Digital assistants have become ubiquitous in a variety of consumer electronic devices. Modern day digital assistants employ speech recognition technologies to provide a conversational interface between users and electronic devices. These digital assistants can employ various algorithms, such as natural language processing, to improve interpretations of commands received from a user. Consumers have expressed various frustrations with conventional digital assistants due to privacy concerns, constant misinterpretations of spoken commands, unavailability of services due to weak signals or a lack of signal, and the general requirement that the consumer must structure their spoken command in a dialect that is uncomfortable for them. Further, the actions resulting from these commands in existing digital assistants typically do not execute the functions within applications already available on the mobile devices, which are often what users would like to do when on the move. Finally, existing digital assistants do not execute multiple functions, whether within a single application or across multiple applications.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in isolation as an aid in determining the scope of the claimed subject matter.
Embodiments of the present invention are directed to action recipes for a crowdsourced digital assistant application. An action recipe can be recorded or otherwise defined to perform a sequence actions across one or more applications. By way of nonlimiting example, a user may define an action recipe to be executed when leaving the home by recording the following actions. First, the user turns on the house alarm using HONEYWELL TOTAL CONNECT®. Second, the user sets the sprinkler system using RACHIO®. Third, the user lowers the temperature of the thermostat using NEST®. Once an action recipe has been recorded or otherwise defined, the action recipe can be associated with one or more commands (e.g., “I'm leaving home now”). A corresponding action recipe dataset can be generated, including a representation of the set of inputs, applications and associated commands. The action recipe dataset can be stored and indexed on a user device and/or on an action cloud server. As such, any user can invoke a defined action recipe by providing an associated command to the crowdsourced digital assistant application or executing a sequence of actions across one or more apps.
For example, upon receiving a command, the crowdsourced digital assistant can search for a matching command on the user device and/or the action cloud server. If a match is located, the corresponding action recipe dataset is accessed, and the crowdsourced digital assistant emulates the actions in the action recipe on the user device. In some embodiments, if a command is not recognized, an action recipe can be constructed on the fly by parsing a received command into one or more sub-commands, and the sub-commands can be processed as a sequence of actions. As such, a user can efficiently and effectively perform multiple actions using a single command, whether within one application or multiple applications. This can happen via the original user command being split into multiple recognized sub-commands already associated with actions.
In some embodiments, the digital assistant application can execute action recipes by passing data from one action or application to another action or application. For example, if one action generates an output (e.g., an ETA from a navigation app) for use in a second application (e.g., texting the ETA to a particular contact), the action recipe can utilize the output from one action as an input into another application. In some embodiments, the digital assistant application can apply a transformation to the data that gets passed between actions using one or more transformation and/or compatibility rules. Additionally and/or alternatively, an action within an action recipe can be bound or otherwise associated with a particular function (e.g., determining a temperature), as opposed to being associated with a particular application. As such, a variety of applications might be available to perform a particular function, and selected based on availability and/or a priority order. Additionally and/or alternatively, an action might be defined to perform functions across multiple applications (e.g., to find the best price for a room across multiple applications).
As such, the digital assistant application disclosed herein facilitates efficient and effective control of any number of disparate applications to perform any number of actions using customized commands.
Aspects of the present disclosure are described in detail below with reference to the attached documents, wherein:
Overview
Generally, conventional digital assistants provide an interface for accessing various functionality using actions, functions, skills, and the like, of the digital assistant. Conventional digital assistants include various drawbacks. For example, digital assistants often employ speech recognition technologies to provide a conversational interface for consumers to access such functionality using commands that often include the name of the corresponding function or other pre-determined syntax. In such systems, the syntax of the command is important, so the name of the function or pre-determined syntax must be included in the command. If a consumer using a digital assistant wants to navigate logically, the rigid syntax requirements of conventional digital assistants can increase the cognitive load required to execute a command by requiring the consumer to think of the command syntax in addition to the desired functionality. Similarly, a user may desire flexibility to use abbreviated or other custom commands. For example, a user may always want to use SPOTIFY® to play music. However, conventional digital assistants do not provide a way to customize commands. Instead, the user must use the predetermined command syntax (e.g., “play some jazz on SPOTIFY”). This, can be tedious and time consuming.
Further, actions performed by conventional digital assistants typically do not execute corresponding functions within applications already available on the mobile devices. Moreover, although some digital assistants provide an interface to perform functionality for certain third party applications (e.g., SPOTIFY), the digital assistant may not support other third party applications (e.g., FACEBOOK®). If such an interface does not exist (e.g., the interface has not been created yet, an affirmative decision not to integrate has been made by the digital assistant provider or a third party software provider, etc.), there is no way for a consumer to use the digital assistant to perform functions within those unsupported third party applications. Instead, a user must manually navigate the unsupported third party application and perform the desired functions directly within the app. Again, such a process is tedious and time consuming, resulting in an unsatisfactory process.
Sometimes, a user may desire to use a digital assistant to invoke specific functionality using a supported application, but the desired functionality is not supported by the digital assistant. For example, a user may want to add a song to a SPOTIFY playlist using the digital assistant. Even though some digital assistants provide an interface for such third party applications, there is currently no command available to add a song to a SPOTIFY playlist using various digital assistants. Similarly, there is no way for users to design a command to perform this function.
Often times, a user might desire to perform consecutive actions using one or more applications. For example, a user might want to play a particular song and turn up the speaker volume. However, conventional digital assistants do not provide a way to execute consecutive functions, whether in the same application or in different ones. For example, conventional digital assistants will not understand or respond to a combination of commands such as “play Don't Wanna Fight by ALABAMA SHAKES® and turn the volume up to 8.” Instead, the user must provide a first command (e.g., “play Don't Wanna Fight by ALABAMA SHAKES”), wait for the corresponding action to execute, then provide a second command (e.g., “volume 8”), and wait for the corresponding second action to execute. This process may be repeated for each additional command (e.g., “add this song to my library”). Such a process can be tedious and time consuming.
