Actinobacillus pleuropneumoniae subunit vaccine

Information

  • Patent Grant
  • 6783764
  • Patent Number
    6,783,764
  • Date Filed
    Tuesday, August 31, 1999
    25 years ago
  • Date Issued
    Tuesday, August 31, 2004
    20 years ago
Abstract
The present invention relates to live attenuated bacteria of the genus Actinobacillus pleuropneumoniae that have a mutation in an apxIV gene such that no functional ApxIV toxin can be produced. The invention also relates to methods for the production of such bacteria. Also vaccines comprising such bacteria and methods for the production of such vaccines are part of the invention. The invention further relates to subunit vaccines comprising an ApxIV toxin, to methods for the production of such vaccines and to methods for the protection of animals against infection with bacteria of the genus Actinobacillus pleuropneumoniae. In addition, the invention relates to the promotor of the apxIV gene. Finally, the invention relates to diagnostic test for the selective diagnosis of Actinobacillus pleuropneumoniae infections and to diagnostic tests discriminating between Actinobacillus pleuropneumoniae field strains and vaccine strains.
Description




FIELD OF THE INVENTION




The present invention relates to live attenuated bacteria of the genus


Actinobacillus pleuropneumoniae,


having a mutation in a gene encoding a toxin, methods for the production of such bacteria, to vaccines comprising such bacteria, methods for the production of such vaccines, to vaccines comprising a toxin, methods for the production of such vaccines and methods for the protection of animals against infection with bacteria of the genus,


Actinobacillus pleuropneumoniae.






BACKGROUND OF THE INVENTION




Bacteria belonging to the genus Actinobacillus all produce so-called RTX-toxins. (RTX stands for repeat in toxin).




It is the presence of these RTX-toxins that highly contributes to the pathogenic character of these bacteria.




The RTX-toxins have been extensively reviewed by Braun et al. (Critical Rev. in Microbiol. 18(2): 115-158 (1991)). RTX-toxins in Gram-negative strains have also been reviewed in Welch, R. A. (Molecular Microbiology 5/3: 521-528 (1991)) and in Welch et al. (Inf. Agents and Disease 4: 254-272 (1995)).




All known RTX-toxins display some kind of cytotoxic or cytolytic activity. The target-cell-and host-specificity differ however, depending on the toxin and on differences in acylation (McWhinney et al.; J. Bact. 174: 291-297 (1992) and Hackett et al.; J. Biol. Chem. 270: 20250-20253 (1995)). As a result of the difference in target cells, the various toxins of the RTX-toxin family are known e.g. as haemolysin, cytolysin or cytotoxin. The genus Actinobacillus comprises a number of different species, inter alia,


Actinobacillus pleuropneumoniae, A. actinomycetemcomitans, A. suis, A. rossii, A. equuli


and


A. lignieresii.








Actinobacillus pleuropneumoniae


produces serotype-dependent RTX-toxins that are cytotoxic/cytolytic to pig, horse, bovine and human erythrocytes, to rabbit and porcine neutrophils and to porcine alveolar macrophages. (Rosendal et al; Am. J. Vet. Res. 49: 1053-1058 (1988), Maudsley J. R. and Kadis S; Can. J. Microbiol. 32: 801-805 (1986), Frey. J and Nicolet. J; Inf. & Imm. 56:2570-2575 (1988), Bendixon et al; Inf. & Imm. 33: 673-676 (1981), Kamp, E. M. and van Leengoed, L. A. M. G.; J. Clin. Microbiol. 27: 1187-1191 (1989)).




Infections with Actinobacillus in pigs are the cause of severe economic losses to pig industry, due to acute mortality in young pigs and reduced weight gain in older animals.




The genetic organisation of the operons involved in the synthesis, activation and transportation of the RTX toxins in Gram-negative bacteria has been reviewed recently by Coote, J. G. (FEMS Microbiology reviews 88: 137-162 (1992)). Frey has specifically reviewed the known three RTX-toxins in


Actinobacillus pleuropneumoniae


in Bacterial Protein Toxins, Zbl Bakt. Suppl. 24, p. 322-, Freer et al. (Eds.), Gustaf Fischer, Stutttgart, Jena, New York, 1994.




In


Actinobacillus pleuropneumoniae,


this kind of RTX-operon contains four genes: the actual Toxin-gene (A), an Activator-gene (C), and two genes (B and D) encoding proteins involved in secretion of the toxin into the surrounding medium. The primary translation-product of the Toxin-gene (A) is a non-toxic protein, of which the toxic activity is activated by the Activator-gene (C) product.




Until recently, it was assumed that only three RTX-toxins, all having the above-described genetic organisation or at least having the Toxin-gene (A) and Activator-gene (C), existed in Actinobacillus species.




These three RTX-toxins, ApxI, Apx-II and Apx-III have respectively a pronounced haemolytic activity (ApxI), a mild haemolytic activity (Apx-II) or a macrophage-cytotoxic activity (Apx-III).




The various toxic activities are fairly randomly divided over the serotypes. There are four subgroups:




a subgroup A, represented by serotypes 1, 5, 9 and 11, producing ApxI and Apx-II,




a subgroup B, represented by serotypes 2, 3, 4, 6 and 8, producing Apx-II and Apx-III,




a subgroup C, represented by serotype 10, producing ApxI only,




a subgroup D, represented by serotype 7 and 12, producing Apx-II only,




It is known, that ApxI, -II, and -III all are essential elements in universal vaccines against


Actinobacillus pleuropneumoniae


infection: a vaccine not comprising at least ApxI, -II, and -III will not provide protection against all


Actinobacillus pleuropneumoniae


serotypes. Also, a vaccine not comprising at least the Apx-toxins of one specific serotype will not even induce protection against that single serotype.




Subunit vaccines based on in vitro synthesised RTX-toxins from A. pleuropneumoniae that lost their toxicity have been described earlier, e.g. in European Patent EP No. 0,354,628, in which subunit vaccines based upon a haemolysin and a cytotoxin of


A. pleuropneumoniae


are disclosed, and in European Patent EP No 0,453,024, in which


A. pleuropneumoniae


subunit vaccines based upon haemolysins, cytotoxins and outer membrane proteins are disclosed.




There are however four important disadvantages to subunit vaccines in general:




high amounts of antigenic material are needed in order to adequately trigger the immune system.




usually, only B-cell immunity is triggered.




several protective antigens are only triggered in vivo, and therefore can not be present in subunit vaccines.




a live pathogenic bacterium has many important immunogenic molecules, such as Outer Membrane Proteins and capsular polysaccharides, all potentially important for protection and thus to be included in an efficient subunit vaccine.




Next to the obvious problems mentioned under points one and two, especially the fourth point makes it difficult to make an efficient subunit vaccine.




This is e.g. illustrated by the


A. pleuropneumoniae


subunit vaccine disclosed in European Patent EP No 0,453,024 mentioned above, in which four different subunits (three RTX-toxins and an outer membrane protein) are combined in one vaccine.




It is clear, that in order to overcome the disadvantages of subunit vaccines against Pasteurellacea-infection, a live attenuated vaccine would be highly desirable.




A live attenuated vaccine has the following advantages:




it can be administered in low doses (it is self-replicating)




it closely mimics the natural/wild-type infection




it provides all the possible immunologically important antigens at the same time.




Nevertheless, in spite of the clear advantages, no live vaccines based on


Actinobacillus pleuropneumoniae


were commercially available prior to the present invention.




The reason for this lies in the following paradox: as mentioned before, ApxI, -II, and -III all are essential elements of universal vaccines against


Actinobacillus pleuropneumoniae


infection. Live vaccines therefore have to produce these three RTX-toxins. These three RTX-toxins are however strong virulence factors in all Actinobacillus species (see e.g. Coote, J. G.; FEMS Microbiology reviews 88: 137-162 (1992), Tascon et al.; Mol. Microbiol. 14: 207-216 (1994)), Jansen et al.; Inf. & Imm. 63: 27-37 (1995)).




Deletion of the RTX-toxins in order to attenuate the virulence of live App strains is technically feasible, but this does not provide a solution for the dilemma: such RTX-negative strains would be useless as live attenuated vaccine strains since they do no longer induce immunity in the host against the haemolytic/cytotoxic activity of


Actinobacillus pleuropneumoniae


field strains.




Virulence factors that, although important in the induction of immunity, do play a less important role in building up immunity than ApxI, -II and -III, and thus can in principle be deleted are however currently not known.




It would thus be highly desirable to have a site on the genome of App that attributes to virulence and therefore leads to an attenuated App strain when modified, whereas at the same time it is, although useful in triggering immunity, dispensable from a vaccine point of view. No such sites are however currently known. Moreover, it would be highly desirable if such a site would be universally present in all App strains, instead of being restricted to certain serotypes. Such a site would then allow all different serotypes to be attenuated by deletion of that same site.




It is one of the objectives of the present invention to provide such an attenuation site, universally present in all


Actinobacillus pleuropneumoniae


strains regardless of their serotype.




Recently, a new gene was found in a serotype 1 strain of


Actinobacillus pleuropneumoniae


(Thesis T. J. Anderson November 1995).




Although this gene does not resemble the known Actinobacillus ApxI, -II and -III genes, it bears resemblance to RTX-toxin genes known from bacteria belonging to


Neisseria meningitidis,


for which reason it was named RTX-gene apxlV. The gene however differs in almost all aspects from the three known RTX-toxin genes apxI, -II and -III present in the various species of the Actinobacillus family as described above. First of all, the genomic organisation is completely different. Secondly, there is no activator-mechanism as is found for the known Apx-toxins. In the third place, no specific in vivo haemolytic or cytotoxic activity could at that time be attributed to the gene, or it's possible gene product.




SUMMARY OF THE INVENTION




It was now surprisingly found that this gene, fully in contrast with the three known RTX-genes, is present in all bacteria of the species Actinobacillus pleuropneumoniae, regardless their serotype. This was determined by hybridisation of a probe comprising apxIV coding sequences with restriction fragments of the DNA from


Actinobacillus pleuropneumoniae


of all serotypes as described in Example 6 and 7.




Unexpectedly it was found now that apxIV deletion mutants are viable, but they behave less virulent compared to their apxIV-possessing parent strains.




Therefore, it was determined that the gene product, the ApxIV toxin is a virulence factor in all


Actinobacillus pleuropneumoniae


strains. This is an unexpected conclusion, since up until now, no effects at all, let alone effects possibly influencing virulence had been attributed to the gene product in vivo. In fact, up until now there was not even proof that the gene was expressed in


Actinobacillus pleuropneumoniae


in vivo or in vitro anyway.




It therefore is one of the merits of the invention that it was found that:




the apxIV gene is present in all


A. pleuropneumoniae


strains regardless the serotype,




the apxIV gene product is a virulence factor in all


A. pleuropneumoniae


serotypes,






A. pleuropneumoniae


strains with a deletion in the apxIV gene are still viable but have a decreased virulence without significantly impairing the immunogenic properties of the strains,




Therefore, the invention provides for the first time live attenuated bacteria of the species


Actinobacillus pleuropneumoniae,


that do not produce a functional ApxIV toxin.











DETAILED DESCRIPTION OF THE INVENTION




A functional ApxIV toxin is considered to be a protein that has all the characteristics of the ApxIV toxin as expressed in a wild-type bacterium, and is expressed at the wild-type level. Therefore, a non-functional ApxIV toxin is considered to be a toxin that lacks some or all of the characteristics of the ApxIV toxin as expressed in a wild-type bacterium, and/or is expressed at a level, insufficient to obtain wild-type effects of ApxIV toxin.




The inability to produce the ApxIV toxin can e.g. be due to modifications in the coding sequence encoding the ApxIV toxin. It may also be e.g. the result of modifications in regions known to be involved in transcription of the apxIV gene, such as the promotor region, or of modifications in regions involved in translation, such as the ribosome binding site.




The overall structure of the apxIV gene is given in FIG.


1


.




In this figure, the direct repeat regions, characteristic for ApxIV toxin are indicated by dashed boxes, whereas the also ApxIV-specific glycine-rich nonapeptide regions are indicated by black arrows. The repeats are found at the C-terminal part of ApxIV. These characteristic features are present in all


Actinobacillus pleuropneumoniae


serotypes. The nucleic acid sequence and amino acid sequence of two serotypes are represented in SEQ. ID. No. 1-4. SEQ. ID. NO. 1 shows the nucleic acid sequence of the apxIV gene of App serotype 1, and SEQ. ID. NO. 2 shows the matching amino acid sequence of the serotype 1 ApxIV toxin. SEQ. ID. NO. 3 shows the nucleotide sequence of the apxIV gene of App serotype 3, whereas SEQ. ID. NO. 4 shows the matching amino acid sequence of the serotype 3 ApxIV toxin.

FIG. 2

shows the strikingly high level of conservation at amino acid level, especially in the N-terminal 650 amino acids, between the Apx-toxins of the various


Actinobacillus pleuropneumoniae


serotypes. This is also a remarkable characteristic of the apxIV genes. It is clear from

FIG. 1

, that a variation in the number of repeats at the C-terminal part of the toxin may occur, depending on the serotype. This variation accounts for the difference in size of the genes and encoded toxins obtained from the various serotypes.




There may be some variation in nucleic acid sequence even between apxIV genes isolated from different isolates of


Actinobacillus pleuropneumoniae,


belonging to the same serotype. This is due to natural variation well known in the art to exist in all organisms. It is possible that some amino acids in the ApxIV toxin encoded by the apxIV gene are replaced by others in the ApxIV toxin of another serotype, while the polypeptide is not altered in its function. For instance, a polypeptide containing Asp at a certain site, and its variant containing Asn at the comparable site still have the same properties. This process in which an amino acid is replaced by an functionally analogous amino-acid is called functional displacement. In this case the variant proteins are called functional variants.




Another cause of variation is the phenomenon of degeneracy of the genetic code. Shortly, it means, that e.g. the amino acid glutamic acid is coded for by both GAT and GAA. This phenomenon holds for all amino acids, except Met and Trp. Thus, it is obvious, that e.g. the ApxIV toxin of serotype 1, as given in the present invention can not only be coded for by the nucleotide sequence given in SEQ ID NO: 1 but also by a very large variety of other sequences, still all giving the same or functionally the same polypeptides.




Therefore, a variant apxIV sequence encoding a polypeptide that is functionally comparable to the ApxIV toxin falls within the scope of the present invention.




Live attenuated bacteria according to the invention can be obtained in several ways. One possible way of obtaining such bacteria is by means of classical methods such as the treatment of wild-type


Actinobacillus pleuropneumoniae


bacteria with mutagenic agents such as base analogues, treatment with ultraviolet light or temperature treatment. Strains that do not produce a functional ApxIV toxin do not or to a lesser extend induce anti-ApxIV toxin antibodies, and therefore can easily be selected in animal tests.




The necessary antiserum can be obtained as described below in Example 3.




Another possibility is to deliberately introduce, using recombinant DNA-technology, a well-defined mutation in the gene encoding the ApxIV toxin. Such a mutation may be an insertion, a deletion, a replacement of one nucleotide by another one or a combination thereof, with the only proviso that the mutated gene no longer encodes a functional ApxIV toxin. It can easily be seen, that especially mutations introducing a stop-codon in the open reading frame, or mutations causing a frame-shift in the open reading frame are very suitable to obtain a strain which no longer encodes a functional ApxIV toxin. Such mutations can e.g. be made by means of in vitro site directed mutagenesis using the Transformer® kit sold by Clontech. Many other standard recombinant DNA techniques such as digestion of the gene with a restriction enzyme, followed by endonuclease treatment and religation, are equally applicable.




Therefore, in a preferred form, this embodiment of the invention relates to live attenuated bacteria in which the gene encoding the ApxIV toxin comprises a mutation.




Well-defined mutations involving the deletion of fragments of the apxIV gene or even the whole gene, or the insertion of heterologous DNA-fragments, when compared to classically induced mutations, have the advantage that they will not revert to the wild-type situation.




Thus, in a more preferred form, this embodiment of the invention refers to live attenuated bacteria in which the gene encoding the ApxIV toxin comprises an insertion and/or a deletion.




Given the large amount of vaccines given nowadays to pigs, it is clear that combined administration of several vaccines would be desirable, if only for reasons of decreased vaccination costs. It is therefore very attractive to use live attenuated vaccine strains as a recombinant carrier for heterologous genes, encoding antigens selected from other pathogenic micro-organisms or viruses. Administration of such a recombinant carrier has the advantage that after administration of such a carrier, immunity is induced against two or more diseases at the same time. The live attenuated bacteria according to the present invention provide a very suitable carrier for heterologous genes, since the gene encoding the ApxIV toxin can be used as an insertion site for such heterologous genes. The use of the apxlV gene as an insertion site has the advantage that at the same time the apxIV gene is inactivated, and the newly introduced heterologous gene can be expressed in accordance with the homologous


Actinobacillus pleuropneumoniae


genes. The construction of such recombinant carriers can be done routinely, using standard molecular biology techniques such as homologous recombination. Therefore, in an even more preferred embodiment, the present invention relates to live attenuated bacteria of the species


Actinobacillus pleuropneumoniae


that do not produce a functional ApxIV toxin, and in which there is a heterologous gene inserted in the apxIV gene. Such a heterologous gene can, as mentioned above, e.g. be a gene encoding an antigen selected from other pathogenic micro-organisms or viruses. Another possibility is to insert a gene encoding a protein involved in triggering the immune system, such as an interleukine or an interferone.




In a still even more preferred form of the invention, the heterologous gene encodes one or more antigens selected from the group consisting of Porcine Reproductive Respiratory Syndrome (PRRS) virus, Pseudorabies virus, Porcine Influenza virus, Porcine Parvovirus, Transmissible Gastroenteritis virus, rotavirus,


Escherichia coli, Erysipelothrix rhusiopathiae, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis


and


Streptococcus suis.






There is however a serious pitfall in expression of heterologous genes in recombinant carriers: it is known that several proteins are toxic if they are expressed in heterologous bacteria. Therefore, genes encoding such proteins can never be introduced in heterologous carriers, since successful recombinants will eventually die as a result of the expression a certain amount of the heterologous gene. The P2-protein of


Haemophilus influenzae,


to name just one example, can simply not be expressed in


E. coli.


(Munson et al., Infect. & Immun. 57: 88-94 (1989)). It is one of the objectives of the present invention to offer a recombinant live carrier that does not have this drawback. It was unexpectedly found, that although the apxIV gene is efficiently expressed in vivo (see Example 5), it is not expressed in vitro (see Example 4). This was concluded from the failure to show the presence of ApxIV toxin in in vitro grown


A. pleuropneumoniae


cultures. This means that ApxIV expression is switched on or off, depending on the environment in which


A. pleuropneumoniae


is grown. This feature offers an unexpected advantage over known live recombinant carriers: if the expression of the heterologous gene is brought under the control of the apxIV promoter, the live attenuated


P. pleuropneumoniae


carrier according to the invention can be grown in vitro to high densities, regardless the inserted heterologous gene, since the foreign gene will not be expressed under these conditions. After administering a number of bacteria to the host, the expression of the heterologous gene will start and at some time during replication or after the death of the bacterium it will become available to the immune system of the host. The heterologous gene to be expressed can be functionally linked to the apxIV promoter by e.g. replacing the coding sequence of the apxIV gene by the coding region of the heterologous gene. It is not necessary to replace the whole apxIV gene: it suffices to replace the ATG-codon of ApxIV by the coding region of the heterologous gene including its stop-codon. It is also possible to express a heterologous gene under the influence of the apxIV promoter by making a fusion construct. This can be made by inserting the heterologous gene in frame with the apxIV reading frame downstream of the apxIV ATG codon.




The wording “functionally linked to the apxIV promoter” means that transcription of the heterologous gene starts at the apxIV promoter.




It goes without saying that each location of the inserted heterologous gene in which it is functionally linked to the apxIV promotor falls within the scope of the invention.




Therefore, the most preferred form of this embodiment relates to live attenuated bacteria according to the present invention, carrying a heterologous gene that is functionally linked to the promotor region of the apxIV gene.




The surprising finding that the native apxIV promotor is a switchable promotor that is switched off in vitro and switched on in vivo makes this promotor a very versatile expression tool both in it's natural host and as a heterologous promotor in other bacteria. When used as a heterologous promotor in other bacteria, the DNA comprising the promotor can be isolated from its host and transferred to a bacterium other than


Actinobacillus pleuropneumoniae.


Another option that has now become feasible, is the cloning of several copies of the apxIV promotor each controlling the expression of another gene. This can be done in the host bacterium


Actinobacillus pleuropneumoniae,


but this principle of multiple copies is equally applicable to other bacteria. As mentioned above, the promotor can be used for the selective in vivo expression of one or more heterologous genes encoding antigens selected from other pathogenic micro-organisms or viruses. The promotor can also be used for the expression of a heterologous DNA sequence encoding a cytokine such as an interleukin, Tumor Necrosis Factor or an interferon. Several cytokines, e.g. interferons are known to play an important role as immune modulators. Thus it may be advantageous to express such genetic information under the control of the apxIV promotor.




Therefore, another embodiment of the invention relates to a nucleotide sequence harbouring the promotor controling the expression of the apxIV gene.




