodiment, the first and second impedance discontinuity elements are leaf springs 800 formed from SMA foils 810 and 820, as shown in
In another embodiment, first and second impedance discontinuity elements 962 and 964 are SMA coil springs 900 disposed between a window 110 and frame 130, as shown in
In various embodiments, the first impedance discontinuity elements can include piezoelectric actuators, and the second impedance discontinuity elements can include SMA actuators and vice versa. In some embodiments, the first impedance discontinuity elements can include passive impedance discontinuity elements, and the second impedance discontinuity elements can include active impedance discontinuity elements, such as piezoelectric and/or SMA actuators, and vice versa. For example, in one embodiment, the first impedance discontinuity elements are SMA coil springs and the second impedance discontinuity elements are passive coil springs. When no current is supplied to the SMA coil springs, the passive and SMA coil springs have the same stiffness. On the other hand, when current is supplied to the SMA coil springs, the stiffness of the SMA springs is increased, e.g., by up to a factor of ten, and the passive and SMA coil springs have a different stiffness.
Controller 1010 receives signals (for example sensed voltage Vsense) from vibration sensor 1020 indicative of vibrations adjacent periphery 140 of the windowpane 110 transmitted to vibration sensor 1020. Controller 1010 generates and transmits signals to impedance discontinuity elements 1062 and/or 1064, e.g., a control voltage Vc for a piezoelectric actuator or a control current Ic for a SMA actuator, to adjust the impedance between the windowpane 110 and frame 130.
In various embodiments, the impedance is adjusted to create an impedance discontinuity adjacent periphery 140 of a single windowpane 110 that is vibrating due to sound waves impinging thereon. The stiffness discontinuity acts to modify the vibration energy distribution within the windowpane 110. For various embodiments, the stiffness discontinuity acts to reduce the vibration energy of the windowpane 110 and thus the sound radiation therefrom. In another embodiment, impedance discontinuities adjacent periphery 140 of the windowpane 110 redirect or confine vibration energy to a predetermined part of the windowpane 110 or frame 130. In some embodiments, a passive impedance discontinuity element is used to dissipate the redirected or confined vibration energy.
In other embodiments, adjusting the impedance creates an impedance discontinuity between the peripheries of successive windowpanes, such as between windowpanes 1101 and 1102, as well as impedance discontinuities adjacent the periphery of each of the windowpanes. For example, for windowpanes 1101 and 1102, when sound waves impinge upon windowpane 1101, an impedance discontinuity adjacent periphery 140 of windowpane 1101 acts to modify the vibration energy distribution within windowpane 1101. For various embodiments, the impedance discontinuity adjacent periphery 140 of windowpane 1101 acts to reduce the vibration energy of windowpane 1101. Moreover, an impedance discontinuity between the windowpanes 1101 and 1102 acts to reduce the transfer of vibration energy from windowpane 1101 to windowpane 1102. An impedance discontinuity adjacent periphery 140 of windowpane 1102 acts to modify the vibration energy distribution within windowpane 1102. For various embodiments, the impedance discontinuity adjacent periphery 140 of windowpane 1102 acts to reduce the vibration energy of windowpane 1102 and thus the sound radiation therefrom.
In another embodiment, impedance discontinuities adjacent periphery 140 of each of windowpanes 1101 and 1102 redirect or confine vibration energy to a predetermined part of each the windowpanes 1101 and 1102 or frame 130. In some embodiments, passive impedance discontinuity elements are used to dissipate the confined or redirected vibration energies.
When the vibration energy is above a predetermined level at decision block 1230, controller 1010 determines, e.g., from calculations or comparisons to baseline data, the stiffness distribution at periphery 140 for reducing vibration energy below the predetermined level, for modifying the vibration energy distribution within the windowpane 110, or for redirecting or confining the vibration energy to a predetermined part of the windowpane 110. Subsequently, at block 1250, controller 1010 transmits signals to impedance discontinuity elements 1062 and/or 1064 to adjust the impedance between the windowpane 110 and frame 130 for obtaining the above-determined stiffness distribution adjacent periphery 140. Method 1200 then returns to block 1210. When the vibration energy is less than or equal to a predetermined value at decision block 1230, method 1200 ends at block 1260.
In one embodiment, impedance discontinuity elements 1062 and/or 1064 induce a set of forces proportional to the spatial derivative (i.e., strain, shear force) of the structure at the point of application. In another embodiment, impedance discontinuity elements 1062 and/or 1064 induce a set of forces defined by a vortex power flow (VPF), e.g., as described in U.S. patent application Ser. No. 09/724,369, entitled SMART SKIN STRUCTURES, filed Nov. 28, 2000 (pending), which application is incorporated herein by reference.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. Many adaptations of the invention will be apparent to those of ordinary skill in the art. Accordingly, this application is intended to cover any adaptations or variations of the invention. It is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4352039 | Hagood | Sep 1982 | A |
4542611 | Day | Sep 1985 | A |
4829729 | Derner et al. | May 1989 | A |
4877658 | Calhoon | Oct 1989 | A |
4969293 | Guillon | Nov 1990 | A |
5131194 | Anderson | Jul 1992 | A |
5255764 | Kurabayashi et al. | Oct 1993 | A |
5410605 | Sawada et al. | Apr 1995 | A |
5592791 | D'Annunzio et al. | Jan 1997 | A |
5754662 | Jolly et al. | May 1998 | A |
5812684 | Mark | Sep 1998 | A |
5983593 | Carbary et al. | Nov 1999 | A |
6290037 | Williams et al. | Sep 2001 | B1 |
6295788 | Reichert | Oct 2001 | B2 |
6360499 | Sugiura | Mar 2002 | B1 |
Number | Date | Country |
---|---|---|
198 26 171 C 1 | Oct 1999 | DE |
199 43 084 A 1 | Apr 2001 | DE |
04038390 | Feb 1992 | JP |
06149267 | May 1994 | JP |
WO 9716817 | May 1997 | WO |
WO 0035242 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040103588 A1 | Jun 2004 | US |