Accordingly, embodiments of the present invention are directed to action recipes for a crowdsourced digital assistant. An action recipe is a sequence of actions to be performed. An action recipe can be recorded or otherwise defined to perform actions across one or more applications, and the action recipe can be associated with one or more commands. Users can define an action recipe in various ways. For example, a user can define an action recipe by recording or otherwise defining a set of inputs across one or more applications, by selecting and adding existing actions to a particular recipe, by including multiple sub-commands in a single on-the-fly command, or otherwise. A corresponding action recipe dataset can be stored and indexed on a user device and/or on an action cloud server and either be kept private for the creator or shared across all users of the system. As such, any user can invoke a defined action recipe by providing an associated command or commands to the crowdsourced digital assistant. The crowdsourced digital assistant searches for a matching command(s) on the user device and/or the action cloud server, and if a match is located, the corresponding action recipe dataset is accessed, and the crowdsourced digital assistant emulates the actions in the action recipe on the user device. As such, a user can efficiently and effectively perform multiple actions using a single command, whether within one application or multiple applications. The user can also initiate a recipe by tapping on a visual icon or other artifact displayed on the user's device.
Initially, an individual action can be recorded or otherwise defined based on a set of inputs into an application. For example, a digital assistant application on a user device can permit a user initiate an action recording for a desired application (e.g., SPOTIFY), upon which, the user can navigate the application to perform a desired action (e.g., by clicking the search bar, typing in “GREYBOY,” navigating to the band's artist page, and clicking the Shuffle Songs button). Generally, the user performs an action by entering a set of inputs (e.g., touches, selections, interactions, entered parameters, and the like) for the selected application. During this time, the digital assistant application records the set of inputs. When the user is finished, the user may stop the recording (e.g., by entering an input assigned to stop the recording, such as pressing a device button, touching an assigned portion of a touchscreen, etc.). Additionally and/or alternatively to recording a set of inputs entered into a selected application to define an action, one or more inputs may be entered into the digital assistant application to define a particular action. For example, an action (or some portion thereof) may be defined using an API call and/or a deep link that invokes and provides one or more inputs to a particular application. The API call and/or deep link can be generated using parameters from one or more detected inputs into the digital assistant application. Regardless of how an action is defined, the digital assistant application may prompt the user for, or otherwise permit the user to enter, a set of commands that should be associated with the action (e.g., “I want to hear GREYBOY,” “please play GREYBOY,” “play music from GREYBOY, “let's listen to some music by GREYBOY,” etc.). In some embodiments, a user may desire to invoke a recorded action (e.g., shuffling songs by a particular band) using a contextual input parameter within a particular command (e.g., COLDPLAY® instead of GREYBOY). Generally, contextual input parameters can be automatically detected from a set of inputs, manually assigned, clarified by a user input prompted during execution of the action, or some combination thereof. Prompting for input parameters is described in more detail in Applicant's co-pending U.S. application Ser. No. 62/610,792, the contents of which are herein incorporated by reference in their entirety. Contextual input parameters within a particular command can be used as an input into an application. The digital assistant application can create an action dataset that includes the recorded set of inputs (including designated contextual input parameters) and associated commands. The action dataset is stored locally on the user's device and/or remotely on an action cloud server. As such, any user can access the action from the action cloud server using one of the associated commands.
Similarly, an action recipe can be recorded or otherwise defined based on a set of inputs into one or more applications. In some embodiments, a digital assistant application on a user device can permit a user to initiate a recording of an action recipe. For example, when a user initiates a recording mode for an action recipe using a user interface of the digital assistant application, the digital assistant application can permit the user to navigate among a variety of applications to perform desired actions in each application by entering a set of inputs (e.g., touches, selections, interactions, entered parameters, and the like). During this time, the digital assistant application records the set of inputs and corresponding applications. When the user is finished, the user may stop recording (e.g., by entering an input assigned to stop the recording, such as pressing a device button, touching an assigned portion of a touchscreen, etc.). Additionally and/or alternatively to recording a set of inputs entered into various applications to define an action recipe, one or more inputs may be entered into the digital assistant application to define one or more of the actions for an action recipe. For example, one or more actions (or some portion thereof) may be defined using an API call and/or a deep link that invokes and provides one or more inputs to a particular application. The API call and/or deep link can be generated using parameters from one or more detected inputs into the digital assistant application. Regardless of how an action is defined, the digital assistant application may prompt the user for, or otherwise permit the user to enter, a set of commands that should be associated with the action recipe. Similarly, the user interface may permit the user to name the action recipe, and the name of the action recipe can be used for an associated command. Input parameters can be automatically detected, manually assigned, clarified by a user input prompted during execution of the action recipe, or some combination thereof. The digital assistant application can create an action recipe dataset that includes the set of inputs (including input parameters), corresponding applications and associated commands. The action recipe dataset is stored locally on the user's device and/or remotely on an action cloud server. As such, any user can access the action recipe from the action cloud server using one of the associated commands.
Additionally and/or alternatively, an action recipe can be constructed with individual actions. For example, a user interface of the digital assistant application can permit a user to display or otherwise access one or more existing actions (e.g., by speaking, typing or selecting a command such as “show my actions”). The user interface may permit a user to select one or more existing actions (e.g., using a touch command, a voice command, or otherwise) and prompt the user to add the selected action to a desired action recipe (e.g., via a pop-up menu, some other touch command, a voice command, or otherwise). As such, a user can construct an action recipe using existing actions. Similarly, the user interface may permit a user to add to an action recipe one or more actions that have not yet been recorded. For example, the action recipe may include a placeholder for an action, and the digital assistant application may permit the user to record the action, for example, when adding it to a recipe, or at some later time. As such, a user can define an action recipe by selecting individual actions to include in the recipe.
Consider, by way of nonlimiting example, a scenario where a user regularly uses three different applications during her daily commute. She first disables calls and message via the app TEXTDRIVE. She then starts her favorite podcast on NPR®. Finally, given the Bay Area traffic, she starts navigation to optimize her travel time using GOOGLE® MAPS. Instead of operating these three apps individually, the user can define an action recipe as a sequence of these three actions, and associate the action recipe with a command such as “start my morning commute.” Now when the user is ready to leave for work, when she gets into the car, she simply issues the command “start my commute to work,” and the digital assistant application emulates the sequence of actions across the three applications.
Generally, a digital assistant application and/or an action recipe can pass data from one action or application to another action or application. For example, a user might define an action recipe that finds a ride home from the San Jose airport using UBER® and sends the ETA to his wife using WHATSAPP®. In this manner, the digital assistant application executes the first action to generate an output (the ETA) that gets passed to the second action as an input (to WHATSAPP). In some embodiments, the digital assistant application can apply a transformation to the data that gets passed between actions using one or more transformation and/or compatibility rules.