The switchable promotor that in the native situation controls the expression of the apxIV gene, was now found to be located in the DNA fragment between position 451 and 1132 of SEQ ID NO: 5. It is clear, that those parts of this DNA fragment that are not essential promotor elements need not necessarily be present in the fragment. Thus, shorter fragments of this DNA fragment in which the promotor activity is retained, are equally suitable for the expression of heterologous genes. Therefore, a more preferred form of this embodiment relates to a nucleotide sequence comprising the DNA fragment from position 451 to 1132 of SEQ ID NO: 5 or a subfragment thereof still having promotor activity.




Bacterial promotors all share two consensus regions, the so-called −10 and the −35 region. Although the flanking sequence of these consensus regions may to a certain extend influence the efficiency of the promotor, it can be advantageous to use only that part of the promotor region that comprises the DNA fragment between −35 and the ATG codon. This DNA fragment is located between position 617 and position 641 of SEQ ID NO: 5.




Therefore, in a more preferred form of this embodiment the invention relates to a nucleotide sequence comprising the DNA fragment from position 617 to 641 of SEQ ID NO: 5.




The present invention also relates to ApxIV toxin as a subunit vaccine component.




Subunit vaccines will most probably comprise the three known Apx-toxins. This was mentioned above. Since it was unexpectedly found, that the ApxIV toxin is however present in all


A. pleuropneumoniae


serotypes as mentioned above, it is a desirable additional component of subunit vaccines: neutralising antibodies raised against the ApxIV toxin provide protection against the ApxIV toxin produced by each and every


Actinobacillus pleuropneumoniae


strain, regardless the serotype. Therefore, another embodiment of the invention relates to subunit vaccines for the protection of animals against infection with a bacterium of the species


Actinobacillus pleuropneumoniae,


that comprise purified ApxIV toxin. The ApxIV toxin can be administered alone, or in combination with any or all of the toxins ApxI, -II and -III mentioned above and/or e.g. in combination with Outer Membrane Proteins (OMPS) of


Actinobacillus pleuropneumoniae.


Such vaccines can easily be prepared by admixing ApxIV toxin in an amount sufficient to induce an immune response, and a pharmaceutically acceptable carrier. Production of the ApxIV toxin is possible by introducing the apxIV gene in a suitable expression vector, expression of the gene and isolation of the toxin. Many versatile expression systems are known in the art, such as bacterial expression systems, baculovirus expression systems and mammalian cell expression systems. In Example 3 it is described how to obtain the ApxIV toxin by expression of the gene in


E. coli.






Still another embodiment of the invention relates to live attenuated vaccines comprising live attenuated bacteria as described above for the protection of animals against infection with a bacterium of the species


Actinobacillus pleuropneumoniae.


Such vaccines can be obtained by admixing live attenuated bacteria with a pharmaceutically acceptable carrier. These vaccines comprise at least an immunogenically effective amount of the live attenuated producing bacterium according to the invention. Immunogenically effective means that the amount of live attenuated bacterium administered at the moment of vaccination is sufficient to induce in the host an effective immune response to virulent forms of the RTX-toxin producing bacterium. The useful dosage to be administered will vary depending on the age, weight and animal vaccinated, the mode of administration and the type of pathogen against which vaccination is sought. The vaccine may comprise any dose of bacteria, sufficient to evoke an immune response. Doses ranging between 10


3


and 10


10


bacteria are e.g. very suitable doses.




The pharmaceutically acceptable carrier may be as simple as water, but it may e.g. also comprise culture fluid in which the bacteria were cultured. Another suitable carrier is e.g. a solution of physiological salt concentration. Other examples of pharmaceutically acceptable carriers or diluents useful in the present invention include stabilisers such as SPGA, carbohydrates (e.g. sorbitol, mannitol, starch, sucrose, glucose, dextran), proteins such as albumin or casein, protein containing agents such as bovine serum or skimmed milk and buffers (e.g. phosphate buffer).




Optionally, one or more compounds having adjuvant activity may be added to the vaccine. Adjuvantia are non-specific stimulators of the immune system. They enhance the immune response of the host to the invading pathogen. Examples of adjuvantia known in the art are Freunds Complete and Incomplete adjuvans, vitamin E, non-ionic block polymers, muramyldipeptides, ISCOMs (immune stimulating complexes, cf. for instance European Patent EP 109942), Saponins, mineral oil, vegetable oil, and Carbopol (a homopolymer). Adjuvantia, specially suitable for mucosal application are e.g. the


E. coli


heat-labile toxin (LT) or Cholera toxin (CT).




Other suitable adjuvants are for example aluminium hydroxide, phosphate or oxide, oil-emulsions (e.g. of Bayol F


(R)


or Marcol 52


(R)


, saponins or vitamin-E solubilisate.




Therefore, in a preferred form, the vaccines according to the present invention comprise an adjuvant.




For administration to animals, the vaccine according to the presentation can be given inter alia intranasally, intradermally, subcutaneously, by aerosol or intramuscularly.




There are several ways to store both subunits and live organisms. Storage in a refrigerator is e.g. a well-known method. Also often used is storage at −70° C. in a buffer containing glycerol. Bacteria can also be kept in liquid nitrogen. Freeze-drying is another way of conservation. Freeze-dried bacteria can be stored and kept viable for many years. Storage temperatures for freeze-dried bacteria may well be above zero degrees, without being detrimental to the viability. Freeze-drying is equally applicable for subunits.




Freeze-drying can be done according to all well-known standard freeze-drying procedures. Optional beneficial additives, such as e.g. skimmed milk, trehalose, gelatin or bovine serum albumin can be added in the freeze-drying process.




Therefore, in a more preferred embodiment, the vaccine according to the present invention is in a freeze-dried form.




In an even more preferred form of this embodiment, the vaccine additionally comprises one or more antigens selected from other pathogenic micro-organisms or viruses. Such a vaccine can be obtained by adding one or more antigens selected from other pathogenic bacteria or viruses to the live attenuated bacterium according to the invention and a pharmaceutically acceptable carrier as described above.




Of course, it is possible to add not only one or more antigens, but also one or more of the whole pathogens as such, in an inactivated or live form.




It can alternatively be obtained by cloning the genetic information encoding one or more antigens selected from other pathogenic micro-organisms or viruses into the live attenuated bacterium, using known recombinant DNA technology as described above.




Such vaccines are of course less stressing for the animal to be vaccinated than separate vaccinations with each of the pathogens, both from a medical and a physical point of view.




In a still even more preferred form, these antigens are selected from the group consisting of Porcine Reproductive Respiratory Syndrome (PRRS) virus, Pseudo-rabies virus, Porcine Influenza virus, Porcine Parvovirus, Transmissible Gastroenteritis virus, rotavirus,


Escherichia coli, Erysipelothrix rhusiopathiae, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis


and


Streptococcus suis.






The invention also relates to methods for the preparation of a live attenuated bacterium of the species


Actinobacillus pleuropneumoniae


that is not capable of producing a functional ApxIV toxin. These method comprise the introduction of a mutation in the gene encoding the apxIV protein. Both classical mutation techniques, using mutagenic agents, and recombinant DNA techniques well-known in the art for insertion, replacement or deletion of genetic information from the apxIV gene are applicable.




In a preferred form, the above mentioned methods are used for the introduction of a deletion.




Methods for the preparation of a live attenuated vaccine according to the invention, that comprise admixing bacteria according to the invention with a pharmaceutically acceptable carrier are also part of the invention.




Also falling within the scope of the invention are methods for the preparation of a subunit vaccine. Such methods comprise the mixing of purified ApxIV toxin with a pharmaceutically acceptable carrier.




Another generally acknowledged problem in the field of vaccination with live vaccines is the following: the presence of antibodies against a certain pathogen in the serum of a host animal indicates that the host has been infected with the pathogen, either in a virulent or attenuated form. It is however impossible to discriminate between field-infected animals and animals vaccinated with a live vaccine strain. The live attenuated


Actinobacillus pleuropneumoniae


according to the present invention offers a solution to this problem as follows:




As described in Example 3, the apxIV gene of


Actinobacillus pleuropneumoniae


serotype 1 has been isolated and expressed in a heterologous host cell. This expression product was subjected to PAGE and then used for Western-blotting. The blots were incubated with convalescent serum obtained from a deliberately


Actinobacillus pleuropneumoniae


-infected pigs, and sera from field-strains. It was found that the apxIV gene is expressed in vivo in all


Actinobacillus pleuropneumoniae


field strains tested. This implicates, that pigs infected with


Actinobacillus pleuropneumoniae


will always have antibodies against the strain with which they were infected, regardless the serotype of the infectious strain.




The live attenuated bacteria according to the present invention can, due to the deletion of the apxIV gene, no longer make ApxIV toxin. Therefore animals vaccinated with a live attenuated


Actinobacillus pleuropneumoniae


strain according to the invention will not have antibodies against ApxIV toxin in their serum.




In a comparative test, e.g. an ELISA test, such sera will therefore react with all immunogenic


Actinobacillus pleuropneumoniae


-proteins such as e.g. ApxI, II and/or III, but not with ApxIV. Sera from pigs infected with an


Actinobacillus pleuropneumoniae


field strain however will react with all immunogenic


Actinobacillus pleuropneumoniae


-proteins, including ApxIV. Therefore, the live attenuated


Actinobacillus pleuropneumoniae


according to the present invention turns out to be a very suitable marker vaccine, i.e. a vaccine strain that can be discriminated from a field strain.




A diagnostic test for the discrimination between vaccine strains and field strains can be a simple ELISA-test in which purified ApxIV toxin is coated to the wall of the wells of an ELISA-plate. Incubation with serum from pigs to be tested, followed by e.g. incubation with a labelled anti-pig antibody can then reveal the presence or absence of antibodies against ApxIV toxin.




Another example of a diagnostic test system is e.g. the incubation of a Western blot comprising purified ApxIV toxin with serum of pigs to be tested, followed by detection of specific anti-ApxIV antibodies.




Therefore, diagnostic test for the discrimination between sera from pigs infected with


Actinobacillus pleuropneumoniae


field strains and from pigs vaccinated with a vaccine comprising live attenuated vaccine


Actinobacillus pleuropneumoniae


strains according to the invention, that comprise purified ApxIV toxin. also fall within the scope of the invention.




Still another problem seen in pig health care is the following: It is difficult to determine in a both quick and unambiguous manner if a pig is infected with


Actinobacillus pleuropneumoniae


or


A. suis,


or possibly a combination of both. Diagnostic tests for the specific detection of


A. suis


are currently not available. This is mainly due to the fact that


A. pleuropneumoniae


and


A. suis


share so many antigens. As an example, two highly antigenic Apx-toxins, ApxI and ApxIII have highly conserved homologues in e.g.


A. suis


(Van Ostaayen et al., submitted for publication).




The known RTX-genes, encoding the ApxI, -II and -III toxins or homologues are found in practically all members of the genus Actinobacillus, such as


A. pleuropneumoniae, A. suis, A. rossii


and


A. equuli.


Thus, it was initially assumed by the inventors, that the new RTX-toxin ApxIV would also be common to all members of the genus Actinobacillus.




It was however found after testing a the swine-pathogenic Actinobacillus, again surprisingly in contrast with the known three RTX-genes, that this novel RTX-gene apxIV is only present in the swine-pathogen


Actinobacillus pleuropneumoniae.


It is absent in all other common swine pathogenic Actinobacillus species, and therefore it is also absent in


Actinobacillus suis. l See Example


6 and 7.




Therefore, it was surprisingly noticed that the presence of antibodies against ApxIV in the serum of a pig is a quick and unambiguous proof that the pig has been infected with


A. pleuropneumoniae


, and not with


A. suis


or any other swine-pathogen


Actinobacillus species.






Thus the present invention also provides a diagnostic test based on the presence or absence of antibodies against ApxIV, and therefore a discriminating test for specifically distinguishing an infection with


A. pleuropneumoniae


from an infection with


A. suis






Such a test can e.g. be an ELISA test that comprises in separate wells the ApxI and -II toxins, present in both


A. pleuropneumoniae


and


A. suis


and the purified ApxIV toxin. Serum from


A. suis


-infected animals will react only with the wells comprising the ApxI and -II whereas


A. pleuropneumoniae


-infected animals will also react with the well comprising the purified ApxIV toxin.




EXAMPLE 1




Cloning and analysis of the apxIV gene of


A. pleuropneumoniae


serotype 1




Standard molecular biological procedures (plasmid DNA isolation, restriction digestion, agarose gel electrophoresis, Southern blotting, ligation, transformation, electroporation) were, unless stated otherwise, essentially performed as described in Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, N.Y., 1989) or Ausubel et al., (Current Protocols in Molecular Biology. John Wiley & Sons, N.Y., 1987). PCR was performed essentially as described in Innis et al., (PCR protocols, A guide to Methods and Applications, Academic Press Inc., San Diego, 1990). Chromosomal DNA isolation was performed according to Pitcher et al., (Lett. Appl. Microbiol., 8;151-156, 1989). The origin of all


A. pleuropneumoniae


reference strains (serotype 1: strain 4074; serotype 2: strain S1536: serotype 3: S1421; serotype 4 M62; serotype 5a: K17; serotype 5b: L20; serotype 6: femø; serotype 7: WF83; serotype 8: 405; serotype 9: CVI13261; serotype 10: 13039; serotype 11: 56153 and serotype 12: 8329) is described by Frey and Nicolet, (J. Clin. Microbiol., 28;232-236, 1990).


A. pleuropneumoniae


serotype 3 strain HV114 is a field isolate (i.e. one of the serotype 3 strains tested in Beck et al., J. Clin. Microbiol., 32;2749-2754, 1994). Other Actinobacillus strains used;


A. rossii:


ATCC 27072;


A. equuli:


ATCC 19392;


A. suis:


ATCC 15558.


Pasteurella haemolytica


type 1 strain ATCC 14003 was used.






E. coli


host strains used: XL1-blue (Stratagene, La YolIa, Calif.; genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F′ proAB lacl


q


ZDM15 Tn10 (Tet


r


)]) and HMS174(DE3) (AMS Biotechnology Ltd, Switzerland; genotype: F





recA (r


K12−


m


K12+


) rif


r


IDE3).




On the basis of the preliminary sequence data obtained from the thesis of T. J. Anderson (University of Guelph, 1995), two primers, designated APXIVA-1L (5′-TGGCACTGACGGTGATGA-3′ (SEQ ID NO: 8)) and APXIVA-1R (5′-GGCCATCGACTCAACCAT-3′ (SEQ ID NO: 9)) were synthesised. These primers were used in a PCR amplification, with chromosomal DNA from


A. pleuropnumoniae


serotype 3 strain HV114 and serotype 1 reference strain 4074 as a template. With both strains a fragment of 442 bp was amplified. The fragment derived from the serotype 3 chromosomal DNA was labelled with Digoxigenin-11-dUTP (Boehringer Mannheim) according to the protocol of the manufacturer (this fragment was designated probe APXIVA, see FIG.


4


). The labelled probe was subsequently used to hybridize a Southern blot containing ClaI digested chromosomal DNA from strain 4074. The probe hybridised with a fragment of approximately 8.0 kb. The apxIV gene from serotype 1 strain 4074 was isolated by ligating ClaI digested chromosomal DNA into ClaI digested pBluescript II SK





(Stratagene USA).


E. coli


strain XL1-blue was transformed with the ligated DNA and transformants were selected on an LB plate with 100 mg/ml of ampicillin. Clones harbouring the apxIV were selected by colony hybridisation of a nitrocellulose replica of the plate with the APIXVA probe. Thus, a plasmid designated pROK7 was isolated and shown to harbour a ClaI insert of approximately 8.0 kb. The first 6736 bp of the ClaI insert were sequenced (SEQ ID NO: 1) and an open reading frame of 4971 nucleotides was identified encoding a protein of 1657 amino acid residues (SEQ ID NO: 2) with a predicted size of approximately 186 kD. The gene was designated apxIV_varl (see FIG.


3


).




EXAMPLE 2




Cloning and analysis of the apxIV gene of


A. pleuropneumoniae


serotype 3




The labelled probe APXIVA (mentioned in example 1) was used to hybridize a Southern blot containing ClaI digested chromosomal DNA from strain HV114. The probe hybridised with a fragment of approximately 7.0 kb. The isolated chromosomal DNA from HV114 was digested with ClaI, and ligated with ClaI digested pBluescript II SK





(Stratagene USA).


E. coli


strain XL1-blue was transformed with the ligated DNA and transformants were selected on an LB plate with 100 mg/ml of ampicillin. Clones harbouring the apxIV were selected by colony hybridisation of a nitrocellulose replica of the plate with the APXIVA probe. Thus, a plasmid designated pROK5 was isolated and shown to harbour a ClaI insert of approximately 7 kb. The insert was analysed by sequence analysis (SEQID 3). An open reading frame of 4146 bp was identified encoding a protein of 1382 amino acid residues (SEQID 4), with a predicted size of approximately 154 kD. The gene was designated apxIV_var3 (see FIG.


3


).




EXAMPLE 3




EXPRESSION OF ApxIV var3-polyhistidine fusion proteins in


E. coli






From plasmid pROK5, a deletion clone was made which contains the 3′ end of the apxIV gene, starting at the BamHI site (nucleotide No. 2747 in SEQ ID NO: 3) up to the ClaI site at the end of the insert downstream of the apxIV gene. This plasmid was designated pROK1. Using oligonucleotides APXIVAHIA1-L (5′AGCCATATGGGCGATTTAAATTTCAG-3′ (SEQ ID NO: 10)) and APXIVHIS1-R (5′-TATGGATCCTCGTGCTTCTGAGC-3′(SEQ ID NO: 11)) and DNA from plasmid pROK1 as a template, a DNA fragment of 2.1 kb was amplified (see

FIG. 4

) containing the region from bp 3520 to 5643 in apxIV_var3 (SEQ ID NO: 3) flanked with NdeI and BamHI restriction sites at the 5′ and 3′ end respectively. After cloning of the Ndel/BamHI digested PCR fragment in expression vector pETHIS-1, digested with the same enzymes, a plasmid designated pJFFapxIV6/10his-1 was obtained. Plasmid pETHIS-1 is a derivative of pET14b (Novagen Inc., Madison, Wis.) where the multiple cloning site has been extended and a region encoding a histidine decamer has been inserted. Consequently, the pJFFapxIV6/10his-1 plasmid contains a translational fusion encoding a histidine hexamer, followed by amino acid residues 653 up to 1360 from SEQ ID NO: 4, followed by a histidine decamer, under the control of a T7 promoter. The plasmid was transferred to


E. coli


strain HMS174(DE3) with pLysS which contains an IPTG inducible T7 RNA polymerase gene as well as the T & lysozyme gene for increased stability. The strain was grown in LB medium containing 25 mg/ml of chloramphenicol and 100 mg/ml of ampicillin, up to an OD


650


of 0.5, and induced with isopropyl-b-D-thiogalactopyranoside at a concentration of 10 mM. After the addition of IPTG, the cells were incubated at 37° C. for 2.5 hours, the cells were harvested by centrifugation, and fusion protein with the expected size of 80 kD was isolated in the form of inclusion bodies. The inclusion bodies were solubilized in a solution of 6M guanidine hydrochloride, 300 mM NaCl and 50 mM NaH


2


PO


4


at pH 8.0 and the 80 kD fusion protein was further purified by immobilized Metal Affinity Chromatography (IMAC) (Schmitt et al., Molecular Biology Reports 18;223-230, 1993) using Ni


2+


chelated columns (Qiagen AG, Basel). Pure protein was eluted from the column at pH 5.0. Pooled fractions were dialysed against a solution of 300 mM NaCL and 50 mM NaH


2


PO


4


at pH 8.0. A rabbit was immunised with 500 mg of the polyhistidine fusion product, mixed with 1 volume of Complete Freunds Adjuvant (Difco Labs, Detroit, Mich.). A booster dose of the same amount, mixed with incomplete Freund Adjuvant was given 3 weeks later. Four weeks after the booster, the rabbit was bled and a hyperimmune serum comprising anti-ApxIV toxin antibodies, designated serum 522-409, was obtained.




EXAMPLE 4




Expression of apxIV genes in in vitro grown


A. pleuropneumoniae






The


A. pleuropneumoniae


reference strain from serotype 1 was grown in Columbia broth supplemented with 10 mg/ml of b-NAD and harvested as described (Beck et al., J. Clin. Microbiol., 32;2749-2754, 1994). Adjacent to lanes comprising ApxIA, ApxIIA and ApxIVA-polyhistidine fusion proteins the concentrated culture supernatant was separated by polyacrylamide gel electrophoresis (Laemmli, Nature 227:680-685, 1970) and subjected to a Western blotting procedure (Towbin et al., Proc. Natl. Acad. Sci. USA 76:4350-4354, 1979). The Western blot was reacted with anti-ApxIA- and anti-ApxIlA monoclonal antbodies as described by Beck et al., (J. Clin. Microbiol., 32;2749-2754, 1994), and with anti-ApxIV serum 522-409 (see example 3). The isolated RTX toxin fraction of serotype 1 clearly contains ApxIA and ApxIlA. The presence of ApxIVA could not be demonstrated (see FIG.