In some embodiments, an action within an action recipe can be bound or otherwise associated with a particular function, as opposed to being associated with a particular application. Instead, multiple applications might be available to perform a particular function. In this manner, if a primary application is unavailable (e.g., TRAVELOCITY®'s server is not responding), the action recipe can dynamically replace the unavailable application with an alternate compatible application (e.g., KAYAK®). Additionally and/or alternatively, an action might be defined to perform functions across multiple applications. For example, an action might be defined to find the best price for a room across multiple applications (e.g., KAYAK, TRAVELOCITY, HOTELS.COM®, AIRBNB®, etc.).
As such, the digital assistant application disclosed herein facilitates efficient and effective control of any number of disparate applications to perform any number of actions using customized commands.
Exemplary Crowdsourced Digital Assistant Environment
Referring now to
Referring now to
Environment 200 includes creator device 210 with creator digital assistant application 212, and likewise includes consumer device 230 with consumer digital assistant application 232. In the embodiment depicted in
Generally, a digital assistant application may be any application capable of facilitating execution of action recipes, recording or otherwise defining action recipes, and/or crowdsourcing of action recipes. For example, in some embodiments, a digital assistant application can be built on top of an actions software development kit that provides access to any of the functionality described herein. The actions kit, or any of the functionality described herein, may be incorporated or integrated into an application or an add-on or plug-in to an application, such as creator digital assistant application 212 and/or consumer digital assistant application 232. Creator digital assistant application 212 and/or consumer digital assistant application 232 may be a standalone application(s), a mobile application(s), a web application(s), or the like. In some implementations, the application(s) comprises a web application, which can run in a web browser, and could be hosted at least partially server-side. In addition, or instead, the application(s) can comprise a dedicated application. In some cases, the application can be integrated into the operating system (e.g., as a service). Although generally discussed herein as a digital assistant application, in some cases, the application, or portion thereof, can be additionally or alternatively integrated into an operating system (e.g., as a service) or a server (e.g., a remote server).
In the embodiment depicted in
Command initialization component 234 can optionally be configured to receive a command trigger (e.g., through an I/O component of consumer device 230). Any input can be assigned as a command trigger (e.g., a device button such as a home button of consumer device 230, an assigned portion of a touchscreen, etc.). Once a command trigger is received, command initialization component 234 can initialize a detection of one or more spoken commands, typed commands and/or some other command representation assigned to an action. In some embodiments, command initialization component 234 need not include a command trigger to begin detecting the one or more command representations. In some embodiments, command initialization component 234 can convert spoken commands to a textual representation for subsequent analysis.
Device command matchmaker 236 generally matches received commands (e.g., a textual representation) with commands stored, e.g., on-device, on the cloud, etc. For example, in one embodiment, on-device index 240 is a searchable index of the actions and action recipes (e.g., action datasets and action recipe datasets) that are stored in on-device data store 242. On-device data store 242 and on-device index 240 can be updated (e.g., periodically) by making calls to action cloud server 250 to enhance an on-device index. In some embodiments, the on-device index 240 is a first location searched for a matching command. If a match is not located, device command matchmaker 236 can access action cloud server 250 to search ARC index for a match with commands stored on ARC data store 258. In this manner, any locally stored actions and/or action recipes are available for immediate access, reducing latency over conventional digital assistants that access commands remotely. Similarly, when textual representation of a command is transmitted to action cloud server 258 to match a command for an action and/or action recipe stored therein, latency is reduced over conventional digital assistants that transmit larger audio files to a cloud server. Other variations for indexing actions and action recipes, and other search prioritization schemes may be implemented. As such, the digital assistant application disclosed herein can match commands using the most updated matching models in the cloud.
If a matching command is located, a corresponding action and/or action recipe (e.g., action dataset and/or action recipe dataset) can be accessed and provided to playback component 238. Generally, playback component 238 emulates the corresponding action and/or action recipe using the accessed dataset. For an action recipe, this can include executing the recipe by emulating a corresponding set of recorded inputs for a recorded sequence of actions across one or more corresponding applications. Executing an action recipe can include passing data between actions, dynamic replacement of applications, binding or otherwise associating an action to a function, or otherwise. In some embodiments, if an action and/or action recipe is accessed and involves an application which has not been installed on consumer device 230, consumer digital assistant application 232 can prompt the user to download the app, or otherwise provide a corresponding notification. As such, a consumer can efficiently and effectively access and execute crowdsourced actions and action recipes using a local device.
In some embodiments, playback component 238 can pass data from one action or application to another action or application. For example, an action recipe might be defined that finds a user's location using GOOGLE MAPS and sends the determined location to a friend using WHATSAPP. In these embodiments, playback component 238 executes the first action to generate the user's location as an output (e.g., using GOOGLE MAPS), and playback component 238 passes the user's determined location to the second action as an input (to WHATSAPP). In some embodiments, playback component 238 can apply a transformation to the data that gets passed between actions using data passing parameters that define one or more transformation and/or compatibility rules. For example, if the user's location is generated as a pair of latitude and longitude coordinates, data passing parameters can define a transformation to be applied to the determined location (e.g., to generate an address, a neighborhood, crossroads, and the like) before passing the location to the subsequent action. Other variations of transformations and compatibility rules will be understood by those of ordinary skill in the art.
In some embodiments, an action can be bound or otherwise associated with a particular function, as opposed to being associated with a particular application. For example, multiple applications might be available to perform a particular function. In this manner, if a primary application is unavailable (e.g., TRAVELOCITY's server is not responding), playback component 238 can dynamically replace the unavailable application with an alternate compatible application (e.g., KAYAK) to perform the function. Alternative, compatible applications may be invoked based on a set of alternative applications for a designated function and/or a priority order for alternative applications, whether user-selected or otherwise. Additionally and/or alternatively, an action might be defined to perform functions across multiple applications. For example, an action might be defined to find the best price for a room across multiple applications (e.g., KAYAK, TRAVELOCITY, HOTELS.COM, AIRBNB, etc.). In these embodiments, playback component 238 can perform a bound function (e.g., locate an available room for the best price) using a set of assigned applications for that function, whether user-selected or otherwise. Various functions can be supported to provide any kind of input or output (e.g., city, price, time, temperature, etc.).
Turning now to creator device 210 and creator digital assistant application 212, in some embodiments, a digital assistant application can be provided to permit a user to record or otherwise define actions and/or action recipes. Accordingly, in addition or alternatively to components that facilitate playback functionality (e.g., command initialization component 214, device command matchmaker 216 and playback component 218, which may correspond to the components of consumer digital assistant application 232 described above), creator digital assistant application 212 includes components that facilitate recording or otherwise defining actions and/or action recipes, including action record component 220, recipe record component 222 and revision component 224. Although corresponding recording components are not depicted in consumer digital assistant application 232 in
Action record component 220 generally facilitates recording an action, and may include one or more sub-components not depicted in
Once a recording is complete, the action command definition component may prompt the user for, or otherwise permit the user to enter, a set of commands that should be associated with the action (e.g., “I want to hear GREYBOY,” “please play GREYBOY,” “play music from GREYBOY, “let's listen to some music by GREYBOY,” etc.). In some embodiments, a user may desire to invoke a recorded action (e.g., shuffling songs by a particular band) using a contextual input parameter within a command (e.g., COLDPLAY instead of GREYBOY). Generally, contextual input parameters can be automatically detected from a set of inputs, manually assigned, clarified by a user input prompted during execution of the action, or some combination thereof. The action command definition component can include or otherwise associate the commands with the action dataset.
To make the action dataset searchable, action record component 220 (e.g., the action indexer) can index the action (e.g., action dataset) in on-device index 240 and store the action in on-device data store 242. Additionally and/or alternatively, action record component 220 can submit the action to action cloud server 250 (e.g., through an API) for indexing in ARC index 256 and/or storage in ARC data store 258. As such, any user can access the action from action cloud server 250 using one of the associated commands, as described above.
In the embodiment depicted in
Additionally and/or alternatively, recipe record component 222 (e.g., via the action recipe recording component and/or revision component 224) may facilitate constructing an action recipe with individual actions. For example, a user interface can permit a user to display or otherwise access one or more existing actions (e.g., by speaking, typing or selecting a command such as “show my actions”). The user interface may permit a user to select one or more existing actions (e.g., using a touch command, a voice command, or otherwise) and prompt the user to add the selected action to a desired action recipe (e.g., via a pop-up menu, some other touch command, a voice command, or otherwise). As such, a user can construct an action recipe using existing actions. Similarly, the user interface may permit a user to add to an action recipe one or more actions that have not yet been recorded. For example, an action recipe may include a placeholder for an action, and recipe record component 222 may permit the user to record the action, for example, when adding it to a recipe, or at some later time. As such, a user can define an action recipe by selecting individual actions to include in the recipe.
In some embodiments, an action recipe can be constructed on-the-fly. For example, although an action recipe has not previously been defined, a user might initiate a command (e.g., using command initialization component 214) to initialize a detection of a series of spoken commands, typed commands and/or some other command representations. Instead of, or in addition to searching an index for a matching command (e.g., if no matching commands are identified), creator digital assistant application 212 (e.g., via command initialization component and/or recipe record component 222) can parse the received command into one or more subcommands. For example, a received command such as “find hotels in Dallas and show me places to eat there” might get parsed into separate sub-commands (e.g., “find hotels in Dallas” using HOTELS.COM and “show me places to eat there” using YELP®). If one or more of the sub-commands can be matched (e.g., using device command matchmaker 216), the corresponding actions can be executed (e.g., using playback component 218), provided to the user for approval and saving, and/or used to construct a new action recipe based on the identified actions. In this manner, by simply speaking in natural language, a received command can be automatically decomposed into its constituent parts to construct an action recipe on-the-fly.
Once a recording or other definition of an action recipe is complete, recipe record component 222 (e.g., via the action recipe command definition component) may prompt the user for, or otherwise permit the user to enter, a set of commands that should be associated with the action recipe. Similarly, a user interface may permit the user to name the action recipe, and the name of the action recipe can be used for an associated command. Input parameters can be automatically detected, manually assigned, or some combination thereof. As such, recipe record component 222 (e.g., via the action recipe command definition component) can create an action recipe dataset that includes the set of inputs (including input parameters), corresponding applications and associated commands.
Generally, action recipe record component 222 (e.g., via the action recipe indexer) can index the action recipe (e.g., action recipe dataset) in on-device index 226 and store the action in on-device data store 228. Additionally and/or alternatively, action recipe record component 222 can submit the action recipe to action cloud server 250 (e.g., through an API) for indexing in ARC index 256 and/or storage in ARC data store 258. As such, any user can access the action recipe from the action cloud server by entering one of the associated commands, as described in more detail above.
In the embodiment depicted in
In some embodiments, action and/or action recipe metadata can facilitate efficient searching. For example, metadata tags can be generated to facilitate filtering and searching actions and/or action recipes based on keywords or subjects. By way of nonlimiting example, for an action that returns temperature (e.g., detecting room temperature using NEST), the corresponding action and/or action recipe can be tagged “hot” and/or “cold,” and the like. Metadata tags can be generated in various ways. For example, one or more tagging rules can be applied to actions and/or action recipes based on the action/recipe name, associated commands, application involved, an input or output parameter, and the like. By way of nonlimiting example, searching for “action recipes that involve heat management” might return a list of action recipes that were tagged with a synonym or related term for heat management (e.g., “heat,” “cold,” freezing,” etc.). As such, a user interface can be provided to permit searches that include metadata.
Additionally and/or alternatively, revision component 224 provides a user interface that facilitates editing actions and/or action recipes. A user interface may permit a user to select one or more existing actions and/or action recipes (e.g., using a touch command, a voice command, or otherwise) and prompt the user to make related changes. By way of nonlimiting example, revision component 224 may prompt or otherwise permit a user to edit an action, for example, by adding, modifying or deleting one or more of a set of recorded inputs, designated contextual input parameters, associated commands, action name, an associated application and the like. Additionally and/or alternatively, revision component 224 may prompt or otherwise permit a user to edit an action recipe, for example, by adding, modifying or deleting one or more of a set of recorded inputs, designated contextual input parameters, associated commands, action recipe name, associated applications, order of actions within the recipe, data passing parameters, alternative applications for a designated function, a priority order for alternative applications, assigned applications for a bound function, and the like. Various user interfaces can be implemented, as would be understood by those of ordinary skill in the art.