5


).




EXAMPLE 5




Expression of apxIV genes in


A. pleuropneumoniae


in vivo during infection




A polyacrylamide gel containing the 80 kD polyhistidine-ApxIV_var3 fusion protein (see example 3) was transferred to a nitrocellulose membrane. The membrane was divided into strips which were reacted with (100-fold dilutions of) convalescent field sera against serotype 1 or sera from a pig, experimentally infected with the serotype 1 reference strain (Frey and Nicolet, Vet. Microbiol., 28;61-73, 1991). The reaction was visualised using alkaline phosphatase-labelled conjugate against rabbit IgG (Kirkegaard Perry Inc., Gaithersburg, Md.) and NBT (4-Nitrobluetetrazolium chloride) and BCIP (5-Bromo-4-chloro-3-indolyl-phosphate) colour development (see FIG.


6


). The serotype 1 field sera, as well as serum from the experimentally infected pig react with the 80 kD polyhistidine-ApxIV_var3 protein. This indicates that the ApxIV protein actually is expressed, is antigenic and induces anti-ApxIV toxin antibodies during


A. pleuropneumoniae


infection in pigs.




EXAMPLE 6




Presence of apxIV genes in all


A. pleuropneumoniae


serotypes and the absence thereof in non-pleuropneumoniae Actinobacillus-strains using Southern blotting




To investigate the presence of the apxIV gene in the various


A. pleuropneumoniae


serotypes and related bacteria, three probes were made (see FIG.


4


). Probe APXIVA is described in example 1. Probe APXIVA2 contains the 2015 bp DNA fragment between the BamHI and NruI sites. The 758 bp probe APPIVA1 was made by PCR amplification with oligos APPIV1-L (5′-GGGACAGTGGCTCAATTAAG-3′(SEQ ID NO: 12)) and APPIV1-R (5′-AGCTGTAAACTCCACCAACG-3′(SEQ ID NO: 13)). All probes were labelled with Digoxigenin-11-dUTP (Boehringer Mannheim) according to the protocol of the manufacturer and hybridised with Southern blots containing ClaI digested chromosomal DNA of all


A. pleuropneumoniae


reference strains and the HV114 field strain,


Actinobacillus suis


(ATCC 15558),


Actinobacillus rossii


(ATCC 27072) and


Actinobacillus equuli


(ATCC 19392). All three probes react similarly (see

FIG. 7

for the results with the APXIVA2 probe). All


A. pleuropneumoniae


strains react, whereas no hybridisation is observed with the


A. suis, A. equuli


and


A. rossii


strains.




EXAMPLE 7




Presence of apxIV genes in


A. pleuropneumoniae


and related strains using PCR amplification




With 50 ng of chromosomal DNA from the various


A. pleuropneumoniae


serotypes, other Actinobacillus species and


P. haemolytica


as templates and primers APXIVA-1L(5′-TGGCACTGACGGTGATGA-3′ (SEQ ID NO: 8)) and APXIVA-1R (5′-GGCCATCGACTCAACCAT-3′ (SEQ ID NO: 9)) PCR amplification was performed. After analysis of the products on an agarose gel, products with the expected size of 442 bp were observed in all


A. pleuropneumoniae


samples, but in none of the other Actinobacillus species (FIG.


8


). This indicates that in addition to the results in example 6, also PCR could be used to discriminate


A. pleuropneumoniae


from other Actinobacillus species.




EXAMPLE 8




Overexpression of ApxIV-var1 polyhistidine fusion protein




Starting with plasmid pROK-7 (see example 1) as a template and oligonucleotides APX4/II5-L (5′-CGCCATATGACAAAATTAACTATGCAAC (SEQ ID NO: 14)) and APX4II6-R (5′-CGCGAATTCAGCGACACAAGAGATAT(SEQ ID NO: 15) as PCR-primers, a PCT fragment was amplified. A sufficient amount of this fragment was then digested with restriction enzymes NdeI and EcoRI and cloned in expression vector pETHIS-1, digested with the same enzymes as described in Example 3. From the resulting plasmid, designated pJFFApxIVA1His1, a 206 kD polyhistidine fusion protein (MW determined in PAGE) of 1841 amino acid residues was overexpressed in


E. coli


as described in Example 3. The protein is encoded in the coding region spanning nucleic acid no. 1132 to 6546 as depicted in SEQ ID NO: 5. The amino acid sequence of the protein is given in SEQ ID NO: 6. In Western blot this product was shown to react with specific anti-ApxIV serum 522-409 (antiserum described in example 3).




EXAMPLE 9




Protection of mice by vaccination with ApxIV against APP challenge




The 206 kD polyhistidine-ApxIV fusion protein as described in Example 8 and a comparable 108 kD polyhistidine-ApxIA-fusion protein, both derived from serotype 1 reference strain 4074 genomic material, were overexpressed as described in example 3. The cell pellet of induced


E. coli


cells was resuspended into PBS buffer (1 g. cell pellet in 6 ml buffer) and sonicated on ice for two times 45 seconds on ice for lysis of the cells. After centrifugation for 20 minutes at 22.000×g at 4° C., the supernatant was discarded and the resulting pellet was washed with a solution of 3M urea (pH 6.3). The urea was removed after centrifugation for 20 minutes at 22.000×g, and the resulting pellet was solubilized in 6M GuanidiniumHCl (pH 8.0). The protein samples were standardised by specific protein content after densitometry of PAGE gels. The samples were diluted with PBS and formulated with an oil adjuvant.




Three groups of 15 mice each, were intraperitoneally immunised with the ApxIV antigen (36.3 microgram), ApxIA antigen (36.3 microgram), or the adjuvant alone. The vaccines were administered in a volume of 0.4 ml. Twenty-four days after the first vaccination, each group of mice was split in two groups of 7 and 8 mice which were boosted with half the amount of antigen. The groups of 7 mice were boosted intrapertoneally in a volume of 0.2 ml and the groups of 8 mice were vaccinated intramuscularly with 0.1 ml in each hind leg. Thirteen days after the booster, the mice were challenged intraperitoneally with 1.5 10


8


cfu of a virulent serotype 1 strain .




EXAMPLE 10




Pore forming capacity of ApxIV




Freshly induced


E. coli


cells expressing ApxIV were used as the source of protein for testing pore information in artificial lipid bilayers as described by Maier et al., Infect. Immun., 64; 4415-4423(1996). The methods used for black lipid bilayer experiments have been described previously (Benz et al.; Biochim. Biophys. Acta 511: 305-319 (1978)). Membranes were formed from a 1% solution of asolectin (soybean lecitin type IV-S from Sigma, St. Louis Mo.) in n-decane. Zero current membrane potentials were measured with a Keithley 610 C electrometer 5-10 min. after a 10-fold salt gradient was established across the membranes (Benz et al.; Biochim. Biophys. Acta 551: 238-247 (1979)). The presence of ApxIV resulted in a high frequency of pore formation in the presence of 0.5% cholesterol, with an average single channel conductance (G) of 4 nS.




These results indicate that the ApxIV induces pores into artificial bilayers and is therefore toxic to eukaryotic cells and thus is a virulence factor for


A. pleuropneumoniae.






LEGEND TO THE FIGURES




FIG.


1


: Comparison of ApxIVAvar1 and ApxIVvar3 (var stands for serotype). Graphic representation of the different features found in the C-terminal end. Dashed boxes represent the direct repeat regions in ApxIVA. Bold vertical bars indicate the position of glycine rich nonapeptides, and DNA polymerase family B signatures are indicated by black triangles. The amino acid sequence YSDSANSKK (SEQ ID NO: 16) represents the spacer sequence in the ApxIV Avar3 gene. The sequence segment of ApxIV Avar1 which is deleted in ApxIVAvar3 is also indicated in the figure.




FIG


2


: Alignment of the amino acid sequences of direct repeat 1 (A), direct repeat 2 (B) and direct repeat 3 (C) of ApxIVAvar1 and ApxIVAvar3. The copies of each of the direct repeats 1, 2 and 3 are labeled by letters to distinguish them for the sequence comparison. Variant residues are shown in bold letters.




FIG.


3


: Partial restriction maps of pBLac7 (Thesis of T. J. Anderson University of Guelph, 1995), pROK7 and pROK5. The different open reading frames (ORF's) are indicated by arrows. The interrupted arrow of lacZ in pROK7 indicates partial sequencing of the gene. Potential rho-independent transcription terminators are indicated (W). Potential transcription start sites are indicated by a triangle. Restriction sites: A=Asp700; B=BamHI; C=ClaI; E=EcoRV; Ec=EcoRI; H=HindIII; N=NruI; Nd=Ndel; Nh=Nhel; P=PstI; S=SpeI; Sm=SmaI.




FIG.


4


: Location of the various oligonucleotides and probes on the map of the apxIVAvar3 gene.




FIG.


5


: Expression of ApxIV in in vitro cultivated serotype 1 reference strain 4074. Panel A was reacted with the anti-ApxIA monoclonal antibody, panel B with anti-ApxIlA monoclonal antibody and panel C was reacted with anti-ApxIVA serum 522-409. Lane 1 contains ApxIA-polyhistidine fusion protein, lane 2 contains ApxIlA-polyhistidine fusion protein, lane 3 contains strain 4074 concentrated culture supernatant, lane 4 contains ApxIVA polyhistidine fusion protein.




FIG.


6


: Immunoblot showing the reactivities of sera from pigs which were experimentally infected with the reference strain of serotype 1 (lane 1) or pig sera from serotype 1 field infections (lane 2-4) with the 80 kD polyhistidine-ApxIV fusion protein. As a positive control (+), serum 522-409 was used, as a negative control (−), polyclonal rabbit serum against ApxI and ApxIl (Frey et al., Infect. Immun., 57;2050-2056, 1989) was used as a 1000-fold dilution




FIG.


7


: Southern blot of ClaI digested genomic DNA hybridised with probe APXIVA2. Lanes 1-13:


A. pleuropneumoniae


reference strains; 1: serotype 1; 2: serotype 2; 3: serotype 3; 4: serotype 4; 5: serotype 5a; 6: serotype 5b; 7: serotype 6; 8: serotype 7; 9: serotype 8; 10: serotype 9; 11: serotype 10; 12: serotype 11; 13: serotype 12; 14: HV114 field strain; 15


A. suis


(ATCC 15558); 16:


A. rossii


(ATCC 27072); 17:


A. equuli


(ATCC 19392). Molecular size markers are indicated (in kilobasepairs) on the left.




FIG.


8


: PCR amplification of apxIV using primers APXIVA-1L and APXIVA-1R. Lane assignments: lanes 1 to 13 contain the


A. pleuropneumoniae


reference strains from serotypes 1, 2, 3, 4, 5a, 5b, 6, 7, 8, 9, 10, 11 and 12 respectively; lane 14: strain HV114; lane 15:


A. suis


ATCC 15558; lane 16:


A. rossii


ATCC 27072; lane 17:


A. equuli


ATCC 19392; lane 18:


A. lignieresii


ATCC 49236; lane 19:


P. haemolytica


type 1 ATCC 14003. Molecular size markers (in kilobasepairs) are indicated on the left.