In the embodiment depicted in
ARC aggregator 252 generally receives recorded actions (e.g., action datasets) and/or action recipes (e.g., action recipe datasets) from submissions, for example, from creator device 210. Upon receipt, ARC aggregator 252 registers the actions and/or action recipes, for example, by indexing the action and/or action recipe (e.g., action and/or action dataset) in ARC index 256 and/or storing the action and/or action recipe in ARC data store 258. Although ARC data store 258 is depicted as one component, ARC data store 258 may be implemented across any number of components, whether distributed or otherwise. In some embodiments, submissions may be validated and audited. Accordingly, information about the action, action recipe and/or associated commands may be recorded (e.g., creator, private/shared, date, deviceID, action details, command details, version information, etc.) for reference. This and other information can be included in ARC index 256 for searching and/or matchmaking purposes.
In some embodiments, ARC aggregator 252 merges overlapping actions submitted by multiple users, so actions can be uniquely identified by command, user, or otherwise. Likewise, ARC aggregator 252 can merge overlapping action recipes submitted by multiple users, so actions can be uniquely identified by command, user, or otherwise. Additionally and/or alternatively, ARC aggregator 252 can merge commands to improve command matchmaking. In some embodiments, ARC aggregator 252 can create command templates using knowledge of which command elements are command parameters to facilitate merging. As such, ARC aggregator 252 can expand the body of known actions, action recipes and commands available for crowdsourcing, permitting a digital assistant application on a user device to incrementally increase supported functionality over time. In this manner, action cloud server 250 can evolve over time, as the body of actions, recipes and commands expands.
Cloud command matchmaking component 254 generally performs matchmaking based on received command inputs to locate potentially matching actions and/or action recipes. For example, if a user of consumer device 230 inputs a command that is not recognized (e.g., because there are no matching commands in data store 242), the user's device command matchmaking 236 can send the command (e.g., a textual representation thereof) to action cloud server 250 to check the crowdsourced database, ARC data store 258 and/or crowdsourced index, ARC index 256. Cloud command matchmaking component 254 can facilitate filtering by action and/or action recipe name, application, category, metadata, and the like. If a match is located, the corresponding action and/or action recipe can be accessed and transferred to the requesting device. As such, cloud command matchmaking component 254 can access a received command and search ARC index 256 for a matching stored command in ARC data store 258. In some embodiments, matchmaking can be enhanced in various ways, such as fuzzy matching and machine learning models, as would be understood by those of ordinary skill in the art. Thus, as the body of actions, recipes and commands expands over time, cloud command matchmaking component 254 can support new commands.
In some embodiments, action cloud sever 250 may include or otherwise make use of various tools for validating and managing actions and commands. For example, some tools may facilitate validation, review and flagging of actions and commands. In some embodiments, action cloud sever 250 includes manual override tools that facilitate review, validate or flag actions and commands, for example, by an administrator. In some embodiments, action cloud sever 250 includes semi-manual tools that process actions, action recipes and/or commands and flag specific cases for human review. Action cloud sever 250 may control access to the validation and management tools. For example, action cloud server 250 may control which devices are allowed to, or are flagged from, providing new actions and commands (e.g., using any type of authorization and/or authentication scheme). In some embodiments, action cloud sever 250 can automatically blacklist a specific action, action recipe and/or or command based on defined or learned rules, as would be understood by those of ordinary skill in the art. In any of these scenarios, action cloud sever 250 can update ARC index 256 and/or ARC data store 258 and raise corresponding alerts.
Turning now to
The user interface of
The user interface of
As such, actions and action recipes make life easier and faster, providing instant and customizable access to commonly used applications. Further, actions and action recipes provide a natural and simplified interface for users, without requiring users to remember specific actions or learn a new command syntax, reducing the cognitive load required for users to invoke actions and action recipes. Moreover, action recipes pipeline data from action to action, which facilitates automation, eliminates unnecessary user interactions, frees up computing resources, and improves computing efficiency. Finally, by emulating a set of inputs for a particular user, actions and action recipes leverage the user's existing accounts with third party applications. Accordingly, actions and action recipes can consolidate functionality across disparate systems without introducing any additional registration, authentication or authorization steps. As such, a user can efficiently and effectively perform multiple actions using a single command, whether within one application or multiple applications.
Exemplary Flow Diagrams
With reference now to
Turning initially to
Turning now to
Exemplary Operating Environment
Having described an overview of embodiments of the present invention, an exemplary operating environment in which embodiments of the present invention may be implemented is described below in order to provide a general context for various aspects of the present invention. Referring now to
The invention may be described in the general context of computer code or machine-useable instructions, including computer-executable instructions such as program modules, being executed by a computer or other machine, such as a cellular telephone, personal data assistant or other handheld device. Generally, program modules including routines, programs, objects, components, data structures, etc., refer to code that perform particular tasks or implement particular abstract data types. The invention may be practiced in a variety of system configurations, including hand-held devices, consumer electronics, general-purpose computers, more specialty computing devices, etc. The invention may also be practiced in distributed computing environments where tasks are performed by remote-processing devices that are linked through a communications network.
With reference to
Computing device 800 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by computing device 800 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing device 800. Computer storage media does not comprise signals per se. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
Memory 812 includes computer-storage media in the form of volatile and/or nonvolatile memory. The memory may be removable, non-removable, or a combination thereof. Exemplary hardware devices include solid-state memory, hard drives, optical-disc drives, etc. Computing device 800 includes one or more processors that read data from various entities such as memory 812 or I/O components 820. Presentation component(s) 816 present data indications to a user or other device. Exemplary presentation components include a display device, speaker, printing component, vibrating component, etc.
I/O ports 818 allow computing device 800 to be logically coupled to other devices including I/O components 820, some of which may be built in. Illustrative components include a microphone, joystick, game pad, satellite dish, scanner, printer, wireless device, etc. The I/O components 820 may provide a natural user interface (NUI) that processes air gestures, voice, or other physiological inputs generated by a user. In some instances, inputs may be transmitted to an appropriate network element for further processing. An NUI may implement any combination of speech recognition, stylus recognition, facial recognition, biometric recognition, gesture recognition both on screen and adjacent to the screen, air gestures, head and eye tracking, and touch recognition (as described in more detail below) associated with a display of computing device 800. Computing device 800 may be equipped with depth cameras, such as stereoscopic camera systems, infrared camera systems, RGB camera systems, touchscreen technology, and combinations of these, for gesture detection and recognition. Additionally, the computing device 800 may be equipped with accelerometers or gyroscopes that enable detection of motion. The output of the accelerometers or gyroscopes may be provided to the display of computing device 800 to render immersive augmented reality or virtual reality.
Embodiments described herein support recording, executing and crowdsourcing action recipes. The components described herein refer to integrated components of a crowdsourced digital assistant system. The integrated components refer to the hardware architecture and software framework that support functionality using the crowdsourced digital assistant system. The hardware architecture refers to physical components and interrelationships thereof and the software framework refers to software providing functionality that can be implemented with hardware embodied on a device.
The end-to-end software-based crowdsourced digital assistant system can operate within the crowdsourced digital assistant system components to operate computer hardware to provide crowdsourced digital assistant system functionality. At a low level, hardware processors execute instructions selected from a machine language (also referred to as machine code or native) instruction set for a given processor. The processor recognizes the native instructions and performs corresponding low level functions relating, for example, to logic, control and memory operations. Low level software written in machine code can provide more complex functionality to higher levels of software. As used herein, computer-executable instructions includes any software, including low level software written in machine code, higher level software such as application software and any combination thereof. In this regard, the crowdsourced digital assistant system components can manage resources and provide services for the crowdsourced digital assistant system functionality. Any other variations and combinations thereof are contemplated with embodiments of the present invention.
Having identified various components in the present disclosure, it should be understood that any number components and arrangements may be employed to achieve the desired functionality within the scope of the present disclosure. For example, the components in the embodiments depicted in the figures are shown with lines for the sake of conceptual clarity. Other arrangements of these and other components may also be implemented. For example, although some components are depicted as single components, many of the elements described herein may be implemented as discrete or distributed components or in conjunction with other components, and in any suitable combination and location. Some elements may be omitted altogether. Moreover, various functions described herein as being performed by one or more entities may be carried out by hardware, firmware, and/or software, as described below. For instance, various functions may be carried out by a processor executing instructions stored in memory. As such, other arrangements and elements (e.g., machines, interfaces, functions, orders, and groupings of functions, etc.) can be used in addition to or instead of those shown.
The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventor has contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” may be used herein to connote different elements of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly described.
The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope.
From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects set forth above, together with other advantages which are obvious and inherent to the system and method. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
This application is related by subject matter to and claims the benefit of U.S. Provisional Patent Application No. 62/508,181, filed May 18, 2017, entitled “SYSTEMS AND METHODS FOR CROWDSOURCED ACTIONS AND COMMANDS,” U.S. Provisional Patent Application No. 62/509,534, filed May 22, 2017, entitled “CONNECTING MULTIPLE MOBILE DEVICES TO A SMART HOME ASSISTANT ACCOUNT,” U.S. Provisional Patent Application No. 62/576,804, filed Oct. 25, 2017, entitled “CONNECTING MULTIPLE MOBILE DEVICES TO A SMART HOME ASSISTANT ACCOUNT,” U.S. Provisional Patent Application No. 62/539,866, filed Aug. 1, 2017, entitled “OPTIMIZING DISPLAY ENGAGEMENT IN ACTION AUTOMATION,” U.S. Provisional Patent Application No. 62/576,766, filed Oct. 25, 2017, entitled “A CROWDSOURCED DIGITAL ASSISTANT SYSTEM,” and U.S. Provisional Patent Application No. 62/613,165, filed Jan. 3, 2018, entitled “ACTION RECIPES FOR CROWDSOURCED DIGITAL ASSISTANT SYSTEM,” which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5600711 | Yuen | Feb 1997 | A |
6173266 | Marx et al. | Jan 2001 | B1 |
6188976 | Ramaswamy et al. | Feb 2001 | B1 |
6442519 | Kanevsky et al. | Aug 2002 | B1 |
6535912 | Anupam et al. | Mar 2003 | B1 |
6636831 | Profit, Jr. et al. | Oct 2003 | B1 |
6678864 | Tsai | Jan 2004 | B1 |
7024348 | Scholz et al. | Apr 2006 | B1 |
7440895 | Miller et al. | Oct 2008 | B1 |
7546576 | Egli | Jun 2009 | B2 |
7627638 | Cohen | Dec 2009 | B1 |
7729919 | Wang | Jun 2010 | B2 |
7747573 | Butt et al. | Jun 2010 | B2 |
7756708 | Cohen et al. | Jul 2010 | B2 |
8160883 | Lecoeuche | Apr 2012 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8473949 | Horvitz et al. | Jun 2013 | B2 |
8620842 | Cormack | Dec 2013 | B1 |
8775177 | Heigold et al. | Jul 2014 | B1 |
8805766 | Ray | Aug 2014 | B2 |
9053708 | Koch et al. | Jun 2015 | B2 |
9123336 | Uszkoreit et al. | Sep 2015 | B1 |
9330659 | Ju et al. | May 2016 | B2 |
9384732 | Bishop et al. | Jul 2016 | B2 |