16




1


6736


DNA


Actinobacillus pleuropneumoniae




CDS




1576..6549





1
atcgatatgc cgccgggtac gggcgatatc caacttactc tttcgcaaca aattccggtt 60
accggtgcgg tggtggtaac cactccgcaa gatattgcgt tattagatgc ggtgaaaggt 120
atttcaatgt tccaaaaagt gtcggtaccg gtcttaggta tcattgaaaa tatgagcgta 180
catatctgcc aaaattgcgg tcaccacgaa gatattttcg gcaccggcgg tgcggagaaa 240
gtggcgaaga aatacggtac taaagtatta ggacaaatgc cgttgcatat tcgcttacgt 300
caagatttgg atgccggcac accgaccgtc gttgcggcac cggaacacga aaccagccga 360
gcctatattg aattagcggc aaaagtcgct tcggaattat actggcaagg ttcggttatc 420
ccgtctgaaa ttatgattcg tgaagtaaaa taagttttaa taaccacgaa aacacaaaga 480
acacaagcgg tagaatttgc agaaaaattt gcaaatccta ccgctttttt attagtacga 540
ttcgctgttg gactgctatt tgatttggtt tgtcaggata ttatgttatt gtaatgaaat 600
gttagtgaat tatttttatt aatttgaaag gaaacaaaat gaaaataaaa aaacgttaca 660
ttgcgctgtt ggtcttaggt gtcgttatca gctatgcctg gtatcaaaat tatcaatggg 720
aacagctgat gttaagcggt tattgtgaaa aggacggaag ttattttgat gataggcata 780
cgaagcaaga actgattgat agggcaatta actatatgct ggagcatcaa tctaaaaaaa 840
catacgatgc ttatactgat gaacctttag aaataaaacc atatttaaca atagaggaat 900
ttaaaaaact caatccaaat tgttgtgaaa ttacctcatg gccagcagat gcagttccac 960
aagattggga tgttcgtgtg gaaggtaagg catataggta tgtaatcgta aaatatttaa 1020
gaaccttagc aaatagagaa cctgaacgat gggaaactag tattgttttt gataattgcg 1080
gcaatcctaa aagagcaagc tacttatatt atttaaagag agaaatttat tatgacaaaa 1140
ttaactatgc aagatgtgac caatttatat ttatataaaa cgaaaactct acctaaagat 1200
agattggatg attcacttat ttctgaaata ggaaaaggag atgatgatat tgatagaaaa 1260
gaatttatgg tggggccggg acgttttgtg accgctgata actttagcgt tgtaagagat 1320
ttttttaatg ctgggaaatc acgcattatt gcgccgcaag tcccgcctat tcgttcacag 1380
caggaaaaaa tcttggtcgg tttaaaaccg ggcaaatatt ccaaagcgca gatattggaa 1440
atgctgggtt atacgaaagg cggagaagtg gtaaatggca tgtttgccgg tgaagtccag 1500
acattaggct tttatgacga tggcaaaggg gatttactcg aacgcgccta tatctggaat 1560
accacaggat ttaaa atg agc gac aat gcc ttt ttt gtt ata gaa gaa tca 1611
Met Ser Asp Asn Ala Phe Phe Val Ile Glu Glu Ser
1 5 10
ggc aaa cgc tat att gaa aac ttt ggt att gaa cct ctt ggt aag caa 1659
Gly Lys Arg Tyr Ile Glu Asn Phe Gly Ile Glu Pro Leu Gly Lys Gln
15 20 25
gaa gat ttt gat ttt gtc ggc ggc ttt tgg tct aac tta gtg aat cgt 1707
Glu Asp Phe Asp Phe Val Gly Gly Phe Trp Ser Asn Leu Val Asn Arg
30 35 40
ggt ttg gaa agt att atc gac cca tcc ggt atc ggt gga acg gta aac 1755
Gly Leu Glu Ser Ile Ile Asp Pro Ser Gly Ile Gly Gly Thr Val Asn
45 50 55 60
ctt aac ttt acc ggc gag gtg gaa acc tac acg tta gac gaa aca agg 1803
Leu Asn Phe Thr Gly Glu Val Glu Thr Tyr Thr Leu Asp Glu Thr Arg
65 70 75
ttt aaa gcg gaa gcg gcg aag aaa agc cat tgg agt tta gtg aat gcg 1851
Phe Lys Ala Glu Ala Ala Lys Lys Ser His Trp Ser Leu Val Asn Ala
80 85 90
gcg aaa gta tac ggc ggt tta gac caa att att aaa aaa cta tgg gac 1899
Ala Lys Val Tyr Gly Gly Leu Asp Gln Ile Ile Lys Lys Leu Trp Asp
95 100 105
agt ggc tca att aag cat tta tat caa gat aaa gat acg ggc aaa tta 1947
Ser Gly Ser Ile Lys His Leu Tyr Gln Asp Lys Asp Thr Gly Lys Leu
110 115 120
aaa ccg att att tac ggc acg gcc ggc aac gac agt aag att gaa ggc 1995
Lys Pro Ile Ile Tyr Gly Thr Ala Gly Asn Asp Ser Lys Ile Glu Gly
125 130 135 140
act aaa atc acc cgt agg att gcg ggt aaa gaa gtt acg ctt gat att 2043
Thr Lys Ile Thr Arg Arg Ile Ala Gly Lys Glu Val Thr Leu Asp Ile
145 150 155
gcc aat cag aaa att gaa aaa ggc gtg tta gag aaa ttg ggg ctg tct 2091
Ala Asn Gln Lys Ile Glu Lys Gly Val Leu Glu Lys Leu Gly Leu Ser
160 165 170
gtt agt ggt tcg gat atc att aaa ttg ttg ttt gga gca ttg act cca 2139
Val Ser Gly Ser Asp Ile Ile Lys Leu Leu Phe Gly Ala Leu Thr Pro
175 180 185
act tta aat aga atg ttg cta tca caa ctt atc cag tct ttt tcc gat 2187
Thr Leu Asn Arg Met Leu Leu Ser Gln Leu Ile Gln Ser Phe Ser Asp
190 195 200
agc ttg gct aaa ctt gat aat ccc tta gcc cct tac act aaa aat ggc 2235
Ser Leu Ala Lys Leu Asp Asn Pro Leu Ala Pro Tyr Thr Lys Asn Gly
205 210 215 220
gtg gtt tat gtc acc ggc aaa ggg aat gat gtg ctt aaa gga act gaa 2283
Val Val Tyr Val Thr Gly Lys Gly Asn Asp Val Leu Lys Gly Thr Glu
225 230 235
cat gag gat ttg ttt ctc ggt ggt gag ggg aat gat act tat tat gcg 2331
His Glu Asp Leu Phe Leu Gly Gly Glu Gly Asn Asp Thr Tyr Tyr Ala
240 245 250
aga gta ggc gat aca att gaa gac gcc gac ggc aaa ggt aaa gtc tat 2379
Arg Val Gly Asp Thr Ile Glu Asp Ala Asp Gly Lys Gly Lys Val Tyr
255 260 265
ttt gtg aga gaa aaa ggg gta cct aag gcg gat cct aag cgg gta gag 2427
Phe Val Arg Glu Lys Gly Val Pro Lys Ala Asp Pro Lys Arg Val Glu
270 275 280
ttt agc gag tac ata acg aaa gaa gaa ata aaa gag gtt gaa aag ggg 2475
Phe Ser Glu Tyr Ile Thr Lys Glu Glu Ile Lys Glu Val Glu Lys Gly
285 290 295 300
tta tta act tac gca gtt tta gaa aat tat aat tgg gaa gag aaa acg 2523
Leu Leu Thr Tyr Ala Val Leu Glu Asn Tyr Asn Trp Glu Glu Lys Thr
305 310 315
gcg act ttc gct cat gcg act atg ctt aat gag ctt ttt act gat tat 2571
Ala Thr Phe Ala His Ala Thr Met Leu Asn Glu Leu Phe Thr Asp Tyr
320 325 330
act aat tat cgt tat gaa gtt aaa gga cta aaa ttg ccc gcc gtt aaa 2619
Thr Asn Tyr Arg Tyr Glu Val Lys Gly Leu Lys Leu Pro Ala Val Lys
335 340 345
aag tta aaa agt ccg ttg gtg gag ttt aca gct gat tta tta act gtt 2667
Lys Leu Lys Ser Pro Leu Val Glu Phe Thr Ala Asp Leu Leu Thr Val
350 355 360
acg cct att gac gaa aac gga aaa gca ctt agc gaa aaa agt att acg 2715
Thr Pro Ile Asp Glu Asn Gly Lys Ala Leu Ser Glu Lys Ser Ile Thr
365 370 375 380
gtt aaa aat ttt aaa aat ggt gat tta gga ata agg ttg ttg gat cct 2763
Val Lys Asn Phe Lys Asn Gly Asp Leu Gly Ile Arg Leu Leu Asp Pro
385 390 395
aat agc tat tat tat ttc ctt gaa ggc caa gat acg ggt ttt tat ggt 2811
Asn Ser Tyr Tyr Tyr Phe Leu Glu Gly Gln Asp Thr Gly Phe Tyr Gly
400 405 410
cct gct ttt tat att gaa cga aaa aac ggt ggc ggc gct aaa aat aac 2859
Pro Ala Phe Tyr Ile Glu Arg Lys Asn Gly Gly Gly Ala Lys Asn Asn
415 420 425
tcg tcg gga gca gga aat agc aaa gat tgg ggc ggg aac ggg cat gga 2907
Ser Ser Gly Ala Gly Asn Ser Lys Asp Trp Gly Gly Asn Gly His Gly
430 435 440
aat cac cga aat aat gcc tcc gac ctg aat aaa ccg gac gga aat aat 2955
Asn His Arg Asn Asn Ala Ser Asp Leu Asn Lys Pro Asp Gly Asn Asn
445 450 455 460
ggg aat aac caa aat aac gga agc aat caa gat aat cat agc gat gtg 3003
Gly Asn Asn Gln Asn Asn Gly Ser Asn Gln Asp Asn His Ser Asp Val
465 470 475
aat gcg cca aat aac ccg gga cgt aac tat gat att tac gat cct tta 3051
Asn Ala Pro Asn Asn Pro Gly Arg Asn Tyr Asp Ile Tyr Asp Pro Leu
480 485 490
gct tta gat tta gat gga gat ggg ctt gaa acc gtg tcg atg aac ggg 3099
Ala Leu Asp Leu Asp Gly Asp Gly Leu Glu Thr Val Ser Met Asn Gly
495 500 505
cga caa ggc gcg tta ttc gat cat gaa gga aaa ggt att cgt acc gca 3147
Arg Gln Gly Ala Leu Phe Asp His Glu Gly Lys Gly Ile Arg Thr Ala
510 515 520
acg ggc tgg ctc gct gcg gat gac ggt ttt tta gtg tta gat cgt aac 3195
Thr Gly Trp Leu Ala Ala Asp Asp Gly Phe Leu Val Leu Asp Arg Asn
525 530 535 540
caa gac ggc att att aat gat ata agc gag tta ttt agt aat aaa aat 3243
Gln Asp Gly Ile Ile Asn Asp Ile Ser Glu Leu Phe Ser Asn Lys Asn
545 550 555
caa ctt tcc gac ggc agt att tct gca cac ggt ttt gcg aca tta gcc 3291
Gln Leu Ser Asp Gly Ser Ile Ser Ala His Gly Phe Ala Thr Leu Ala
560 565 570
gat ttg gat aca aac caa gat cag cgt atc gac caa aat gat aag ctg 3339
Asp Leu Asp Thr Asn Gln Asp Gln Arg Ile Asp Gln Asn Asp Lys Leu
575 580 585
ttt tct aaa ctc caa att tgg cgg gat tta aat caa aac ggt ttt agt 3387
Phe Ser Lys Leu Gln Ile Trp Arg Asp Leu Asn Gln Asn Gly Phe Ser
590 595 600
gaa gcg aat gag ctg ttt agc tta gaa agt ttg aat att aaa tct tta 3435
Glu Ala Asn Glu Leu Phe Ser Leu Glu Ser Leu Asn Ile Lys Ser Leu
605 610 615 620
cat acc gcc tat gaa gag cgt aat gat ttt cta gcg ggc aat aat atc 3483
His Thr Ala Tyr Glu Glu Arg Asn Asp Phe Leu Ala Gly Asn Asn Ile
625 630 635
ctt gct cag ctt ggg aag tat gaa aaa acg gac ggt act ttt gca caa 3531
Leu Ala Gln Leu Gly Lys Tyr Glu Lys Thr Asp Gly Thr Phe Ala Gln
640 645 650
atg ggc gat tta aat ttc agt ttt aac ccg ttt tat agc cga ttt acc 3579
Met Gly Asp Leu Asn Phe Ser Phe Asn Pro Phe Tyr Ser Arg Phe Thr
655 660 665
gaa gcg tta aat tta acc gag caa caa cgt cgc aca att aat cta acc 3627
Glu Ala Leu Asn Leu Thr Glu Gln Gln Arg Arg Thr Ile Asn Leu Thr
670 675 680
ggc acc ggt cgg gtt cgg gat ttg cgt gaa gcc gcc gca ctt tct gag 3675
Gly Thr Gly Arg Val Arg Asp Leu Arg Glu Ala Ala Ala Leu Ser Glu
685 690 695 700
gag ttg gct gct tta tta caa cag tac act aag gcc tcc gat ttt cag 3723
Glu Leu Ala Ala Leu Leu Gln Gln Tyr Thr Lys Ala Ser Asp Phe Gln
705 710 715
gca caa cga gaa tta ttg cct gcc att tta gat aaa tgg gcg gca acg 3771
Ala Gln Arg Glu Leu Leu Pro Ala Ile Leu Asp Lys Trp Ala Ala Thr
720 725 730
gat tta cag tat caa cat tat gat aaa aca tta ctt aaa acg gta gaa 3819
Asp Leu Gln Tyr Gln His Tyr Asp Lys Thr Leu Leu Lys Thr Val Glu
735 740 745
agt acc gat agt agt gct tct gtc gtt aga gtc acg cct tct caa tta 3867
Ser Thr Asp Ser Ser Ala Ser Val Val Arg Val Thr Pro Ser Gln Leu
750 755 760
agt agt ata cgc aat gca aag cat gat cct acc gtt atg caa aac ttt 3915
Ser Ser Ile Arg Asn Ala Lys His Asp Pro Thr Val Met Gln Asn Phe
765 770 775 780
gaa cag agt aag gca aaa att gcg act tta aat tcg ctc tac ggg tta 3963
Glu Gln Ser Lys Ala Lys Ile Ala Thr Leu Asn Ser Leu Tyr Gly Leu
785 790 795
aat atc gat caa ctt tat tac acg acg gat aaa gac att cgc tat att 4011
Asn Ile Asp Gln Leu Tyr Tyr Thr Thr Asp Lys Asp Ile Arg Tyr Ile
800 805 810
act gat aaa gtg aat aat atg tat caa aca acc gta gaa ctt gcc tac 4059
Thr Asp Lys Val Asn Asn Met Tyr Gln Thr Thr Val Glu Leu Ala Tyr
815 820 825
cgt tct tta ctt tta caa acg cgt ttg aag aaa tat gtt tat agc gtt 4107
Arg Ser Leu Leu Leu Gln Thr Arg Leu Lys Lys Tyr Val Tyr Ser Val
830 835 840
aat gcg aaa caa ttc gaa ggg aaa tgg gta acc gat tat tct cgt act 4155
Asn Ala Lys Gln Phe Glu Gly Lys Trp Val Thr Asp Tyr Ser Arg Thr
845 850 855 860
gaa gcc tta ttt aac tct act ttt aaa caa tcg cct gaa aat gca tta 4203
Glu Ala Leu Phe Asn Ser Thr Phe Lys Gln Ser Pro Glu Asn Ala Leu
865 870 875
tat gat tta agc gaa tac ctt tct ttc ttt aac gat cct acg gaa tgg 4251
Tyr Asp Leu Ser Glu Tyr Leu Ser Phe Phe Asn Asp Pro Thr Glu Trp
880 885 890
aaa gaa ggg cta tta ctg tta agc cgt tat ata gat tat gct aaa gca 4299
Lys Glu Gly Leu Leu Leu Leu Ser Arg Tyr Ile Asp Tyr Ala Lys Ala
895 900 905
caa gga ttt tat gaa aac tgg gcg gct act tct aac tta act att gcc 4347
Gln Gly Phe Tyr Glu Asn Trp Ala Ala Thr Ser Asn Leu Thr Ile Ala
910 915 920
cgt tta aga gag gct gga gta att ttt gca gaa tcg acg gat tta aaa 4395
Arg Leu Arg Glu Ala Gly Val Ile Phe Ala Glu Ser Thr Asp Leu Lys
925 930 935 940
ggc gat gaa aaa aat aat att ttg tta ggt agc caa aaa gat aat aac 4443
Gly Asp Glu Lys Asn Asn Ile Leu Leu Gly Ser Gln Lys Asp Asn Asn
945 950 955
tta tcg ggt agt gca ggt gat gat cta ctt atc ggc gga gag ggt aat 4491
Leu Ser Gly Ser Ala Gly Asp Asp Leu Leu Ile Gly Gly Glu Gly Asn
960 965 970
gat acg tta aaa ggc agc tac ggt gca gac acc tat atc ttt agc aaa 4539
Asp Thr Leu Lys Gly Ser Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys
975 980 985
gga cac gga cag gat atc gtt tat gaa gat acc aat aat gat aac cgc 4587
Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg
990 995 1000
gca aga gat atc gac acc tta aaa ttt acc gat gtg aat tat gcg gaa 4635
Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu
1005 1010 1015 1020
gtg aag ttt cga cga gta gat aat gac tta atg tta ttc ggt tat cat 4683
Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His
1025 1030 1035
gat acg gat tcg gtc acg gta aaa tcc ttc tac agc cat gta gat tat 4731
Asp Thr Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr
1040 1045 1050
caa ttt gac aaa ttg gag ttt gct gac cgc agt ata act cgc gat gaa 4779
Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu
1055 1060 1065
ctg att aaa gca ggg ctt cat cta tac ggc acc gat ggc aat gat gat 4827
Leu Ile Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp
1070 1075 1080
ata aag gat cat gcg gat tgg gac agc att ttg gaa ggc ggc aaa ggc 4875
Ile Lys Asp His Ala Asp Trp Asp Ser Ile Leu Glu Gly Gly Lys Gly
1085 1090 1095 1100
aac gat att cta aga ggt ggc tac ggt gcg gac acc tat atc ttt agc 4923
Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser
1105 1110 1115
aaa gga cac gga cag gat atc gtt tat gaa gat acc aat aat gat aac 4971
Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn
1120 1125 1130
cgc gca aga gat atc gac acc tta aaa ttt act gat gtg aat tat gcg 5019
Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala
1135 1140 1145
gaa gtg aaa ttc cga cga gta gat aat gac tta atg tta ttc ggt tat 5067
Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr
1150 1155 1160
cat gat acg gat tcg gtc acg ata aaa tcc ttc tac aac cat gta gat 5115
His Asp Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp
1165 1170 1175 1180
tat caa ttt gac aaa ttg gaa ttt gct gac cgc agt ata act cgt gat 5163
Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp
1185 1190 1195
gaa cta ggt aaa caa ggt atg gca tta ttt ggc act gac ggt gat gat 5211
Glu Leu Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp
1200 1205 1210
aat atc aac gac tgg gga cgt aac tcg gtg att gat gcc ggt gcg ggt 5259
Asn Ile Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly
1215 1220 1225
aat gat acg gtt aat ggc ggt aat ggc gat gac acc ctc atc ggc ggc 5307
Asn Asp Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly
1230 1235 1240
aaa ggt aat gat att cta aga ggt ggc tac ggt gcg gac acc tat atc 5355
Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile
1245 1250 1255 1260
ttt agc aaa gga cac gga cag gat atc gtt tat gaa gat acc aat aat 5403
Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn
1265 1270 1275
gat aac cgc gca aga gat atc gac acc tta aaa ttt acc gat gtg aat 5451
Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn
1280 1285 1290
tat gcg gaa gtg aaa ttc cga cga gta gat aat gac tta atg tta ttc 5499
Tyr Ala Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe
1295 1300 1305
ggt tat cat gat acg gat tcg gtc acg gta aaa tcc ttc tac agc cat 5547
Gly Tyr His Asp Thr Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His
1310 1315 1320
gta gat tat caa ttt gac aaa ttg gag ttt gct gac cgc agt ata act 5595
Val Asp Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr
1325 1330 1335 1340
cgc gat gaa ctg att aaa gca ggg ctt cat cta tac ggc acc gat ggc 5643
Arg Asp Glu Leu Ile Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly
1345 1350 1355
aat gat gat ata aag gat cat gcg gat tgg gac agc att ttg gaa ggc 5691
Asn Asp Asp Ile Lys Asp His Ala Asp Trp Asp Ser Ile Leu Glu Gly
1360 1365 1370
ggc aaa ggc aac gat att cta aga ggt ggc tac ggt gcg gac acc tat 5739
Gly Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr
1375 1380 1385
atc ttt agc aaa gga cac gga cag gat atc gtt tat gaa gat acc aat 5787
Ile Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn
1390 1395 1400
aat gat aac cga gca aga gat atc gac acc tta aaa ttt act gat gtg 5835
Asn Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val
1405 1410 1415 1420
aat tat gcg gaa gtg aaa ttc cga cga gta gat aat gac tta atg tta 5883
Asn Tyr Ala Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu
1425 1430 1435
ttc ggt tat cat gat acg gat tcg gtc acg ata aaa tcc ttc tac aac 5931
Phe Gly Tyr His Asp Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn
1440 1445 1450
cat gta gat tat caa ttt gac aaa ttg gaa ttt gct gac cgc agt ata 5979
His Val Asp Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile
1455 1460 1465
act cgt gat gaa cta ggt aaa caa ggt atg gca tta ttt ggc act gac 6027
Thr Arg Asp Glu Leu Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp
1470 1475 1480
ggt gat gat aat atc aac gac tgg gga cgt aac tcg gtg att gat gcc 6075
Gly Asp Asp Asn Ile Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala
1485 1490 1495 1500
ggt gcg ggt aat gat acg gtt aat ggc ggt aat ggc gat gac acc ctc 6123
Gly Ala Gly Asn Asp Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu
1505 1510 1515
atc ggc ggc aaa ggt aat gat att cta aga ggt ggc tac ggt gcg gac 6171
Ile Gly Gly Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp
1520 1525 1530
acc tat atc ttt agc aaa gga cac gga cag gat atc gtt tat gaa gat 6219
Thr Tyr Ile Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp
1535 1540 1545
acc aat aat gat aac cgc gca aga gat atc gac acc tta aaa ttt act 6267
Thr Asn Asn Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr
1550 1555 1560
gat att aat tta tcc gaa ctt tgg ttt agc cga gaa aat aac gat ttg 6315
Asp Ile Asn Leu Ser Glu Leu Trp Phe Ser Arg Glu Asn Asn Asp Leu
1565 1570 1575 1580
att att aaa tca tta tta agt gag gat aaa gtc acg gtt caa aat tgg 6363
Ile Ile Lys Ser Leu Leu Ser Glu Asp Lys Val Thr Val Gln Asn Trp
1585 1590 1595
tat tca cac caa gat cat aaa ata gaa aat att cgt tta tcg aat gag 6411
Tyr Ser His Gln Asp His Lys Ile Glu Asn Ile Arg Leu Ser Asn Glu
1600 1605 1610
caa acg ttg gtg agc act cag gtg gag aag atg gtt gag tcg atg gcc 6459
Gln Thr Leu Val Ser Thr Gln Val Glu Lys Met Val Glu Ser Met Ala
1615 1620 1625
ggc ttt gct cag aag cac gga gga gag ata tct ctt gtg tcg ctt gaa 6507
Gly Phe Ala Gln Lys His Gly Gly Glu Ile Ser Leu Val Ser Leu Glu
1630 1635 1640
gag gta aaa caa tat atc aat agc tta aca gct gct tta taa 6549
Glu Val Lys Gln Tyr Ile Asn Ser Leu Thr Ala Ala Leu
1645 1650 1655
catacgaaag aaatcggcac agtttttttg aactgtgccg atttgatttt agtgtaagaa 6609
tatagcctga ttttaagaaa tttactcttg gctaataact atttcccatt ttataagtta 6669
ttgacggatg gttttatcaa atatgagatc aaatcttatt ttaaattcgc tttccattaa 6729
gcgatat 6736




2


1657


PRT


Actinobacillus pleuropneumoniae



2
Met Ser Asp Asn Ala Phe Phe Val Ile Glu Glu Ser Gly Lys Arg Tyr
1 5 10 15
Ile Glu Asn Phe Gly Ile Glu Pro Leu Gly Lys Gln Glu Asp Phe Asp
20 25 30
Phe Val Gly Gly Phe Trp Ser Asn Leu Val Asn Arg Gly Leu Glu Ser
35 40 45
Ile Ile Asp Pro Ser Gly Ile Gly Gly Thr Val Asn Leu Asn Phe Thr
50 55 60
Gly Glu Val Glu Thr Tyr Thr Leu Asp Glu Thr Arg Phe Lys Ala Glu
65 70 75 80
Ala Ala Lys Lys Ser His Trp Ser Leu Val Asn Ala Ala Lys Val Tyr
85 90 95
Gly Gly Leu Asp Gln Ile Ile Lys Lys Leu Trp Asp Ser Gly Ser Ile
100 105 110
Lys His Leu Tyr Gln Asp Lys Asp Thr Gly Lys Leu Lys Pro Ile Ile
115 120 125
Tyr Gly Thr Ala Gly Asn Asp Ser Lys Ile Glu Gly Thr Lys Ile Thr
130 135 140
Arg Arg Ile Ala Gly Lys Glu Val Thr Leu Asp Ile Ala Asn Gln Lys
145 150 155 160
Ile Glu Lys Gly Val Leu Glu Lys Leu Gly Leu Ser Val Ser Gly Ser
165 170 175
Asp Ile Ile Lys Leu Leu Phe Gly Ala Leu Thr Pro Thr Leu Asn Arg
180 185 190
Met Leu Leu Ser Gln Leu Ile Gln Ser Phe Ser Asp Ser Leu Ala Lys
195 200 205
Leu Asp Asn Pro Leu Ala Pro Tyr Thr Lys Asn Gly Val Val Tyr Val
210 215 220
Thr Gly Lys Gly Asn Asp Val Leu Lys Gly Thr Glu His Glu Asp Leu
225 230 235 240
Phe Leu Gly Gly Glu Gly Asn Asp Thr Tyr Tyr Ala Arg Val Gly Asp
245 250 255
Thr Ile Glu Asp Ala Asp Gly Lys Gly Lys Val Tyr Phe Val Arg Glu
260 265 270
Lys Gly Val Pro Lys Ala Asp Pro Lys Arg Val Glu Phe Ser Glu Tyr
275 280 285
Ile Thr Lys Glu Glu Ile Lys Glu Val Glu Lys Gly Leu Leu Thr Tyr
290 295 300
Ala Val Leu Glu Asn Tyr Asn Trp Glu Glu Lys Thr Ala Thr Phe Ala
305 310 315 320
His Ala Thr Met Leu Asn Glu Leu Phe Thr Asp Tyr Thr Asn Tyr Arg
325 330 335
Tyr Glu Val Lys Gly Leu Lys Leu Pro Ala Val Lys Lys Leu Lys Ser
340 345 350
Pro Leu Val Glu Phe Thr Ala Asp Leu Leu Thr Val Thr Pro Ile Asp
355 360 365
Glu Asn Gly Lys Ala Leu Ser Glu Lys Ser Ile Thr Val Lys Asn Phe
370 375 380
Lys Asn Gly Asp Leu Gly Ile Arg Leu Leu Asp Pro Asn Ser Tyr Tyr
385 390 395 400
Tyr Phe Leu Glu Gly Gln Asp Thr Gly Phe Tyr Gly Pro Ala Phe Tyr
405 410 415
Ile Glu Arg Lys Asn Gly Gly Gly Ala Lys Asn Asn Ser Ser Gly Ala
420 425 430
Gly Asn Ser Lys Asp Trp Gly Gly Asn Gly His Gly Asn His Arg Asn
435 440 445
Asn Ala Ser Asp Leu Asn Lys Pro Asp Gly Asn Asn Gly Asn Asn Gln
450 455 460
Asn Asn Gly Ser Asn Gln Asp Asn His Ser Asp Val Asn Ala Pro Asn
465 470 475 480
Asn Pro Gly Arg Asn Tyr Asp Ile Tyr Asp Pro Leu Ala Leu Asp Leu
485 490 495
Asp Gly Asp Gly Leu Glu Thr Val Ser Met Asn Gly Arg Gln Gly Ala
500 505 510
Leu Phe Asp His Glu Gly Lys Gly Ile Arg Thr Ala Thr Gly Trp Leu
515 520 525
Ala Ala Asp Asp Gly Phe Leu Val Leu Asp Arg Asn Gln Asp Gly Ile
530 535 540
Ile Asn Asp Ile Ser Glu Leu Phe Ser Asn Lys Asn Gln Leu Ser Asp
545 550 555 560
Gly Ser Ile Ser Ala His Gly Phe Ala Thr Leu Ala Asp Leu Asp Thr
565 570 575
Asn Gln Asp Gln Arg Ile Asp Gln Asn Asp Lys Leu Phe Ser Lys Leu
580 585 590
Gln Ile Trp Arg Asp Leu Asn Gln Asn Gly Phe Ser Glu Ala Asn Glu
595 600 605
Leu Phe Ser Leu Glu Ser Leu Asn Ile Lys Ser Leu His Thr Ala Tyr
610 615 620
Glu Glu Arg Asn Asp Phe Leu Ala Gly Asn Asn Ile Leu Ala Gln Leu
625 630 635 640
Gly Lys Tyr Glu Lys Thr Asp Gly Thr Phe Ala Gln Met Gly Asp Leu
645 650 655
Asn Phe Ser Phe Asn Pro Phe Tyr Ser Arg Phe Thr Glu Ala Leu Asn
660 665 670
Leu Thr Glu Gln Gln Arg Arg Thr Ile Asn Leu Thr Gly Thr Gly Arg
675 680 685
Val Arg Asp Leu Arg Glu Ala Ala Ala Leu Ser Glu Glu Leu Ala Ala
690 695 700
Leu Leu Gln Gln Tyr Thr Lys Ala Ser Asp Phe Gln Ala Gln Arg Glu
705 710 715 720
Leu Leu Pro Ala Ile Leu Asp Lys Trp Ala Ala Thr Asp Leu Gln Tyr
725 730 735
Gln His Tyr Asp Lys Thr Leu Leu Lys Thr Val Glu Ser Thr Asp Ser
740 745 750
Ser Ala Ser Val Val Arg Val Thr Pro Ser Gln Leu Ser Ser Ile Arg
755 760 765
Asn Ala Lys His Asp Pro Thr Val Met Gln Asn Phe Glu Gln Ser Lys
770 775 780
Ala Lys Ile Ala Thr Leu Asn Ser Leu Tyr Gly Leu Asn Ile Asp Gln
785 790 795 800
Leu Tyr Tyr Thr Thr Asp Lys Asp Ile Arg Tyr Ile Thr Asp Lys Val
805 810 815
Asn Asn Met Tyr Gln Thr Thr Val Glu Leu Ala Tyr Arg Ser Leu Leu
820 825 830
Leu Gln Thr Arg Leu Lys Lys Tyr Val Tyr Ser Val Asn Ala Lys Gln
835 840 845
Phe Glu Gly Lys Trp Val Thr Asp Tyr Ser Arg Thr Glu Ala Leu Phe
850 855 860
Asn Ser Thr Phe Lys Gln Ser Pro Glu Asn Ala Leu Tyr Asp Leu Ser
865 870 875 880
Glu Tyr Leu Ser Phe Phe Asn Asp Pro Thr Glu Trp Lys Glu Gly Leu
885 890 895
Leu Leu Leu Ser Arg Tyr Ile Asp Tyr Ala Lys Ala Gln Gly Phe Tyr
900 905 910
Glu Asn Trp Ala Ala Thr Ser Asn Leu Thr Ile Ala Arg Leu Arg Glu
915 920 925
Ala Gly Val Ile Phe Ala Glu Ser Thr Asp Leu Lys Gly Asp Glu Lys
930 935 940
Asn Asn Ile Leu Leu Gly Ser Gln Lys Asp Asn Asn Leu Ser Gly Ser
945 950 955 960
Ala Gly Asp Asp Leu Leu Ile Gly Gly Glu Gly Asn Asp Thr Leu Lys
965 970 975
Gly Ser Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His Gly Gln
980 985 990
Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala Arg Asp Ile
995 1000 1005
Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val Lys Phe Arg
1010 1015 1020
Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr Asp Ser
1025 1030 1035 1040
Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr Gln Phe Asp Lys
1045 1050 1055
Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Ile Lys Ala
1060 1065 1070
Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp Ile Lys Asp His
1075 1080 1085
Ala Asp Trp Asp Ser Ile Leu Glu Gly Gly Lys Gly Asn Asp Ile Leu
1090 1095 1100
Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His Gly
1105 1110 1115 1120
Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala Arg Asp
1125 1130 1135
Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val Lys Phe
1140 1145 1150
Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr Asp
1155 1160 1165
Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp Tyr Gln Phe Asp
1170 1175 1180
Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Gly Lys
1185 1190 1195 1200
Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp Asn Ile Asn Asp
1205 1210 1215
Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly Asn Asp Thr Val
1220 1225 1230
Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly Lys Gly Asn Asp
1235 1240 1245
Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly
1250 1255 1260
His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala
1265 1270 1275 1280
Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val
1285 1290 1295
Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp
1300 1305 1310
Thr Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr Gln
1315 1320 1325
Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu
1330 1335 1340
Ile Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp Ile
1345 1350 1355 1360
Lys Asp His Ala Asp Trp Asp Ser Ile Leu Glu Gly Gly Lys Gly Asn
1365 1370 1375
Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys
1380 1385 1390
Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg
1395 1400 1405
Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu
1410 1415 1420
Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His
1425 1430 1435 1440
Asp Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp Tyr
1445 1450 1455
Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu
1460 1465 1470
Leu Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp Asn
1475 1480 1485
Ile Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly Asn
1490 1495 1500
Asp Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly Lys
1505 1510 1515 1520
Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe
1525 1530 1535
Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp
1540 1545 1550
Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Ile Asn Leu
1555 1560 1565
Ser Glu Leu Trp Phe Ser Arg Glu Asn Asn Asp Leu Ile Ile Lys Ser
1570 1575 1580
Leu Leu Ser Glu Asp Lys Val Thr Val Gln Asn Trp Tyr Ser His Gln
1585 1590 1595 1600
Asp His Lys Ile Glu Asn Ile Arg Leu Ser Asn Glu Gln Thr Leu Val
1605 1610 1615
Ser Thr Gln Val Glu Lys Met Val Glu Ser Met Ala Gly Phe Ala Gln
1620 1625 1630
Lys His Gly Gly Glu Ile Ser Leu Val Ser Leu Glu Glu Val Lys Gln
1635 1640 1645
Tyr Ile Asn Ser Leu Thr Ala Ala Leu
1650 1655