9412392 | Lindahl | Aug 2016 | B2 |
9472192 | Ding | Oct 2016 | B2 |
9479831 | Oostveen et al. | Oct 2016 | B2 |
9619468 | Adams et al. | Apr 2017 | B2 |
9620122 | Vanblon | Apr 2017 | B2 |
9754585 | Brockett et al. | Sep 2017 | B2 |
10007500 | Suraci | Jun 2018 | B1 |
10209956 | Fletcher et al. | Feb 2019 | B2 |
10217462 | Sarikaya et al. | Feb 2019 | B2 |
10466963 | Levi et al. | Nov 2019 | B2 |
10489405 | Zheng et al. | Nov 2019 | B2 |
10528605 | Braga et al. | Jan 2020 | B2 |
20020032564 | Ehsani et al. | Mar 2002 | A1 |
20030212561 | Williams et al. | Nov 2003 | A1 |
20040236580 | Bennett | Nov 2004 | A1 |
20050010418 | McNair et al. | Jan 2005 | A1 |
20050010892 | McNair et al. | Jan 2005 | A1 |
20050097618 | Arling | May 2005 | A1 |
20050135338 | Chiu et al. | Jun 2005 | A1 |
20050240917 | Wu | Oct 2005 | A1 |
20050261903 | Kawazoe et al. | Nov 2005 | A1 |
20060294509 | Mital et al. | Dec 2006 | A1 |
20070055492 | Wang et al. | Mar 2007 | A1 |
20070271292 | Acharya et al. | Nov 2007 | A1 |
20080021708 | Bennett et al. | Jan 2008 | A1 |
20080120616 | James et al. | May 2008 | A1 |
20080201140 | Wells et al. | Aug 2008 | A1 |
20080221715 | Krzyzanowski | Sep 2008 | A1 |
20090070312 | Patterson | Mar 2009 | A1 |
20090249206 | Stahlberg | Oct 2009 | A1 |
20090307162 | Bui et al. | Dec 2009 | A1 |
20100036676 | Safdi et al. | Feb 2010 | A1 |
20100082398 | Davis et al. | Apr 2010 | A1 |
20100088100 | Lindahl | Apr 2010 | A1 |
20110066634 | Phillips et al. | Mar 2011 | A1 |
20110301943 | Patch | Dec 2011 | A1 |
20110320767 | Eren et al. | Dec 2011 | A1 |
20120035932 | Jitkoff et al. | Feb 2012 | A1 |
20120066600 | Nickel | Mar 2012 | A1 |
20120209613 | Agapi et al. | Aug 2012 | A1 |
20130013644 | Sathish et al. | Jan 2013 | A1 |
20130080177 | Chen | Mar 2013 | A1 |
20130152092 | Yadgar | Jun 2013 | A1 |
20130179423 | Gur et al. | Jul 2013 | A1 |
20130329086 | Malone | Dec 2013 | A1 |
20140074481 | Newman | Mar 2014 | A1 |
20140074483 | van Os | Mar 2014 | A1 |
20140108013 | Di Cristo et al. | Apr 2014 | A1 |
20140115456 | White et al. | Apr 2014 | A1 |
20140136187 | Wolverton et al. | May 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140278413 | Pitschel et al. | Sep 2014 | A1 |
20140278419 | Bishop et al. | Sep 2014 | A1 |
20140282003 | Gruber et al. | Sep 2014 | A1 |
20140297282 | Peters et al. | Oct 2014 | A1 |
20150006178 | Peng et al. | Jan 2015 | A1 |
20150032451 | Gunn et al. | Jan 2015 | A1 |
20150045003 | Vora | Feb 2015 | A1 |
20150089373 | Dwivedi et al. | Mar 2015 | A1 |
20150095031 | Conkie et al. | Apr 2015 | A1 |
20150120723 | Deshmukh et al. | Apr 2015 | A1 |
20150172262 | Ortiz, Jr. et al. | Jun 2015 | A1 |
20150180967 | Takagishi | Jun 2015 | A1 |
20150242385 | Bao et al. | Aug 2015 | A1 |
20150248730 | Pilot et al. | Sep 2015 | A1 |
20150302850 | Lebrun | Oct 2015 | A1 |
20150317310 | Glass et al. | Nov 2015 | A1 |
20150348551 | Gruber et al. | Dec 2015 | A1 |
20150355609 | Warren | Dec 2015 | A1 |
20150371628 | Kreifeldt | Dec 2015 | A1 |
20150373183 | Woolsey et al. | Dec 2015 | A1 |
20160004974 | Pope | Jan 2016 | A1 |
20160019266 | Katsunuma et al. | Jan 2016 | A1 |
20160077853 | Feng et al. | Mar 2016 | A1 |
20160132568 | Vogel et al. | May 2016 | A1 |
20160162456 | Munro et al. | Jun 2016 | A1 |
20160225370 | Kannan et al. | Aug 2016 | A1 |
20160225371 | Agrawal et al. | Aug 2016 | A1 |
20160259623 | Sumner et al. | Sep 2016 | A1 |
20160260430 | Panemangalore et al. | Sep 2016 | A1 |
20160275949 | Bishop et al. | Sep 2016 | A1 |
20160358603 | Azam et al. | Dec 2016 | A1 |
20160378279 | Sirpal et al. | Dec 2016 | A1 |
20160378325 | Hurley et al. | Dec 2016 | A1 |
20160378439 | Straub et al. | Dec 2016 | A1 |
20170011739 | Huang | Jan 2017 | A1 |
20170069177 | Takahata | Mar 2017 | A1 |
20170093781 | Sharma | Mar 2017 | A1 |
20170116982 | Gelfenbeyn et al. | Apr 2017 | A1 |
20170193123 | Jones et al. | Jul 2017 | A1 |
20170220240 | Kataria et al. | Aug 2017 | A1 |
20180174577 | Jothilingam et al. | Jun 2018 | A1 |
20180308476 | Hirzel et al. | Oct 2018 | A1 |
20180336049 | Mukherjee et al. | Nov 2018 | A1 |
20180336885 | Mukherjee et al. | Nov 2018 | A1 |
20180350353 | Gruber et al. | Dec 2018 | A1 |
20180366108 | Mukherjee et al. | Dec 2018 | A1 |
20180366113 | Hemaraj et al. | Dec 2018 | A1 |
20190132436 | Jang | May 2019 | A1 |
20190208130 | Hara et al. | Jul 2019 | A1 |
20190287512 | Zoller et al. | Sep 2019 | A1 |
20190347118 | Mukherjee et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
2 386 975 | Nov 2011 | EP |
2760015 | Jul 2014 | EP |
2016109366 | Jul 2016 | WO |
Entry |
---|
Linda C. Mechling, Using a Personal Digital Assistant to Increase Independent Task Completion by Students with Autism Spectrum Disorder. (Year: 2009). |
Robert Lee, Power and Performance Analysis of PDA Architectures. (Year: 2000). |
International Preliminary Report on Patentability dated Aug. 2, 2019 in International Patent Application No. PCT/US2018/033518, 17 pages. |
International Preliminary Report on Patentability dated Aug. 19, 2019 in International Patent Application No. PCT/US2018/033425, 18 pages. |
International Search Report and Written Opinion in International Application No. PCT/US18/33446, dated Aug. 24, 2018, 12 pages. |
International Search Report and Written Opinion dated Apr. 11, 2019 in International Patent Application No. PCT/US2019/015839, 13 pages. |