3


7004


DNA


Actinobacillus pleuropneumoniae




CDS




1566..5714





3
atcgatatgc cgccgggtac gggcgatatc caacttactc tttcgcaaca aattccggtt 60
accggtgcgg tagtggtaac tactccgcaa gatattgcgt tattagatgc ggtgaaaggt 120
atttcaatgt tccaaaaagt gtcggtaccg gtcttaggta tcattgaaaa tatgagcgtg 180
catatctgcc aaaattgcgg tcaccacgaa gatattttcg gcaccggcgg tgcggagaaa 240
gtggcgaaga aatacggtac taaagtatta ggacaaatgc cgttgcatat tcgcttacgt 300
caagatttgg atgccggcac accgaccgtc gttgcggcac cggaacacga caccagcaga 360
gcctatattg aattagcggc aaaagtcgct tcggaattat actggcaagg ttcggttatc 420
ccgtctgaaa ttatgattcg tgaagtaaaa taagcctaca taaccacgga ataccagata 480
acacagaagg aaaacaagcg gtagaatttg cagaaaaagt tgcaaattct accgcttttt 540
tattagtacg attcgctgtt ggactgccat ttgatttggt ttgtcaggat attatgttat 600
tgtaatgaaa tgttagtgaa ttatttttat taatttgaaa ggagacaaaa tgaaaataaa 660
aaaacgttac attgcgctgc tagctttagg cagtgttatt ggctatgcct ggtatcaaaa 720
ttatcaatgg gaacagttga tgttaagtgg ctattgtgaa aaggacggaa gctattgtga 780
tgataggcat acgaagcagg aactgattga tagggcaatt aactatgtgc tggaaaatca 840
aattcaacag acatatgaag gtgatgacct tgtggatata aaacaatatt caacaataga 900
ggaatttaaa aaactaaatc cgaattgttg taaggtagat tcttggccgg atgatgctgt 960
tcgtgaggat gctgatttac agcgagaggg caaagcgtat aaatacgtaa aagtcaaata 1020
tttaagaacc tatttagcga atagagaacc tgaacaatgg gaaaattaca tagtatttga 1080
taattgcagt ggaattaaag aaagacacca actgtattaa aaatagatta gatggagaca 1140
acacgatgac aaaactaact atccaagatg tgactaattt atatttatat aagcaaagaa 1200
ctttacctac ggataggtta gatgattcgc ttattagcaa aacaggaaaa ggggaaaata 1260
ttgataaaaa ggaatttatg gcggggccgg gacgttttgt gacggccgat aattttagtg 1320
ttgtaaaaga cttttttact gcaaaggatt cattaataaa cctaagcttg cagactcgta 1380
tattagcgaa tttaaagccg ggcaaatatt ccaaagcgca gatattagaa atgttgggct 1440
atacgaaaaa tggagaaaag gtagatggca tgtttaccgg tgaagtccag acattaggct 1500
tttatgacga tggcaaaggg gatttactcg aacgcgccta tatctgaaat accacaggat 1560
ttaaa atg agc gac aat gcc ttt ttt gtt ata gaa gaa tca ggc aaa 1607
Met Ser Asp Asn Ala Phe Phe Val Ile Glu Glu Ser Gly Lys
1 5 10
cgc tat att gaa aac ttt ggt att gaa cct ctt ggt aag caa gaa gat 1655
Arg Tyr Ile Glu Asn Phe Gly Ile Glu Pro Leu Gly Lys Gln Glu Asp
15 20 25 30
ttt gat ttt gtc ggc ggc ttt tgg tct aac tta gtg aat cgt ggt ttg 1703
Phe Asp Phe Val Gly Gly Phe Trp Ser Asn Leu Val Asn Arg Gly Leu
35 40 45
gaa agt att atc gac cca tcc ggt atc ggt gga acg gta aac ctt aac 1751
Glu Ser Ile Ile Asp Pro Ser Gly Ile Gly Gly Thr Val Asn Leu Asn
50 55 60
ttt acc ggc gag gtg gaa acc tac acg tta gac gaa aca agg ttt aaa 1799
Phe Thr Gly Glu Val Glu Thr Tyr Thr Leu Asp Glu Thr Arg Phe Lys
65 70 75
gcg gaa gcg gcg aag aaa agc cat tgg agt tta gtg aat gcg gcg aaa 1847
Ala Glu Ala Ala Lys Lys Ser His Trp Ser Leu Val Asn Ala Ala Lys
80 85 90
gta tac ggc ggt tta gac caa att att aaa aaa cta tgg gac agt ggc 1895
Val Tyr Gly Gly Leu Asp Gln Ile Ile Lys Lys Leu Trp Asp Ser Gly
95 100 105 110
tca att aag cat tta tat caa gat aaa gat acg ggc aaa tta aaa ccg 1943
Ser Ile Lys His Leu Tyr Gln Asp Lys Asp Thr Gly Lys Leu Lys Pro
115 120 125
att att tac ggc acg gcc ggc aac gac agt aag att gaa ggc act aaa 1991
Ile Ile Tyr Gly Thr Ala Gly Asn Asp Ser Lys Ile Glu Gly Thr Lys
130 135 140
atc acc cgt agg att gcg ggt aaa gaa gtt acg ctt gat att gcc aat 2039
Ile Thr Arg Arg Ile Ala Gly Lys Glu Val Thr Leu Asp Ile Ala Asn
145 150 155
cag aaa att gaa aaa ggc gtg tta gag aaa ttg ggg ctg tct gtt agt 2087
Gln Lys Ile Glu Lys Gly Val Leu Glu Lys Leu Gly Leu Ser Val Ser
160 165 170
ggt tcg gat atc att aaa ttg ttg ttt gga gca ttg act cca act tta 2135
Gly Ser Asp Ile Ile Lys Leu Leu Phe Gly Ala Leu Thr Pro Thr Leu
175 180 185 190
aat aga atg ttg cta tca caa ctt atc cag tct ttt tcc gat agc ttg 2183
Asn Arg Met Leu Leu Ser Gln Leu Ile Gln Ser Phe Ser Asp Ser Leu
195 200 205
gct aaa ctt gat aat ccc tta gcc cct tac act aaa aat ggc gtg gtt 2231
Ala Lys Leu Asp Asn Pro Leu Ala Pro Tyr Thr Lys Asn Gly Val Val
210 215 220
tat gtc acc ggc aaa ggg aat gat gtg ctt aaa gga act gaa cat gag 2279
Tyr Val Thr Gly Lys Gly Asn Asp Val Leu Lys Gly Thr Glu His Glu
225 230 235
gat ttg ttt ctc ggt ggt gag ggg aat gat act tat tat gcg aga gta 2327
Asp Leu Phe Leu Gly Gly Glu Gly Asn Asp Thr Tyr Tyr Ala Arg Val
240 245 250
ggc gat aca att gaa gac gcc gac ggc aaa ggt aaa gtc tat ttt gtg 2375
Gly Asp Thr Ile Glu Asp Ala Asp Gly Lys Gly Lys Val Tyr Phe Val
255 260 265 270
aga gaa aaa ggg gta cct aag gcg gat cct aag cgg gta gag ttt agc 2423
Arg Glu Lys Gly Val Pro Lys Ala Asp Pro Lys Arg Val Glu Phe Ser
275 280 285
gag tac ata acg aaa gaa gaa ata aaa gag gtt gaa aag ggg tta tta 2471
Glu Tyr Ile Thr Lys Glu Glu Ile Lys Glu Val Glu Lys Gly Leu Leu
290 295 300
act tac gca gtt tta gaa aat tat aat tgg gaa gag aaa acg gcg act 2519
Thr Tyr Ala Val Leu Glu Asn Tyr Asn Trp Glu Glu Lys Thr Ala Thr
305 310 315
ttc gct cat gcg act atg ctt aat gag ctt ttt act gat tat act aat 2567
Phe Ala His Ala Thr Met Leu Asn Glu Leu Phe Thr Asp Tyr Thr Asn
320 325 330
tat cgt tat gaa gtt aaa gga cta aaa ttg ccc gcc gtt aaa aag tta 2615
Tyr Arg Tyr Glu Val Lys Gly Leu Lys Leu Pro Ala Val Lys Lys Leu
335 340 345 350
aaa agt ccg ttg gtg gag ttt aca gct gat tta tta act gtt acg cct 2663
Lys Ser Pro Leu Val Glu Phe Thr Ala Asp Leu Leu Thr Val Thr Pro
355 360 365
att gac gaa aac gga aaa gca ctt agc gaa aaa agt att acg gtt aaa 2711
Ile Asp Glu Asn Gly Lys Ala Leu Ser Glu Lys Ser Ile Thr Val Lys
370 375 380
aat ttt aaa aat ggt gat tta gga ata agg ttg ttg gat cct aat agc 2759
Asn Phe Lys Asn Gly Asp Leu Gly Ile Arg Leu Leu Asp Pro Asn Ser
385 390 395
tat tat tat ttc ctt gaa ggc caa gat acg ggt ttt tat ggt cct gct 2807
Tyr Tyr Tyr Phe Leu Glu Gly Gln Asp Thr Gly Phe Tyr Gly Pro Ala
400 405 410
ttt tat att gaa cga aaa aac ggt gga ggc tct aaa aat aac tcg tcg 2855
Phe Tyr Ile Glu Arg Lys Asn Gly Gly Gly Ser Lys Asn Asn Ser Ser
415 420 425 430
gga gca gga aat agc aaa gat tgg ggc ggg aac ggg cat gga aat cac 2903
Gly Ala Gly Asn Ser Lys Asp Trp Gly Gly Asn Gly His Gly Asn His
435 440 445
cga aat aat gcc tcc gac ctg aat aaa ccg gac gga aat aat ggg aat 2951
Arg Asn Asn Ala Ser Asp Leu Asn Lys Pro Asp Gly Asn Asn Gly Asn
450 455 460
aac caa aat aac gga agc aat caa gat aat cat agc gat gtg aat gcg 2999
Asn Gln Asn Asn Gly Ser Asn Gln Asp Asn His Ser Asp Val Asn Ala
465 470 475
cca aat aac ccg gga cgt aac tat gat att tac gat cct tta gct tta 3047
Pro Asn Asn Pro Gly Arg Asn Tyr Asp Ile Tyr Asp Pro Leu Ala Leu
480 485 490
gat tta gat gga gat ggg ctt gaa acc gtg tcg atg aac ggg cga caa 3095
Asp Leu Asp Gly Asp Gly Leu Glu Thr Val Ser Met Asn Gly Arg Gln
495 500 505 510
ggc gcg tta ttc gat cat gaa gga aaa ggt att cgt acc gca acg ggc 3143
Gly Ala Leu Phe Asp His Glu Gly Lys Gly Ile Arg Thr Ala Thr Gly
515 520 525
tgg ctc gct gcg gat gac ggt ttt tta gtg tta gat cgt aac caa gac 3191
Trp Leu Ala Ala Asp Asp Gly Phe Leu Val Leu Asp Arg Asn Gln Asp
530 535 540
ggc att att aat gat ata agc gag tta ttt agt aat aaa aat caa ctt 3239
Gly Ile Ile Asn Asp Ile Ser Glu Leu Phe Ser Asn Lys Asn Gln Leu
545 550 555
tcc gac ggg agt att tct gca cac ggt ttt gcg aca tta gcc gat ttg 3287
Ser Asp Gly Ser Ile Ser Ala His Gly Phe Ala Thr Leu Ala Asp Leu
560 565 570
gat aca aac caa gat cag cgt atc gac caa aat gat aag ctg ttt tct 3335
Asp Thr Asn Gln Asp Gln Arg Ile Asp Gln Asn Asp Lys Leu Phe Ser
575 580 585 590
aaa ctc caa att tgg cgg gat tta aat caa aac ggt ttt agt gaa gcg 3383
Lys Leu Gln Ile Trp Arg Asp Leu Asn Gln Asn Gly Phe Ser Glu Ala
595 600 605
aat gag ctg ttt agc tta gaa agt ttg aat att aaa tct tta cat acc 3431
Asn Glu Leu Phe Ser Leu Glu Ser Leu Asn Ile Lys Ser Leu His Thr
610 615 620
gcc tat gaa gag cgt aat gat ttt cta gcg ggc aat aat atc ctt gct 3479
Ala Tyr Glu Glu Arg Asn Asp Phe Leu Ala Gly Asn Asn Ile Leu Ala
625 630 635
cag ctt ggg aag tat gaa aaa acg gac ggt act ttt gga caa atg ggc 3527
Gln Leu Gly Lys Tyr Glu Lys Thr Asp Gly Thr Phe Gly Gln Met Gly
640 645 650
gat tta aat ttc agt ttt aac ccg ttt tat agc cga ttt acc gaa gcg 3575
Asp Leu Asn Phe Ser Phe Asn Pro Phe Tyr Ser Arg Phe Thr Glu Ala
655 660 665 670
tta aat tta acc gag caa caa cgt cgc aca att aat cta acc ggc acc 3623
Leu Asn Leu Thr Glu Gln Gln Arg Arg Thr Ile Asn Leu Thr Gly Thr
675 680 685
ggt cgg gtt cgg gat ttg cgt gaa gcc gcc gca ctt tct gag gag ttg 3671
Gly Arg Val Arg Asp Leu Arg Glu Ala Ala Ala Leu Ser Glu Glu Leu
690 695 700
gct gct tta tta caa cag tac act aag ggc tcc gat ttt cag gca caa 3719
Ala Ala Leu Leu Gln Gln Tyr Thr Lys Gly Ser Asp Phe Gln Ala Gln
705 710 715
cga gaa tta ttg cct gcc att tta gat aaa tgg gcg gca acg gat tta 3767
Arg Glu Leu Leu Pro Ala Ile Leu Asp Lys Trp Ala Ala Thr Asp Leu
720 725 730
cag tat caa cat tat gat aaa aca tta ctt aaa acg gta gaa agt acc 3815
Gln Tyr Gln His Tyr Asp Lys Thr Leu Leu Lys Thr Val Glu Ser Thr
735 740 745 750
gat agt agt gct tct gtc gtt aga gtc acg cct tct caa tta agt agt 3863
Asp Ser Ser Ala Ser Val Val Arg Val Thr Pro Ser Gln Leu Ser Ser
755 760 765
ata cgc aat gta aag cat gat cct acc gtt atg caa aac tgt gaa caa 3911
Ile Arg Asn Val Lys His Asp Pro Thr Val Met Gln Asn Cys Glu Gln
770 775 780
agt aag gca aaa att gcg act tta aat tcg ctc tac ggg tta aat att 3959
Ser Lys Ala Lys Ile Ala Thr Leu Asn Ser Leu Tyr Gly Leu Asn Ile
785 790 795
gat caa ctt tat tat acg acg gat aaa gac att cgt tat att act gac 4007
Asp Gln Leu Tyr Tyr Thr Thr Asp Lys Asp Ile Arg Tyr Ile Thr Asp
800 805 810
aaa gtg aat aat atg tat caa aca acc gga gaa ctc ggc tat cgt tct 4055
Lys Val Asn Asn Met Tyr Gln Thr Thr Gly Glu Leu Gly Tyr Arg Ser
815 820 825 830
tta ctt tta caa acg cgt gtg aag aaa tat gtt tat agc gtt aat gcg 4103
Leu Leu Leu Gln Thr Arg Val Lys Lys Tyr Val Tyr Ser Val Asn Ala
835 840 845
aaa caa ttc gaa ggg aaa tgg gta gcc gat tat tct cgt act gaa gcc 4151
Lys Gln Phe Glu Gly Lys Trp Val Ala Asp Tyr Ser Arg Thr Glu Ala
850 855 860
tta ttt aac tct act tat aaa caa tcg ccc gaa aat gta tta tat gat 4199
Leu Phe Asn Ser Thr Tyr Lys Gln Ser Pro Glu Asn Val Leu Tyr Asp
865 870 875
tta cgc gaa tac ctt tct ttc tat aac gac cct acg gaa tgg aaa gaa 4247
Leu Arg Glu Tyr Leu Ser Phe Tyr Asn Asp Pro Thr Glu Trp Lys Glu
880 885 890
ggg cta tta ctg tta agc cgt tat ata gat tat gct aaa gca caa gga 4295
Gly Leu Leu Leu Leu Ser Arg Tyr Ile Asp Tyr Ala Lys Ala Gln Gly
895 900 905 910
ttt tat gaa aac tgg gcg gct act tct aac tta act att gcc cgt tta 4343
Phe Tyr Glu Asn Trp Ala Ala Thr Ser Asn Leu Thr Ile Ala Arg Leu
915 920 925
aga gag gct gga gta att tgt gca gaa tcg acg gat tta aaa ggc gat 4391
Arg Glu Ala Gly Val Ile Cys Ala Glu Ser Thr Asp Leu Lys Gly Asp
930 935 940
gaa aaa aat aat att gtg tta ggt agc caa aaa gat aat aac tta tcg 4439
Glu Lys Asn Asn Ile Val Leu Gly Ser Gln Lys Asp Asn Asn Leu Ser
945 950 955
ggt agt gca ggt gat gat cta ctt atc ggc gga gag ggt aat gat acg 4487
Gly Ser Ala Gly Asp Asp Leu Leu Ile Gly Gly Glu Gly Asn Asp Thr
960 965 970
tta aaa ggc agc tac ggt gca gac acc tat atc ttt agc aaa ggg cat 4535
Leu Lys Gly Ser Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His
975 980 985 990
gga caa gat gta att tat gaa tat tcc gac agt gca aac tct aaa aaa 4583
Gly Gln Asp Val Ile Tyr Glu Tyr Ser Asp Ser Ala Asn Ser Lys Lys
995 1000 1005
gat att gat acc tta aaa ttt acc gat gtg aat tat gcg gaa gtg aag 4631
Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val Lys
1010 1015 1020
ttt cga cga gta gat aat gac tta atg tta ttc ggt tat cat gat acg 4679
Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr
1025 1030 1035
gat tcg gtc acg gta aaa tcc ttc tac agc cat gta gat tat caa ttt 4727
Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr Gln Phe
1040 1045 1050
gac aaa ttg gag ttt gct gac cgc agt ata act cgc gat gaa ctg att 4775
Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Ile
1055 1060 1065 1070
aaa gca ggg ctt cat cta tac ggc acc gat ggc aat gat gat ata aag 4823
Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp Ile Lys
1075 1080 1085
gat cat gcg gat tgg gac agc att gtg gaa ggc ggc aaa ggc aac gat 4871
Asp His Ala Asp Trp Asp Ser Ile Val Glu Gly Gly Lys Gly Asn Asp
1090 1095 1100
att cta aga ggt ggc tac ggt gcg gac acc tat atc ttt agc aaa gga 4919
Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly
1105 1110 1115
cac gga cag gat atc gtt tat gaa gat acc aat aat gat aac cga gca 4967
His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala
1120 1125 1130
aga gat atc gac acc tta aca ttt act gat gtg aat tat gcg gaa gtg 5015
Arg Asp Ile Asp Thr Leu Thr Phe Thr Asp Val Asn Tyr Ala Glu Val
1135 1140 1145 1150
aaa ttc cga cga gta gat aat gac tta atg tta ttc ggt tat cat gat 5063
Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp
1155 1160 1165
acg gat tcg gtc acg ata aaa tcc ttc tac aac cat gta gat tat caa 5111
Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp Tyr Gln
1170 1175 1180
tgt gac aaa ttg gac ttt gct gac cgc agt ata act cgt gat gaa cta 5159
Cys Asp Lys Leu Asp Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu
1185 1190 1195
ggt aaa caa ggt atg gca tta ttt ggc act gac ggc gat gat aat atc 5207
Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp Asn Ile
1200 1205 1210
aac gac tgg gga cgt aac tcg gtg att gat gcc ggt gcg ggt aat gat 5255
Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly Asn Asp
1215 1220 1225 1230
acg gtt aat ggc ggt aat ggc gat gac acc ctc atc ggc ggc aaa ggt 5303
Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly Lys Gly
1235 1240 1245
aat gat att cta aga ggt ggc tac ggt gcg gac acc tat atc ttt agc 5351
Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser
1250 1255 1260
aaa gga cac gga cag gat atc gtt tat gaa gat acc aat aat gat aac 5399
Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn
1265 1270 1275
cgc gca aga gat atc gac acc tta aaa ttt act gat att aat tta tcc 5447
Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Ile Asn Leu Ser
1280 1285 1290
gaa ctt tgg ttt agc cga gaa aat aac gat ttg att att aaa tca tta 5495
Glu Leu Trp Phe Ser Arg Glu Asn Asn Asp Leu Ile Ile Lys Ser Leu
1295 1300 1305 1310
tta agt gag gat aaa gtc acg gtt caa aat tgg tat tca cac caa gat 5543
Leu Ser Glu Asp Lys Val Thr Val Gln Asn Trp Tyr Ser His Gln Asp
1315 1320 1325
cat aaa ata gaa aat att cgt tta tcg aat gag caa atg ttg gtg agc 5591
His Lys Ile Glu Asn Ile Arg Leu Ser Asn Glu Gln Met Leu Val Ser
1330 1335 1340
act cag gtg gag aag atg gtt gag tcg atg gcc ggc ttt gct cag aag 5639
Thr Gln Val Glu Lys Met Val Glu Ser Met Ala Gly Phe Ala Gln Lys
1345 1350 1355
cac gga gga gag ata tct ctt ctg tcg cct gaa gag gta aaa caa tat 5687
His Gly Gly Glu Ile Ser Leu Leu Ser Pro Glu Glu Val Lys Gln Tyr
1360 1365 1370
atc aat agc tta aca gct gct tta taa catacgaaag aaatcggcac 5734
Ile Asn Ser Leu Thr Ala Ala Leu
1375 1380
agtttttgtg aactgtgccg atttgatttt agtgtaagaa tatagcctga ttttaagaaa 5794
tttactcttg gctaataact atttcccatt ttataagtta ttgacggatg gttttatcaa 5854
atatgagatc aaatcttatt ttaaattcgc tttccattaa gcgatattga tcttttaagt 5914
ttggggccgc atgagtttgg aaccgatacc actcattgtg ggaatcaata cacaatacgc 5974
tgtaatcgga ctcttgcagt tcataataat gctttctctc cgttaattct tcttgcgtat 6034
atggcgagag attaaagctg aatggctggt tcgcactaac aaacaggttc tccgatttca 6094
gatattcaca accgtaatgg ctaccggttt cctgcggttt tacataattg gtatgatttt 6154
gtttagctgt tatacggtag atgcctaatt gtggtaaatt gcgtgtgtca atatagcttt 6214
cttgttctcc gtaaccgaaa tactcaatgg cgttttctgt tttagctaag aagaaacgta 6274
agccgaagcg gggtaaatac ggtaattcga tcgggcgaat agcgttaatt tcaaccgaaa 6334
gttgtccgtc attgaagata cgataacgaa tatccagtgt taaaatgcga ccgcgagaaa 6394
ttgacacaat tgcagatttt actgaaaatt cgaccgcttg ttcgctttgc tgccactgaa 6454
tttcatacgc tctggtatag gctttatcgt agccggcatt ttggcacgcc tcacgaatga 6514
ggcgatcatt gtcggttggc gcacgccaaa tattaaaatc taacgattgt tggataatcg 6574
ctttaccggc tttttcaata cgggtgaaaa tccctttctg tttatctaat tgataactaa 6634
attgaccgtt gtgtacgtta atgtggaagc gatcttcttg tacttcaaat gcactgttct 6694
caattgtgaa ttgtggtaat actaatttat tttcgctaaa taaattgagc tgctcgaagc 6754
caagtgaatg tgcttcgtct aataattcga ccgcggtatt taagcgataa tttaaattca 6814
gtagccataa atgcccgtta ttttttggta actcaatcgg taatactacg ctgccgtgcg 6874
gttggcaaga aacggataaa ttcccaccgc ttgtcaccac gccgttttcg acaaattcgt 6934
aatcaatcgt taaataatcg gcaagatcag tgaaatccaa gtagttgtgg atcacaattt 6994
ggttatcgat 7004




4


1382


PRT


Actinobacillus pleuropneumoniae



4
Met Ser Asp Asn Ala Phe Phe Val Ile Glu Glu Ser Gly Lys Arg Tyr
1 5 10 15
Ile Glu Asn Phe Gly Ile Glu Pro Leu Gly Lys Gln Glu Asp Phe Asp
20 25 30
Phe Val Gly Gly Phe Trp Ser Asn Leu Val Asn Arg Gly Leu Glu Ser
35 40 45
Ile Ile Asp Pro Ser Gly Ile Gly Gly Thr Val Asn Leu Asn Phe Thr
50 55 60
Gly Glu Val Glu Thr Tyr Thr Leu Asp Glu Thr Arg Phe Lys Ala Glu
65 70 75 80
Ala Ala Lys Lys Ser His Trp Ser Leu Val Asn Ala Ala Lys Val Tyr
85 90 95
Gly Gly Leu Asp Gln Ile Ile Lys Lys Leu Trp Asp Ser Gly Ser Ile
100 105 110
Lys His Leu Tyr Gln Asp Lys Asp Thr Gly Lys Leu Lys Pro Ile Ile
115 120 125
Tyr Gly Thr Ala Gly Asn Asp Ser Lys Ile Glu Gly Thr Lys Ile Thr
130 135 140
Arg Arg Ile Ala Gly Lys Glu Val Thr Leu Asp Ile Ala Asn Gln Lys
145 150 155 160
Ile Glu Lys Gly Val Leu Glu Lys Leu Gly Leu Ser Val Ser Gly Ser
165 170 175
Asp Ile Ile Lys Leu Leu Phe Gly Ala Leu Thr Pro Thr Leu Asn Arg
180 185 190
Met Leu Leu Ser Gln Leu Ile Gln Ser Phe Ser Asp Ser Leu Ala Lys
195 200 205
Leu Asp Asn Pro Leu Ala Pro Tyr Thr Lys Asn Gly Val Val Tyr Val
210 215 220
Thr Gly Lys Gly Asn Asp Val Leu Lys Gly Thr Glu His Glu Asp Leu
225 230 235 240
Phe Leu Gly Gly Glu Gly Asn Asp Thr Tyr Tyr Ala Arg Val Gly Asp
245 250 255
Thr Ile Glu Asp Ala Asp Gly Lys Gly Lys Val Tyr Phe Val Arg Glu
260 265 270
Lys Gly Val Pro Lys Ala Asp Pro Lys Arg Val Glu Phe Ser Glu Tyr
275 280 285
Ile Thr Lys Glu Glu Ile Lys Glu Val Glu Lys Gly Leu Leu Thr Tyr
290 295 300
Ala Val Leu Glu Asn Tyr Asn Trp Glu Glu Lys Thr Ala Thr Phe Ala
305 310 315 320
His Ala Thr Met Leu Asn Glu Leu Phe Thr Asp Tyr Thr Asn Tyr Arg
325 330 335
Tyr Glu Val Lys Gly Leu Lys Leu Pro Ala Val Lys Lys Leu Lys Ser
340 345 350
Pro Leu Val Glu Phe Thr Ala Asp Leu Leu Thr Val Thr Pro Ile Asp
355 360 365
Glu Asn Gly Lys Ala Leu Ser Glu Lys Ser Ile Thr Val Lys Asn Phe
370 375 380
Lys Asn Gly Asp Leu Gly Ile Arg Leu Leu Asp Pro Asn Ser Tyr Tyr
385 390 395 400
Tyr Phe Leu Glu Gly Gln Asp Thr Gly Phe Tyr Gly Pro Ala Phe Tyr
405 410 415
Ile Glu Arg Lys Asn Gly Gly Gly Ser Lys Asn Asn Ser Ser Gly Ala
420 425 430
Gly Asn Ser Lys Asp Trp Gly Gly Asn Gly His Gly Asn His Arg Asn
435 440 445
Asn Ala Ser Asp Leu Asn Lys Pro Asp Gly Asn Asn Gly Asn Asn Gln
450 455 460
Asn Asn Gly Ser Asn Gln Asp Asn His Ser Asp Val Asn Ala Pro Asn
465 470 475 480
Asn Pro Gly Arg Asn Tyr Asp Ile Tyr Asp Pro Leu Ala Leu Asp Leu
485 490 495
Asp Gly Asp Gly Leu Glu Thr Val Ser Met Asn Gly Arg Gln Gly Ala
500 505 510
Leu Phe Asp His Glu Gly Lys Gly Ile Arg Thr Ala Thr Gly Trp Leu
515 520 525
Ala Ala Asp Asp Gly Phe Leu Val Leu Asp Arg Asn Gln Asp Gly Ile
530 535 540
Ile Asn Asp Ile Ser Glu Leu Phe Ser Asn Lys Asn Gln Leu Ser Asp
545 550 555 560
Gly Ser Ile Ser Ala His Gly Phe Ala Thr Leu Ala Asp Leu Asp Thr
565 570 575
Asn Gln Asp Gln Arg Ile Asp Gln Asn Asp Lys Leu Phe Ser Lys Leu
580 585 590
Gln Ile Trp Arg Asp Leu Asn Gln Asn Gly Phe Ser Glu Ala Asn Glu
595 600 605
Leu Phe Ser Leu Glu Ser Leu Asn Ile Lys Ser Leu His Thr Ala Tyr
610 615 620
Glu Glu Arg Asn Asp Phe Leu Ala Gly Asn Asn Ile Leu Ala Gln Leu
625 630 635 640
Gly Lys Tyr Glu Lys Thr Asp Gly Thr Phe Gly Gln Met Gly Asp Leu
645 650 655
Asn Phe Ser Phe Asn Pro Phe Tyr Ser Arg Phe Thr Glu Ala Leu Asn
660 665 670
Leu Thr Glu Gln Gln Arg Arg Thr Ile Asn Leu Thr Gly Thr Gly Arg
675 680 685
Val Arg Asp Leu Arg Glu Ala Ala Ala Leu Ser Glu Glu Leu Ala Ala
690 695 700
Leu Leu Gln Gln Tyr Thr Lys Gly Ser Asp Phe Gln Ala Gln Arg Glu
705 710 715 720
Leu Leu Pro Ala Ile Leu Asp Lys Trp Ala Ala Thr Asp Leu Gln Tyr
725 730 735
Gln His Tyr Asp Lys Thr Leu Leu Lys Thr Val Glu Ser Thr Asp Ser
740 745 750
Ser Ala Ser Val Val Arg Val Thr Pro Ser Gln Leu Ser Ser Ile Arg
755 760 765
Asn Val Lys His Asp Pro Thr Val Met Gln Asn Cys Glu Gln Ser Lys
770 775 780
Ala Lys Ile Ala Thr Leu Asn Ser Leu Tyr Gly Leu Asn Ile Asp Gln
785 790 795 800
Leu Tyr Tyr Thr Thr Asp Lys Asp Ile Arg Tyr Ile Thr Asp Lys Val
805 810 815
Asn Asn Met Tyr Gln Thr Thr Gly Glu Leu Gly Tyr Arg Ser Leu Leu
820 825 830
Leu Gln Thr Arg Val Lys Lys Tyr Val Tyr Ser Val Asn Ala Lys Gln
835 840 845
Phe Glu Gly Lys Trp Val Ala Asp Tyr Ser Arg Thr Glu Ala Leu Phe
850 855 860
Asn Ser Thr Tyr Lys Gln Ser Pro Glu Asn Val Leu Tyr Asp Leu Arg
865 870 875 880
Glu Tyr Leu Ser Phe Tyr Asn Asp Pro Thr Glu Trp Lys Glu Gly Leu
885 890 895
Leu Leu Leu Ser Arg Tyr Ile Asp Tyr Ala Lys Ala Gln Gly Phe Tyr
900 905 910
Glu Asn Trp Ala Ala Thr Ser Asn Leu Thr Ile Ala Arg Leu Arg Glu
915 920 925
Ala Gly Val Ile Cys Ala Glu Ser Thr Asp Leu Lys Gly Asp Glu Lys
930 935 940
Asn Asn Ile Val Leu Gly Ser Gln Lys Asp Asn Asn Leu Ser Gly Ser
945 950 955 960
Ala Gly Asp Asp Leu Leu Ile Gly Gly Glu Gly Asn Asp Thr Leu Lys
965 970 975
Gly Ser Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His Gly Gln
980 985 990
Asp Val Ile Tyr Glu Tyr Ser Asp Ser Ala Asn Ser Lys Lys Asp Ile
995 1000 1005
Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val Lys Phe Arg
1010 1015 1020
Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr Asp Ser
1025 1030 1035 1040
Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr Gln Phe Asp Lys
1045 1050 1055
Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Ile Lys Ala
1060 1065 1070
Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp Ile Lys Asp His
1075 1080 1085
Ala Asp Trp Asp Ser Ile Val Glu Gly Gly Lys Gly Asn Asp Ile Leu
1090 1095 1100
Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His Gly
1105 1110 1115 1120
Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala Arg Asp
1125 1130 1135
Ile Asp Thr Leu Thr Phe Thr Asp Val Asn Tyr Ala Glu Val Lys Phe
1140 1145 1150
Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr Asp
1155 1160 1165
Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp Tyr Gln Cys Asp
1170 1175 1180
Lys Leu Asp Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Gly Lys
1185 1190 1195 1200
Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp Asn Ile Asn Asp
1205 1210 1215
Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly Asn Asp Thr Val
1220 1225 1230
Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly Lys Gly Asn Asp
1235 1240 1245
Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly
1250 1255 1260
His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala
1265 1270 1275 1280
Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Ile Asn Leu Ser Glu Leu
1285 1290 1295
Trp Phe Ser Arg Glu Asn Asn Asp Leu Ile Ile Lys Ser Leu Leu Ser
1300 1305 1310
Glu Asp Lys Val Thr Val Gln Asn Trp Tyr Ser His Gln Asp His Lys
1315 1320 1325
Ile Glu Asn Ile Arg Leu Ser Asn Glu Gln Met Leu Val Ser Thr Gln
1330 1335 1340
Val Glu Lys Met Val Glu Ser Met Ala Gly Phe Ala Gln Lys His Gly
1345 1350 1355 1360
Gly Glu Ile Ser Leu Leu Ser Pro Glu Glu Val Lys Gln Tyr Ile Asn
1365 1370 1375
Ser Leu Thr Ala Ala Leu
1380