International Search Report and Written Opinion dated Aug. 9, 2018 in International Patent Application No. PCT/US18/33425, 10 pages. |
International Search Report and Written Opinion dated Oct. 18, 2018 in International Patent Application No. PCT/US18/48066, 10 pages. |
International Search Report and Written Opinion dated Oct. 29, 2018 in International Patent Application No. PCT/US18/33518, 12 pages. |
International Search Report and Written Opinion dated Nov. 19, 2018 in International Patent Application No. PCT/US18/48064, 7 pages. |
Preinterview First Office Action dated Feb. 13, 2020, in U.S. Appl. No. 16/261,657, 5 pages. |
Non-Final Office Action dated Feb. 25, 2020 in U.S. Appl. No. 15/936,007, 29 pages. |
First Action Interview Office Action dated Mar. 2, 2020, in U.S. Appl. No. 15/984,122, 3 pages. |
First Action Interview Office Action dated Mar. 3, 2020, in U.S. Appl. No. 16/038,993, 16 pages. |
First Action Interview Office Action dated Mar. 16, 2020, in U.S. Appl. No. 16/110,108, 6 pages. |
Notice of Allowance dated Apr. 28, 2020, in U.S. Appl. No. 16/261,657, 7 pages. |
Preinterview First Office Action dated Jun. 8, 2020 in U.S. Appl. No. 16/521,504, 4 pages. |
Final Office Action dated Jul. 24, 2020 in U.S. Appl. No. 16/110,103, 17 pages. |
International Search Report and Written Opinion dated Oct. 21, 2019 in International Patent Application No. PCT/US19/42453, 14 pages. |
International Preliminary Report On Patentability for PCT Application No. PCT/US2018/048064 dated May 7, 2020, 6 pages. |
International Preliminary Report On Patentability for PCT Application No. PCT/US2018/048066 dated May 7, 2020, 9 pages. |
First Action Interview Preinterview Communication dated Nov. 29, 2019 in U.S. Appl. No. 16/038,993, 6 pages. |
First Action Interview Preinterview Communication dated Jan. 15, 2020 in U.S. Appl. No. 15/984,122, 5 pages. |
First Action Interview Preinterview Communication dated Jan. 16, 2020 in U.S. Appl. No. 16/110,108, 5 pages. |
First Action Interview Preinterview Communication dated Oct. 9, 2019 in U.S. Appl. No. 16/110,103, 3 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2019/042453, dated Jan. 28, 2021, 7 pages. |
Notice of Allowance dated Feb. 8, 2021 in U.S. Appl. No. 16/038,993, 6 pages. |
Notice of Allowance dated Mar. 3, 2021 in U.S. Appl. No. 15/936,007, 12 pages. |
Extended European Search Report and Opinion received for European Patent Application No. 18802499.6, dated Apr. 9, 2021, 9 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2019/015839, dated Aug. 13, 2020, 12 pages. |
Final Office Action dated Aug. 4, 2020 in U.S. Appl. No. 15/984,122, 18 pages. |
Notice of Allowance dated Aug. 19, 2020 in U.S. Appl. No. 16/038,993, 7 pages. |
Final Office Action dated Sep. 18, 2020 in U.S. Appl. No. 16/110,108, 17 pages. |
Final Office Action dated Oct. 20, 2020 in U.S. Appl. No. 15/936,007, 33 pages. |
Extended European Search Report and Opinion received for European Patent Application No. 1 8802605.8, dated Apr. 14, 2021, 8 pages. |
Non-Final Office Action dated May 11, 2021 in U.S. Appl. No. 16/110,108, 18 pages. |
Notice of Allowance dated Nov. 6, 2020, in U.S. Appl. No. 16/038,993, 6 pages. |
“Hash table—Wikipedia”, Retrieved from the Internet URL : https://en.wikipedia.Org/w/index.php? title=Hash_table&oldid=753684620, accessed on Sep. 9, 2021, pp. 1-17 (2016). |
Extended European Search Report and Opinion received for European Patent Application No. 18801977.2, dated Jul. 22, 2021, 17 pages. |
Non-Final Office Action dated Jul. 12, 2021 in U.S. Appl. No. 16/110,103, 20 pages. |
Non-Final Office Action dated Sep. 2, 2021 in U.S. Appl. No. 15/984,122, 20 pages. |
Final Office Action dated Feb. 3, 2020 in U.S. Appl. No. 16/041,341, 58 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/048067, dated May 7, 2020, 7 pages. |
Notice of Allowance dated Aug. 31, 2020 in U.S. Appl. No. 16/521,504, 8 pages. |
Notice of Allowance dated Sep. 14, 2020 in U.S. Appl. No. 16/041,341, 8 pages. |
Notice of Allowance dated Sep. 23, 2020 in U.S. Appl. No. 16/041,341, 5 pages. |
Notice of Allowance dated Oct. 15, 2020 in U.S. Appl. No. 16/521,504, 3 pages. |
Notice of Allowance dated Oct. 21, 2020 in U.S. Appl. No. 16/521,504, 4 pages. |
Notice of Allowance dated Mar. 18, 2021 in U.S. Appl. No. 15/936,007, 9 pages. |
Notice of Allowance dated Apr. 8, 2021 in U.S. Appl. No. 16/038,993, 3 pages. |
Partial European Search Report and Opinion received for EP Patent Application No. 18801977.2, dated Apr. 23, 2021, 17 pages. |
Notice of Allowance dated Apr. 30, 2021 in U.S. Appl. No. 15/936,007, 9 pages. |
Notice of Allowance dated May 13, 2021 in U.S. Appl. No. 16/038,993, 3 pages. |
Notice of Allowance dated May 20, 2021 in U.S. Appl. No. 16/038,993, 3 pages. |
Notice of Allowance dated Jun. 9, 2021 in U.S. Appl. No. 15/936,007, 9 pages. |
Extended European Search Report and Opinion received for EP Patent Application No. 19748228.4, dated Sep. 24, 2021, 11 pages. |
Final Office Action dated Nov. 3, 2021, in U.S. Appl. No. 16/110,108, 19 pages. |
Number | Date | Country | |
---|---|---|---|
20180336050 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62613165 | Jan 2018 | US | |
62576766 | Oct 2017 | US | |
62539866 | Aug 2017 | US | |
62576804 | Oct 2017 | US | |
62509534 | May 2017 | US | |
62508181 | May 2017 | US |