5


6736


DNA


Actinobacillus pleuropneumoniae




CDS




1..453






CDS




1132..6549






-10_signal




617..623






-35_signal




594..599






promoter




454..1131





5
atc gat atg ccg ccg ggt acg ggc gat atc caa ctt act ctt tcg caa 48
Ile Asp Met Pro Pro Gly Thr Gly Asp Ile Gln Leu Thr Leu Ser Gln
1 5 10 15
caa att ccg gtt acc ggt gcg gtg gtg gta acc act ccg caa gat att 96
Gln Ile Pro Val Thr Gly Ala Val Val Val Thr Thr Pro Gln Asp Ile
20 25 30
gcg tta tta gat gcg gtg aaa ggt att tca atg ttc caa aaa gtg tcg 144
Ala Leu Leu Asp Ala Val Lys Gly Ile Ser Met Phe Gln Lys Val Ser
35 40 45
gta ccg gtc tta ggt atc att gaa aat atg agc gta cat atc tgc caa 192
Val Pro Val Leu Gly Ile Ile Glu Asn Met Ser Val His Ile Cys Gln
50 55 60
aat tgc ggt cac cac gaa gat att ttc ggc acc ggc ggt gcg gag aaa 240
Asn Cys Gly His His Glu Asp Ile Phe Gly Thr Gly Gly Ala Glu Lys
65 70 75 80
gtg gcg aag aaa tac ggt act aaa gta tta gga caa atg ccg ttg cat 288
Val Ala Lys Lys Tyr Gly Thr Lys Val Leu Gly Gln Met Pro Leu His
85 90 95
att cgc tta cgt caa gat ttg gat gcc ggc aca ccg acc gtc gtt gcg 336
Ile Arg Leu Arg Gln Asp Leu Asp Ala Gly Thr Pro Thr Val Val Ala
100 105 110
gca ccg gaa cac gaa acc agc cga gcc tat att gaa tta gcg gca aaa 384
Ala Pro Glu His Glu Thr Ser Arg Ala Tyr Ile Glu Leu Ala Ala Lys
115 120 125
gtc gct tcg gaa tta tac tgg caa ggt tcg gtt atc ccg tct gaa att 432
Val Ala Ser Glu Leu Tyr Trp Gln Gly Ser Val Ile Pro Ser Glu Ile
130 135 140
atg att cgt gaa gta aaa taa gttttaataa ccacgaaaac acaaagaaca 483
Met Ile Arg Glu Val Lys
145 150
caagcggtag aatttgcaga aaaatttgca aatcctaccg cttttttatt agtacgattc 543
gctgttggac tgctatttga tttggtttgt caggatatta tgttattgta atgaaatgtt 603
agtgaattat ttttattaat ttgaaaggaa acaaaatgaa aataaaaaaa cgttacattg 663
cgctgttggt cttaggtgtc gttatcagct atgcctggta tcaaaattat caatgggaac 723
agctgatgtt aagcggttat tgtgaaaagg acggaagtta ttttgatgat aggcatacga 783
agcaagaact gattgatagg gcaattaact atatgctgga gcatcaatct aaaaaaacat 843
acgatgctta tactgatgaa cctttagaaa taaaaccata tttaacaata gaggaattta 903
aaaaactcaa tccaaattgt tgtgaaatta cctcatggcc agcagatgca gttccacaag 963
attgggatgt tcgtgtggaa ggtaaggcat ataggtatgt aatcgtaaaa tatttaagaa 1023
ccttagcaaa tagagaacct gaacgatggg aaactagtat tgtttttgat aattgcggca 1083
atcctaaaag agcaagctac ttatattatt taaagagaga aatttatt atg aca aaa 1140
Met Thr Lys
1
tta act atg caa gat gtg acc aat tta tat tta tat aaa acg aaa act 1188
Leu Thr Met Gln Asp Val Thr Asn Leu Tyr Leu Tyr Lys Thr Lys Thr
5 10 15
cta cct aaa gat aga ttg gat gat tca ctt att tct gaa ata gga aaa 1236
Leu Pro Lys Asp Arg Leu Asp Asp Ser Leu Ile Ser Glu Ile Gly Lys
20 25 30 35
gga gat gat gat att gat aga aaa gaa ttt atg gtg ggg ccg gga cgt 1284
Gly Asp Asp Asp Ile Asp Arg Lys Glu Phe Met Val Gly Pro Gly Arg
40 45 50
ttt gtg acc gct gat aac ttt agc gtt gta aga gat ttt ttt aat gct 1332
Phe Val Thr Ala Asp Asn Phe Ser Val Val Arg Asp Phe Phe Asn Ala
55 60 65
ggg aaa tca cgc att att gcg ccg caa gtc ccg cct att cgt tca cag 1380
Gly Lys Ser Arg Ile Ile Ala Pro Gln Val Pro Pro Ile Arg Ser Gln
70 75 80
cag gaa aaa atc ttg gtc ggt tta aaa ccg ggc aaa tat tcc aaa gcg 1428
Gln Glu Lys Ile Leu Val Gly Leu Lys Pro Gly Lys Tyr Ser Lys Ala
85 90 95
cag ata ttg gaa atg ctg ggt tat acg aaa ggc gga gaa gtg gta aat 1476
Gln Ile Leu Glu Met Leu Gly Tyr Thr Lys Gly Gly Glu Val Val Asn
100 105 110 115
ggc atg ttt gcc ggt gaa gtc cag aca tta ggc ttt tat gac gat ggc 1524
Gly Met Phe Ala Gly Glu Val Gln Thr Leu Gly Phe Tyr Asp Asp Gly
120 125 130
aaa ggg gat tta ctc gaa cgc gcc tat atc tgg aat acc aca gga ttt 1572
Lys Gly Asp Leu Leu Glu Arg Ala Tyr Ile Trp Asn Thr Thr Gly Phe
135 140 145
aaa atg agc gac aat gcc ttt ttt gtt ata gaa gaa tca ggc aaa cgc 1620
Lys Met Ser Asp Asn Ala Phe Phe Val Ile Glu Glu Ser Gly Lys Arg
150 155 160
tat att gaa aac ttt ggt att gaa cct ctt ggt aag caa gaa gat ttt 1668
Tyr Ile Glu Asn Phe Gly Ile Glu Pro Leu Gly Lys Gln Glu Asp Phe
165 170 175
gat ttt gtc ggc ggc ttt tgg tct aac tta gtg aat cgt ggt ttg gaa 1716
Asp Phe Val Gly Gly Phe Trp Ser Asn Leu Val Asn Arg Gly Leu Glu
180 185 190 195
agt att atc gac cca tcc ggt atc ggt gga acg gta aac ctt aac ttt 1764
Ser Ile Ile Asp Pro Ser Gly Ile Gly Gly Thr Val Asn Leu Asn Phe
200 205 210
acc ggc gag gtg gaa acc tac acg tta gac gaa aca agg ttt aaa gcg 1812
Thr Gly Glu Val Glu Thr Tyr Thr Leu Asp Glu Thr Arg Phe Lys Ala
215 220 225
gaa gcg gcg aag aaa agc cat tgg agt tta gtg aat gcg gcg aaa gta 1860
Glu Ala Ala Lys Lys Ser His Trp Ser Leu Val Asn Ala Ala Lys Val
230 235 240
tac ggc ggt tta gac caa att att aaa aaa cta tgg gac agt ggc tca 1908
Tyr Gly Gly Leu Asp Gln Ile Ile Lys Lys Leu Trp Asp Ser Gly Ser
245 250 255
att aag cat tta tat caa gat aaa gat acg ggc aaa tta aaa ccg att 1956
Ile Lys His Leu Tyr Gln Asp Lys Asp Thr Gly Lys Leu Lys Pro Ile
260 265 270 275
att tac ggc acg gcc ggc aac gac agt aag att gaa ggc act aaa atc 2004
Ile Tyr Gly Thr Ala Gly Asn Asp Ser Lys Ile Glu Gly Thr Lys Ile
280 285 290
acc cgt agg att gcg ggt aaa gaa gtt acg ctt gat att gcc aat cag 2052
Thr Arg Arg Ile Ala Gly Lys Glu Val Thr Leu Asp Ile Ala Asn Gln
295 300 305
aaa att gaa aaa ggc gtg tta gag aaa ttg ggg ctg tct gtt agt ggt 2100
Lys Ile Glu Lys Gly Val Leu Glu Lys Leu Gly Leu Ser Val Ser Gly
310 315 320
tcg gat atc att aaa ttg ttg ttt gga gca ttg act cca act tta aat 2148
Ser Asp Ile Ile Lys Leu Leu Phe Gly Ala Leu Thr Pro Thr Leu Asn
325 330 335
aga atg ttg cta tca caa ctt atc cag tct ttt tcc gat agc ttg gct 2196
Arg Met Leu Leu Ser Gln Leu Ile Gln Ser Phe Ser Asp Ser Leu Ala
340 345 350 355
aaa ctt gat aat ccc tta gcc cct tac act aaa aat ggc gtg gtt tat 2244
Lys Leu Asp Asn Pro Leu Ala Pro Tyr Thr Lys Asn Gly Val Val Tyr
360 365 370
gtc acc ggc aaa ggg aat gat gtg ctt aaa gga act gaa cat gag gat 2292
Val Thr Gly Lys Gly Asn Asp Val Leu Lys Gly Thr Glu His Glu Asp
375 380 385
ttg ttt ctc ggt ggt gag ggg aat gat act tat tat gcg aga gta ggc 2340
Leu Phe Leu Gly Gly Glu Gly Asn Asp Thr Tyr Tyr Ala Arg Val Gly
390 395 400
gat aca att gaa gac gcc gac ggc aaa ggt aaa gtc tat ttt gtg aga 2388
Asp Thr Ile Glu Asp Ala Asp Gly Lys Gly Lys Val Tyr Phe Val Arg
405 410 415
gaa aaa ggg gta cct aag gcg gat cct aag cgg gta gag ttt agc gag 2436
Glu Lys Gly Val Pro Lys Ala Asp Pro Lys Arg Val Glu Phe Ser Glu
420 425 430 435
tac ata acg aaa gaa gaa ata aaa gag gtt gaa aag ggg tta tta act 2484
Tyr Ile Thr Lys Glu Glu Ile Lys Glu Val Glu Lys Gly Leu Leu Thr
440 445 450
tac gca gtt tta gaa aat tat aat tgg gaa gag aaa acg gcg act ttc 2532
Tyr Ala Val Leu Glu Asn Tyr Asn Trp Glu Glu Lys Thr Ala Thr Phe
455 460 465
gct cat gcg act atg ctt aat gag ctt ttt act gat tat act aat tat 2580
Ala His Ala Thr Met Leu Asn Glu Leu Phe Thr Asp Tyr Thr Asn Tyr
470 475 480
cgt tat gaa gtt aaa gga cta aaa ttg ccc gcc gtt aaa aag tta aaa 2628
Arg Tyr Glu Val Lys Gly Leu Lys Leu Pro Ala Val Lys Lys Leu Lys
485 490 495
agt ccg ttg gtg gag ttt aca gct gat tta tta act gtt acg cct att 2676
Ser Pro Leu Val Glu Phe Thr Ala Asp Leu Leu Thr Val Thr Pro Ile
500 505 510 515
gac gaa aac gga aaa gca ctt agc gaa aaa agt att acg gtt aaa aat 2724
Asp Glu Asn Gly Lys Ala Leu Ser Glu Lys Ser Ile Thr Val Lys Asn
520 525 530
ttt aaa aat ggt gat tta gga ata agg ttg ttg gat cct aat agc tat 2772
Phe Lys Asn Gly Asp Leu Gly Ile Arg Leu Leu Asp Pro Asn Ser Tyr
535 540 545
tat tat ttc ctt gaa ggc caa gat acg ggt ttt tat ggt cct gct ttt 2820
Tyr Tyr Phe Leu Glu Gly Gln Asp Thr Gly Phe Tyr Gly Pro Ala Phe
550 555 560
tat att gaa cga aaa aac ggt ggc ggc gct aaa aat aac tcg tcg gga 2868
Tyr Ile Glu Arg Lys Asn Gly Gly Gly Ala Lys Asn Asn Ser Ser Gly
565 570 575
gca gga aat agc aaa gat tgg ggc ggg aac ggg cat gga aat cac cga 2916
Ala Gly Asn Ser Lys Asp Trp Gly Gly Asn Gly His Gly Asn His Arg
580 585 590 595
aat aat gcc tcc gac ctg aat aaa ccg gac gga aat aat ggg aat aac 2964
Asn Asn Ala Ser Asp Leu Asn Lys Pro Asp Gly Asn Asn Gly Asn Asn
600 605 610
caa aat aac gga agc aat caa gat aat cat agc gat gtg aat gcg cca 3012
Gln Asn Asn Gly Ser Asn Gln Asp Asn His Ser Asp Val Asn Ala Pro
615 620 625
aat aac ccg gga cgt aac tat gat att tac gat cct tta gct tta gat 3060
Asn Asn Pro Gly Arg Asn Tyr Asp Ile Tyr Asp Pro Leu Ala Leu Asp
630 635 640
tta gat gga gat ggg ctt gaa acc gtg tcg atg aac ggg cga caa ggc 3108
Leu Asp Gly Asp Gly Leu Glu Thr Val Ser Met Asn Gly Arg Gln Gly
645 650 655
gcg tta ttc gat cat gaa gga aaa ggt att cgt acc gca acg ggc tgg 3156
Ala Leu Phe Asp His Glu Gly Lys Gly Ile Arg Thr Ala Thr Gly Trp
660 665 670 675
ctc gct gcg gat gac ggt ttt tta gtg tta gat cgt aac caa gac ggc 3204
Leu Ala Ala Asp Asp Gly Phe Leu Val Leu Asp Arg Asn Gln Asp Gly
680 685 690
att att aat gat ata agc gag tta ttt agt aat aaa aat caa ctt tcc 3252
Ile Ile Asn Asp Ile Ser Glu Leu Phe Ser Asn Lys Asn Gln Leu Ser
695 700 705
gac ggc agt att tct gca cac ggt ttt gcg aca tta gcc gat ttg gat 3300
Asp Gly Ser Ile Ser Ala His Gly Phe Ala Thr Leu Ala Asp Leu Asp
710 715 720
aca aac caa gat cag cgt atc gac caa aat gat aag ctg ttt tct aaa 3348
Thr Asn Gln Asp Gln Arg Ile Asp Gln Asn Asp Lys Leu Phe Ser Lys
725 730 735
ctc caa att tgg cgg gat tta aat caa aac ggt ttt agt gaa gcg aat 3396
Leu Gln Ile Trp Arg Asp Leu Asn Gln Asn Gly Phe Ser Glu Ala Asn
740 745 750 755
gag ctg ttt agc tta gaa agt ttg aat att aaa tct tta cat acc gcc 3444
Glu Leu Phe Ser Leu Glu Ser Leu Asn Ile Lys Ser Leu His Thr Ala
760 765 770
tat gaa gag cgt aat gat ttt cta gcg ggc aat aat atc ctt gct cag 3492
Tyr Glu Glu Arg Asn Asp Phe Leu Ala Gly Asn Asn Ile Leu Ala Gln
775 780 785
ctt ggg aag tat gaa aaa acg gac ggt act ttt gca caa atg ggc gat 3540
Leu Gly Lys Tyr Glu Lys Thr Asp Gly Thr Phe Ala Gln Met Gly Asp
790 795 800
tta aat ttc agt ttt aac ccg ttt tat agc cga ttt acc gaa gcg tta 3588
Leu Asn Phe Ser Phe Asn Pro Phe Tyr Ser Arg Phe Thr Glu Ala Leu
805 810 815
aat tta acc gag caa caa cgt cgc aca att aat cta acc ggc acc ggt 3636
Asn Leu Thr Glu Gln Gln Arg Arg Thr Ile Asn Leu Thr Gly Thr Gly
820 825 830 835
cgg gtt cgg gat ttg cgt gaa gcc gcc gca ctt tct gag gag ttg gct 3684
Arg Val Arg Asp Leu Arg Glu Ala Ala Ala Leu Ser Glu Glu Leu Ala
840 845 850
gct tta tta caa cag tac act aag gcc tcc gat ttt cag gca caa cga 3732
Ala Leu Leu Gln Gln Tyr Thr Lys Ala Ser Asp Phe Gln Ala Gln Arg
855 860 865
gaa tta ttg cct gcc att tta gat aaa tgg gcg gca acg gat tta cag 3780
Glu Leu Leu Pro Ala Ile Leu Asp Lys Trp Ala Ala Thr Asp Leu Gln
870 875 880
tat caa cat tat gat aaa aca tta ctt aaa acg gta gaa agt acc gat 3828
Tyr Gln His Tyr Asp Lys Thr Leu Leu Lys Thr Val Glu Ser Thr Asp
885 890 895
agt agt gct tct gtc gtt aga gtc acg cct tct caa tta agt agt ata 3876
Ser Ser Ala Ser Val Val Arg Val Thr Pro Ser Gln Leu Ser Ser Ile
900 905 910 915
cgc aat gca aag cat gat cct acc gtt atg caa aac ttt gaa cag agt 3924
Arg Asn Ala Lys His Asp Pro Thr Val Met Gln Asn Phe Glu Gln Ser
920 925 930
aag gca aaa att gcg act tta aat tcg ctc tac ggg tta aat atc gat 3972
Lys Ala Lys Ile Ala Thr Leu Asn Ser Leu Tyr Gly Leu Asn Ile Asp
935 940 945
caa ctt tat tac acg acg gat aaa gac att cgc tat att act gat aaa 4020
Gln Leu Tyr Tyr Thr Thr Asp Lys Asp Ile Arg Tyr Ile Thr Asp Lys
950 955 960
gtg aat aat atg tat caa aca acc gta gaa ctt gcc tac cgt tct tta 4068
Val Asn Asn Met Tyr Gln Thr Thr Val Glu Leu Ala Tyr Arg Ser Leu
965 970 975
ctt tta caa acg cgt ttg aag aaa tat gtt tat agc gtt aat gcg aaa 4116
Leu Leu Gln Thr Arg Leu Lys Lys Tyr Val Tyr Ser Val Asn Ala Lys
980 985 990 995
caa ttc gaa ggg aaa tgg gta acc gat tat tct cgt act gaa gcc tta 4164
Gln Phe Glu Gly Lys Trp Val Thr Asp Tyr Ser Arg Thr Glu Ala Leu
1000 1005 1010
ttt aac tct act ttt aaa caa tcg cct gaa aat gca tta tat gat tta 4212
Phe Asn Ser Thr Phe Lys Gln Ser Pro Glu Asn Ala Leu Tyr Asp Leu
1015 1020 1025
agc gaa tac ctt tct ttc ttt aac gat cct acg gaa tgg aaa gaa ggg 4260
Ser Glu Tyr Leu Ser Phe Phe Asn Asp Pro Thr Glu Trp Lys Glu Gly
1030 1035 1040
cta tta ctg tta agc cgt tat ata gat tat gct aaa gca caa gga ttt 4308
Leu Leu Leu Leu Ser Arg Tyr Ile Asp Tyr Ala Lys Ala Gln Gly Phe
1045 1050 1055
tat gaa aac tgg gcg gct act tct aac tta act att gcc cgt tta aga 4356
Tyr Glu Asn Trp Ala Ala Thr Ser Asn Leu Thr Ile Ala Arg Leu Arg
1060 1065 1070 1075
gag gct gga gta att ttt gca gaa tcg acg gat tta aaa ggc gat gaa 4404
Glu Ala Gly Val Ile Phe Ala Glu Ser Thr Asp Leu Lys Gly Asp Glu
1080 1085 1090
aaa aat aat att ttg tta ggt agc caa aaa gat aat aac tta tcg ggt 4452
Lys Asn Asn Ile Leu Leu Gly Ser Gln Lys Asp Asn Asn Leu Ser Gly
1095 1100 1105
agt gca ggt gat gat cta ctt atc ggc gga gag ggt aat gat acg tta 4500
Ser Ala Gly Asp Asp Leu Leu Ile Gly Gly Glu Gly Asn Asp Thr Leu
1110 1115 1120
aaa ggc agc tac ggt gca gac acc tat atc ttt agc aaa gga cac gga 4548
Lys Gly Ser Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His Gly
1125 1130 1135
cag gat atc gtt tat gaa gat acc aat aat gat aac cgc gca aga gat 4596
Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala Arg Asp
1140 1145 1150 1155
atc gac acc tta aaa ttt acc gat gtg aat tat gcg gaa gtg aag ttt 4644
Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val Lys Phe
1160 1165 1170
cga cga gta gat aat gac tta atg tta ttc ggt tat cat gat acg gat 4692
Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr Asp
1175 1180 1185
tcg gtc acg gta aaa tcc ttc tac agc cat gta gat tat caa ttt gac 4740
Ser Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr Gln Phe Asp
1190 1195 1200
aaa ttg gag ttt gct gac cgc agt ata act cgc gat gaa ctg att aaa 4788
Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Ile Lys
1205 1210 1215
gca ggg ctt cat cta tac ggc acc gat ggc aat gat gat ata aag gat 4836
Ala Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp Ile Lys Asp
1220 1225 1230 1235
cat gcg gat tgg gac agc att ttg gaa ggc ggc aaa ggc aac gat att 4884
His Ala Asp Trp Asp Ser Ile Leu Glu Gly Gly Lys Gly Asn Asp Ile
1240 1245 1250
cta aga ggt ggc tac ggt gcg gac acc tat atc ttt agc aaa gga cac 4932
Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys Gly His
1255 1260 1265
gga cag gat atc gtt tat gaa gat acc aat aat gat aac cgc gca aga 4980
Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg Ala Arg
1270 1275 1280
gat atc gac acc tta aaa ttt act gat gtg aat tat gcg gaa gtg aaa 5028
Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu Val Lys
1285 1290 1295
ttc cga cga gta gat aat gac tta atg tta ttc ggt tat cat gat acg 5076
Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His Asp Thr
1300 1305 1310 1315
gat tcg gtc acg ata aaa tcc ttc tac aac cat gta gat tat caa ttt 5124
Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp Tyr Gln Phe
1320 1325 1330
gac aaa ttg gaa ttt gct gac cgc agt ata act cgt gat gaa cta ggt 5172
Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu Leu Gly
1335 1340 1345
aaa caa ggt atg gca tta ttt ggc act gac ggt gat gat aat atc aac 5220
Lys Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp Asn Ile Asn
1350 1355 1360
gac tgg gga cgt aac tcg gtg att gat gcc ggt gcg ggt aat gat acg 5268
Asp Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly Asn Asp Thr
1365 1370 1375
gtt aat ggc ggt aat ggc gat gac acc ctc atc ggc ggc aaa ggt aat 5316
Val Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly Lys Gly Asn
1380 1385 1390 1395
gat att cta aga ggt ggc tac ggt gcg gac acc tat atc ttt agc aaa 5364
Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys
1400 1405 1410
gga cac gga cag gat atc gtt tat gaa gat acc aat aat gat aac cgc 5412
Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg
1415 1420 1425
gca aga gat atc gac acc tta aaa ttt acc gat gtg aat tat gcg gaa 5460
Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu
1430 1435 1440
gtg aaa ttc cga cga gta gat aat gac tta atg tta ttc ggt tat cat 5508
Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His
1445 1450 1455
gat acg gat tcg gtc acg gta aaa tcc ttc tac agc cat gta gat tat 5556
Asp Thr Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr
1460 1465 1470 1475
caa ttt gac aaa ttg gag ttt gct gac cgc agt ata act cgc gat gaa 5604
Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu
1480 1485 1490
ctg att aaa gca ggg ctt cat cta tac ggc acc gat ggc aat gat gat 5652
Leu Ile Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp
1495 1500 1505
ata aag gat cat gcg gat tgg gac agc att ttg gaa ggc ggc aaa ggc 5700
Ile Lys Asp His Ala Asp Trp Asp Ser Ile Leu Glu Gly Gly Lys Gly
1510 1515 1520
aac gat att cta aga ggt ggc tac ggt gcg gac acc tat atc ttt agc 5748
Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser
1525 1530 1535
aaa gga cac gga cag gat atc gtt tat gaa gat acc aat aat gat aac 5796
Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn
1540 1545 1550 1555
cga gca aga gat atc gac acc tta aaa ttt act gat gtg aat tat gcg 5844
Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala
1560 1565 1570
gaa gtg aaa ttc cga cga gta gat aat gac tta atg tta ttc ggt tat 5892
Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr
1575 1580 1585
cat gat acg gat tcg gtc acg ata aaa tcc ttc tac aac cat gta gat 5940
His Asp Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp
1590 1595 1600
tat caa ttt gac aaa ttg gaa ttt gct gac cgc agt ata act cgt gat 5988
Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp
1605 1610 1615
gaa cta ggt aaa caa ggt atg gca tta ttt ggc act gac ggt gat gat 6036
Glu Leu Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp
1620 1625 1630 1635
aat atc aac gac tgg gga cgt aac tcg gtg att gat gcc ggt gcg ggt 6084
Asn Ile Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly
1640 1645 1650
aat gat acg gtt aat ggc ggt aat ggc gat gac acc ctc atc ggc ggc 6132
Asn Asp Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly
1655 1660 1665
aaa ggt aat gat att cta aga ggt ggc tac ggt gcg gac acc tat atc 6180
Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile
1670 1675 1680
ttt agc aaa gga cac gga cag gat atc gtt tat gaa gat acc aat aat 6228
Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn
1685 1690 1695
gat aac cgc gca aga gat atc gac acc tta aaa ttt act gat att aat 6276
Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Ile Asn
1700 1705 1710 1715
tta tcc gaa ctt tgg ttt agc cga gaa aat aac gat ttg att att aaa 6324
Leu Ser Glu Leu Trp Phe Ser Arg Glu Asn Asn Asp Leu Ile Ile Lys
1720 1725 1730
tca tta tta agt gag gat aaa gtc acg gtt caa aat tgg tat tca cac 6372
Ser Leu Leu Ser Glu Asp Lys Val Thr Val Gln Asn Trp Tyr Ser His
1735 1740 1745
caa gat cat aaa ata gaa aat att cgt tta tcg aat gag caa acg ttg 6420
Gln Asp His Lys Ile Glu Asn Ile Arg Leu Ser Asn Glu Gln Thr Leu
1750 1755 1760
gtg agc act cag gtg gag aag atg gtt gag tcg atg gcc ggc ttt gct 6468
Val Ser Thr Gln Val Glu Lys Met Val Glu Ser Met Ala Gly Phe Ala
1765 1770 1775
gag aag cac gga gga gag ata tct ctt gtg tcg ctt gaa gag gta aaa 6516
Gln Lys His Gly Gly Glu Ile Ser Leu Val Ser Leu Glu Glu Val Lys
1780 1785 1790 1795
caa tat atc aat agc tta aca gct gct tta taa catacgaaag aaatcggcac 6569
Gln Tyr Ile Asn Ser Leu Thr Ala Ala Leu
1800 1805
agtttttttg aactgtgccg atttgatttt agtgtaagaa tatagcctga ttttaagaaa 6629
tttactcttg gctaataact atttcccatt ttataagtta ttgacggatg gttttatcaa 6689
atatgagatc aaatcttatt ttaaattcgc tttccattaa gcgatat 6736




6


150


PRT


Actinobacillus pleuropneumoniae



6
Ile Asp Met Pro Pro Gly Thr Gly Asp Ile Gln Leu Thr Leu Ser Gln
1 5 10 15
Gln Ile Pro Val Thr Gly Ala Val Val Val Thr Thr Pro Gln Asp Ile
20 25 30
Ala Leu Leu Asp Ala Val Lys Gly Ile Ser Met Phe Gln Lys Val Ser
35 40 45
Val Pro Val Leu Gly Ile Ile Glu Asn Met Ser Val His Ile Cys Gln
50 55 60
Asn Cys Gly His His Glu Asp Ile Phe Gly Thr Gly Gly Ala Glu Lys
65 70 75 80
Val Ala Lys Lys Tyr Gly Thr Lys Val Leu Gly Gln Met Pro Leu His
85 90 95
Ile Arg Leu Arg Gln Asp Leu Asp Ala Gly Thr Pro Thr Val Val Ala
100 105 110
Ala Pro Glu His Glu Thr Ser Arg Ala Tyr Ile Glu Leu Ala Ala Lys
115 120 125
Val Ala Ser Glu Leu Tyr Trp Gln Gly Ser Val Ile Pro Ser Glu Ile
130 135 140
Met Ile Arg Glu Val Lys
145 150




7


1805


PRT


Actinobacillus pleuropneumoniae



7
Met Thr Lys Leu Thr Met Gln Asp Val Thr Asn Leu Tyr Leu Tyr Lys
1 5 10 15
Thr Lys Thr Leu Pro Lys Asp Arg Leu Asp Asp Ser Leu Ile Ser Glu
20 25 30
Ile Gly Lys Gly Asp Asp Asp Ile Asp Arg Lys Glu Phe Met Val Gly
35 40 45
Pro Gly Arg Phe Val Thr Ala Asp Asn Phe Ser Val Val Arg Asp Phe
50 55 60
Phe Asn Ala Gly Lys Ser Arg Ile Ile Ala Pro Gln Val Pro Pro Ile
65 70 75 80
Arg Ser Gln Gln Glu Lys Ile Leu Val Gly Leu Lys Pro Gly Lys Tyr
85 90 95
Ser Lys Ala Gln Ile Leu Glu Met Leu Gly Tyr Thr Lys Gly Gly Glu
100 105 110
Val Val Asn Gly Met Phe Ala Gly Glu Val Gln Thr Leu Gly Phe Tyr
115 120 125
Asp Asp Gly Lys Gly Asp Leu Leu Glu Arg Ala Tyr Ile Trp Asn Thr
130 135 140
Thr Gly Phe Lys Met Ser Asp Asn Ala Phe Phe Val Ile Glu Glu Ser
145 150 155 160
Gly Lys Arg Tyr Ile Glu Asn Phe Gly Ile Glu Pro Leu Gly Lys Gln
165 170 175
Glu Asp Phe Asp Phe Val Gly Gly Phe Trp Ser Asn Leu Val Asn Arg
180 185 190
Gly Leu Glu Ser Ile Ile Asp Pro Ser Gly Ile Gly Gly Thr Val Asn
195 200 205
Leu Asn Phe Thr Gly Glu Val Glu Thr Tyr Thr Leu Asp Glu Thr Arg
210 215 220
Phe Lys Ala Glu Ala Ala Lys Lys Ser His Trp Ser Leu Val Asn Ala
225 230 235 240
Ala Lys Val Tyr Gly Gly Leu Asp Gln Ile Ile Lys Lys Leu Trp Asp
245 250 255
Ser Gly Ser Ile Lys His Leu Tyr Gln Asp Lys Asp Thr Gly Lys Leu
260 265 270
Lys Pro Ile Ile Tyr Gly Thr Ala Gly Asn Asp Ser Lys Ile Glu Gly
275 280 285
Thr Lys Ile Thr Arg Arg Ile Ala Gly Lys Glu Val Thr Leu Asp Ile
290 295 300
Ala Asn Gln Lys Ile Glu Lys Gly Val Leu Glu Lys Leu Gly Leu Ser
305 310 315 320
Val Ser Gly Ser Asp Ile Ile Lys Leu Leu Phe Gly Ala Leu Thr Pro
325 330 335
Thr Leu Asn Arg Met Leu Leu Ser Gln Leu Ile Gln Ser Phe Ser Asp
340 345 350
Ser Leu Ala Lys Leu Asp Asn Pro Leu Ala Pro Tyr Thr Lys Asn Gly
355 360 365
Val Val Tyr Val Thr Gly Lys Gly Asn Asp Val Leu Lys Gly Thr Glu
370 375 380
His Glu Asp Leu Phe Leu Gly Gly Glu Gly Asn Asp Thr Tyr Tyr Ala
385 390 395 400
Arg Val Gly Asp Thr Ile Glu Asp Ala Asp Gly Lys Gly Lys Val Tyr
405 410 415
Phe Val Arg Glu Lys Gly Val Pro Lys Ala Asp Pro Lys Arg Val Glu
420 425 430
Phe Ser Glu Tyr Ile Thr Lys Glu Glu Ile Lys Glu Val Glu Lys Gly
435 440 445
Leu Leu Thr Tyr Ala Val Leu Glu Asn Tyr Asn Trp Glu Glu Lys Thr
450 455 460
Ala Thr Phe Ala His Ala Thr Met Leu Asn Glu Leu Phe Thr Asp Tyr
465 470 475 480
Thr Asn Tyr Arg Tyr Glu Val Lys Gly Leu Lys Leu Pro Ala Val Lys
485 490 495
Lys Leu Lys Ser Pro Leu Val Glu Phe Thr Ala Asp Leu Leu Thr Val
500 505 510
Thr Pro Ile Asp Glu Asn Gly Lys Ala Leu Ser Glu Lys Ser Ile Thr
515 520 525
Val Lys Asn Phe Lys Asn Gly Asp Leu Gly Ile Arg Leu Leu Asp Pro
530 535 540
Asn Ser Tyr Tyr Tyr Phe Leu Glu Gly Gln Asp Thr Gly Phe Tyr Gly
545 550 555 560
Pro Ala Phe Tyr Ile Glu Arg Lys Asn Gly Gly Gly Ala Lys Asn Asn
565 570 575
Ser Ser Gly Ala Gly Asn Ser Lys Asp Trp Gly Gly Asn Gly His Gly
580 585 590
Asn His Arg Asn Asn Ala Ser Asp Leu Asn Lys Pro Asp Gly Asn Asn
595 600 605
Gly Asn Asn Gln Asn Asn Gly Ser Asn Gln Asp Asn His Ser Asp Val
610 615 620
Asn Ala Pro Asn Asn Pro Gly Arg Asn Tyr Asp Ile Tyr Asp Pro Leu
625 630 635 640
Ala Leu Asp Leu Asp Gly Asp Gly Leu Glu Thr Val Ser Met Asn Gly
645 650 655
Arg Gln Gly Ala Leu Phe Asp His Glu Gly Lys Gly Ile Arg Thr Ala
660 665 670
Thr Gly Trp Leu Ala Ala Asp Asp Gly Phe Leu Val Leu Asp Arg Asn
675 680 685
Gln Asp Gly Ile Ile Asn Asp Ile Ser Glu Leu Phe Ser Asn Lys Asn
690 695 700
Gln Leu Ser Asp Gly Ser Ile Ser Ala His Gly Phe Ala Thr Leu Ala
705 710 715 720
Asp Leu Asp Thr Asn Gln Asp Gln Arg Ile Asp Gln Asn Asp Lys Leu
725 730 735
Phe Ser Lys Leu Gln Ile Trp Arg Asp Leu Asn Gln Asn Gly Phe Ser
740 745 750
Glu Ala Asn Glu Leu Phe Ser Leu Glu Ser Leu Asn Ile Lys Ser Leu
755 760 765
His Thr Ala Tyr Glu Glu Arg Asn Asp Phe Leu Ala Gly Asn Asn Ile
770 775 780
Leu Ala Gln Leu Gly Lys Tyr Glu Lys Thr Asp Gly Thr Phe Ala Gln
785 790 795 800
Met Gly Asp Leu Asn Phe Ser Phe Asn Pro Phe Tyr Ser Arg Phe Thr
805 810 815
Glu Ala Leu Asn Leu Thr Glu Gln Gln Arg Arg Thr Ile Asn Leu Thr
820 825 830
Gly Thr Gly Arg Val Arg Asp Leu Arg Glu Ala Ala Ala Leu Ser Glu
835 840 845
Glu Leu Ala Ala Leu Leu Gln Gln Tyr Thr Lys Ala Ser Asp Phe Gln
850 855 860
Ala Gln Arg Glu Leu Leu Pro Ala Ile Leu Asp Lys Trp Ala Ala Thr
865 870 875 880
Asp Leu Gln Tyr Gln His Tyr Asp Lys Thr Leu Leu Lys Thr Val Glu
885 890 895
Ser Thr Asp Ser Ser Ala Ser Val Val Arg Val Thr Pro Ser Gln Leu
900 905 910
Ser Ser Ile Arg Asn Ala Lys His Asp Pro Thr Val Met Gln Asn Phe
915 920 925
Glu Gln Ser Lys Ala Lys Ile Ala Thr Leu Asn Ser Leu Tyr Gly Leu
930 935 940
Asn Ile Asp Gln Leu Tyr Tyr Thr Thr Asp Lys Asp Ile Arg Tyr Ile
945 950 955 960
Thr Asp Lys Val Asn Asn Met Tyr Gln Thr Thr Val Glu Leu Ala Tyr
965 970 975
Arg Ser Leu Leu Leu Gln Thr Arg Leu Lys Lys Tyr Val Tyr Ser Val
980 985 990
Asn Ala Lys Gln Phe Glu Gly Lys Trp Val Thr Asp Tyr Ser Arg Thr
995 1000 1005
Glu Ala Leu Phe Asn Ser Thr Phe Lys Gln Ser Pro Glu Asn Ala Leu
1010 1015 1020
Tyr Asp Leu Ser Glu Tyr Leu Ser Phe Phe Asn Asp Pro Thr Glu Trp
1025 1030 1035 1040
Lys Glu Gly Leu Leu Leu Leu Ser Arg Tyr Ile Asp Tyr Ala Lys Ala
1045 1050 1055
Gln Gly Phe Tyr Glu Asn Trp Ala Ala Thr Ser Asn Leu Thr Ile Ala
1060 1065 1070
Arg Leu Arg Glu Ala Gly Val Ile Phe Ala Glu Ser Thr Asp Leu Lys
1075 1080 1085
Gly Asp Glu Lys Asn Asn Ile Leu Leu Gly Ser Gln Lys Asp Asn Asn
1090 1095 1100
Leu Ser Gly Ser Ala Gly Asp Asp Leu Leu Ile Gly Gly Glu Gly Asn
1105 1110 1115 1120
Asp Thr Leu Lys Gly Ser Tyr Gly Ala Asp Thr Tyr Ile Phe Ser Lys
1125 1130 1135
Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn Arg
1140 1145 1150
Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala Glu
1155 1160 1165
Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr His
1170 1175 1180
Asp Thr Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His Val Asp Tyr
1185 1190 1195 1200
Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp Glu
1205 1210 1215
Leu Ile Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly Asn Asp Asp
1220 1225 1230
Ile Lys Asp His Ala Asp Trp Asp Ser Ile Leu Glu Gly Gly Lys Gly
1235 1240 1245
Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile Phe Ser
1250 1255 1260
Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn Asp Asn
1265 1270 1275 1280
Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn Tyr Ala
1285 1290 1295
Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe Gly Tyr
1300 1305 1310
His Asp Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn His Val Asp
1315 1320 1325
Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr Arg Asp
1330 1335 1340
Glu Leu Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp Gly Asp Asp
1345 1350 1355 1360
Asn Ile Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala Gly Ala Gly
1365 1370 1375
Asn Asp Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu Ile Gly Gly
1380 1385 1390
Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr Ile
1395 1400 1405
Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn Asn
1410 1415 1420
Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val Asn
1425 1430 1435 1440
Tyr Ala Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu Phe
1445 1450 1455
Gly Tyr His Asp Thr Asp Ser Val Thr Val Lys Ser Phe Tyr Ser His
1460 1465 1470
Val Asp Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile Thr
1475 1480 1485
Arg Asp Glu Leu Ile Lys Ala Gly Leu His Leu Tyr Gly Thr Asp Gly
1490 1495 1500
Asn Asp Asp Ile Lys Asp His Ala Asp Trp Asp Ser Ile Leu Glu Gly
1505 1510 1515 1520
Gly Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp Thr Tyr
1525 1530 1535
Ile Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp Thr Asn
1540 1545 1550
Asn Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr Asp Val
1555 1560 1565
Asn Tyr Ala Glu Val Lys Phe Arg Arg Val Asp Asn Asp Leu Met Leu
1570 1575 1580
Phe Gly Tyr His Asp Thr Asp Ser Val Thr Ile Lys Ser Phe Tyr Asn
1585 1590 1595 1600
His Val Asp Tyr Gln Phe Asp Lys Leu Glu Phe Ala Asp Arg Ser Ile
1605 1610 1615
Thr Arg Asp Glu Leu Gly Lys Gln Gly Met Ala Leu Phe Gly Thr Asp
1620 1625 1630
Gly Asp Asp Asn Ile Asn Asp Trp Gly Arg Asn Ser Val Ile Asp Ala
1635 1640 1645
Gly Ala Gly Asn Asp Thr Val Asn Gly Gly Asn Gly Asp Asp Thr Leu
1650 1655 1660
Ile Gly Gly Lys Gly Asn Asp Ile Leu Arg Gly Gly Tyr Gly Ala Asp
1665 1670 1675 1680
Thr Tyr Ile Phe Ser Lys Gly His Gly Gln Asp Ile Val Tyr Glu Asp
1685 1690 1695
Thr Asn Asn Asp Asn Arg Ala Arg Asp Ile Asp Thr Leu Lys Phe Thr
1700 1705 1710
Asp Ile Asn Leu Ser Glu Leu Trp Phe Ser Arg Glu Asn Asn Asp Leu
1715 1720 1725
Ile Ile Lys Ser Leu Leu Ser Glu Asp Lys Val Thr Val Gln Asn Trp
1730 1735 1740
Tyr Ser His Gln Asp His Lys Ile Glu Asn Ile Arg Leu Ser Asn Glu
1745 1750 1755 1760
Gln Thr Leu Val Ser Thr Gln Val Glu Lys Met Val Glu Ser Met Ala
1765 1770 1775
Gly Phe Ala Gln Lys His Gly Gly Glu Ile Ser Leu Val Ser Leu Glu
1780 1785 1790
Glu Val Lys Gln Tyr Ile Asn Ser Leu Thr Ala Ala Leu
1795 1800 1805




8


18


DNA


Actinobacillus pleuropneumoniae



8
tggcactgac ggtgatga 18




9


18


DNA


Actinobacillus pleuropneumoniae



9
ggccatcgac tcaaccat 18




10


26


DNA


Actinobacillus pleuropneumoniae



10
agccatatgg gcgatttaaa tttcag 26




11


24


DNA


Actinobacillus pleuropneumoniae



11
tatggatcct ccgtgcttct gagc 24




12


20


DNA


Actinobacillus pleuropneumoniae



12
gggacagtgg ctcaattaag 20




13


20


DNA


Actinobacillus pleuropneumoniae



13
agctgtaaac tccaccaacg 20




14


28


DNA


Actinobacillus pleuropneumoniae



14
cgccatatga caaaattaac tatgcaag 28




15


26


DNA


Actinobacillus pleuropneumoniae



15
cgcgaattca gcgacacaag agatat 26




16


9


PRT


Actinobacillus pleuropneumoniae



16
Tyr Ser Asp Ser Ala Asn Ser Lys Lys
1 5






Claims
  • 1. A subunit vaccine for the protection of animals against infection with a bacterium of the species Actinobacillus pleuropneumoniae, comprising purified ApxIV toxin and a pharmaceutically acceptable carrier.
  • 2. The vaccine according to claim 1, further comprising an adjuvant.
  • 3. The vaccine according to claim 1, which is in a freeze-dried form.
  • 4. The vaccine according to claim 1, further comprising one or more antigens from pig-pathogenic microorganisms or viruses.
  • 5. The vaccine according to claim 4, wherein said one or more antigens are from microorganisms or viruses selected from the group consisting of Porcine Reproductive Respiratory Syndrome (PRRS) virus, Pseudorabies virus, Porcine Influenza virus, Porcine Parvovirus, Transmissible Gastroenteritis virus, rotavirus, Escherichia coli, Erysipelothrix rhusiopathiae, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis and Streptococcus suis.
  • 6. A method for the protection of a susceptible animal against Actinobacillus pleuropneumoniae infection, comprising administering a vaccine according to claim 1 to the animal.
  • 7. A method for the preparation of a vaccine according to claim 1, comprising admixing purified ApxIV toxin with a pharmaceutically acceptable carrier.
  • 8. A subunit vaccine for the protection of animals against infection with a bacterium of the species Actinobacillus pleuropneumoniae, comprising purified ApxIV toxin and an adjuvant.
Priority Claims (1)
Number Date Country Kind
97201032 Oct 1997 EP
Parent Case Info

This is a continuation of application Ser. No. 09/057,570, filed Apr. 9, 1988, now U.S. Pat. No. 6,013,266.

Foreign Referenced Citations (1)
Number Date Country
WO9716532 Nov 1995 AU
Non-Patent Literature Citations (12)
Entry
Rosendal et al. 1990. Amer. J. of Vet. Res. 51(5): 711-717.*
Tascon et al. 1994. Mol. Micro. 14(2): 207-216.*
Anerson et al. 1991. Infection and Immunity. 59(11): 4110-4116.*
Frey. 1995. trends in Microbio. 3(7): 257-261.*
Jansen et al. 1995. Infect. & Immun. 63(1): 23-37.*
Michalski et al. 1993. Infect. & Immuno.61(10): 4462-4468.*
Jansen et al., Infection and Immunity, 63:1:27-37, 1995.
Rosendal et al., American Journal of Veterinary Medicine, 51:5:711-717, 1990.
Anderson et al., Infection and Immunity, 59:11:4110-4116, 1991.
J. Frey et al., Trends in Microbiology, 3:7:257-261, 1995.
Frey et al., Schweizer Archiv Für Tierheilkunde, 138:3:121-124, 1996.
Timothy J. Anderson, Thesis, University of Guelph, Nov. 1995, “Characterization of the LACZ, GALK and GALM Genes of Actinobacillus pleuropneumoniae”.
Continuations (1)
Number Date Country
Parent 09/057570 Apr 1998 US
Child 09/387693 US