Activation method

Information

  • Patent Grant
  • 8557343
  • Patent Number
    8,557,343
  • Date Filed
    Thursday, March 17, 2005
    20 years ago
  • Date Issued
    Tuesday, October 15, 2013
    11 years ago
Abstract
A method of activating an organic coating, a coated substrate having an activated coating and an activation treatment for an organic coating. In particular, the activation method improves the adhesion of the organic coating to further coating layers and/or to other entities.
Description
FIELD

The present writing relates to a method of activating an organic coating, a coated substrate having an activated coating and an activation treatment for an organic coating. In particular, the activation method improves the adhesion of the organic coating to further coating layers and/or to other entities.


BACKGROUND

Organic coatings are generally used to protect the surface of materials from incidental damage, abrasion, chemical attack and from environmental or in-service degradation. Organic coatings are also used to enhance the aesthetics and/or optical properties of an object or component.


The surface properties of many coatings dramatically change on drying, curing and/or aging to become more inert than might be predicted based on the chemistry of their individual components alone. Whilst this phenomenon in part provides the coating with chemical resistance, impact strength and abrasion resistance, it also complicates the process of applying additional coating layers, particularly when they are not applied within a predetermined reapplication window. The same problem arises with applying other entities such as sealants, fillers, stickers and the like, to such coatings. In cases which require the application of additional coating layers and/or other entities, a mechanical or stripping process of the coating is generally necessary before the re-application procedure can take place.


In the specific example of aircraft coatings, it is well known that adhesion will not meet in-service performance requirements when fresh layers of coating are applied over layers which have aged beyond the acceptable reapplication window. The acceptable window may be of the order of days under ambient conditions or hours under conditions of high temperature and/or humidity. Once the reapplication window has been exceeded, the standard practice for applying additional coating layers on aircraft involves mechanical abrasion of the aged coating.


Both chemical stripping and mechanical abrasion have limitations. Mechanical abrasion is labor intensive, the reproducibility is variable, and it is ergonomically costly due to the highly repetitive and vibratory nature of the work. As such there is a pressing need for the development of a surface treatment to improve the adhesion of aged or inert industrial organic coatings towards additional coating layers or other entities, for example, adhesives, sealants, fillers, stickers and the like.


Haack (Surface and Interface Anal, (2000), 29, p 829) investigated the interaction of automotive polyurethane coatings using UV light to generate ozone. Promising results in terms of improved adhesion and reduced water contact angles were produced when paint formulations incorporating TiO2 were subjected to H2O2 and UV light. However, there are obvious practical difficulties associated with this strategy, particularly in terms of its commercial viability for application in areas susceptible to corrosion and for treating larger surfaces. Also the occupational health and safety issues make it less suited to commercial application.


Coating manufacturers have developed a method of improving the procedure of coating stripping through the development of barrier layers which, for example, protect the primer and conversion coating of metal structures from the chemical stripping agents (U.S. Pat. No. 6,217,945). Although this procedure would inevitably improve the rate of paint stripping and reduce the amount of infrastructure down time it still relies on paint removal to provide a surface which will accept a fresh coating layer with acceptable adhesion.


In the biological field, Park et al. (Biomaterials, (1998), 19, p 851) employed the surface urethane NH group to graft chemical species onto polyurethane rubber, whilst Levy et al. (Biomaterials (2001) 22, p 2683) employed a strong base to remove the surface urethane NH proton to accelerate such nucleophilic grafting reactions. Both strategies are unsuitable for activating organic coatings. The chemical reaction kinetics of the first strategy would be too slow to be practical, particularly since, considering the low surface energy and inertness to bonding of such coatings, the urethane NH groups may not be oriented towards the air-coating interface. The use of very strong bases, as per the second strategy, may degrade existing paint layers, resulting in a mechanically weak foundation for fresh coatings to adhere to. Furthermore, the latter strategy is also unacceptable for activating large areas due to corrosion and health and safety considerations.


Other strategies in the biological field have employed free radical techniques to graft molecules onto the surface of biomedical polyurethane surfaces (Matuda et al, J. Biomed. Res., (2002), 59, p 386; Eaton et al, Biomaterials, (1996), 17, p 1977). Although commercially viable, the main difficulty with this strategy lies in promoting actual grafting of the substrate.


Controlled glycolysis or aminolysis as described in Polymer Engineering & Science (1978), 18, p 844, and J. Applied Polymer Science (1994), 51, p 675) has very slow kinetics at room temperature and as such is not a practical solution. The use of reagents such as dimethyl phosphonate (Polymer Degradation and Stability, (2000), 67, p 159) is also not appropriate since they are highly toxic and act too slowly at room temperature.


The strategies disclosed above do not adequately address the need for the development of a surface treatment to improve the adhesion of aged or inert organic coatings to additional coating layers and/or other entities. The problems of commercial viability, health and safety considerations, viable kinetics, applicability to small and large surface areas still remain and need to be resolved.


SUMMARY

We have now found a method which allows the activation of organic coatings to improve their adhesive properties towards further coating layers of the same or different type, and/or other entities without compromising coating integrity, via the use of mild reagents and conditions.


The term “mild” in this context refers to chemicals which are not known to be excessively corrosive, acidic, basic or toxic and are applicable for use in highly regulated industrial environments. One example of such an environment is a commercial aircraft paint hangar.


Advantageously, this method no longer requires the traditional methods of mechanical abrasion or chemical stripping of an organic coating to improve its adhesive properties towards additional coatings and/or other entities.


In a first aspect, the present invention provides a method of activating an organic coating to enhance adhesion of the coating to a further coating and/or other entities comprising applying a solvent and an adhesion promoter to a surface of the organic coating, wherein contact of the organic coating with the solvent or the solvent and adhesion promoter combination results in swelling of the organic coating.


In another aspect, the present invention provides a coated substrate having an activated organic coating, wherein the adhesion of the activated coating to a further coating and/or other entities has been enhanced by application of a solvent and an adhesion promoter to the surface of the activated coating, such that contact of the organic coating with the solvent or the solvent and adhesion promoter combination results in swelling of the organic coating.


The solvent and the adhesion promoter may be applied either simultaneously, sequentially or separately. Advantageously, the solvent and adhesion promoter are combined and applied to the organic coating in the form of an activation treatment.


In a further aspect, the present invention provides an activation treatment for an organic coating to enhance adhesion of the coating to a further coating and/or other entities comprising an adhesion promoter and a solvent, wherein contact of the organic coating with solvent or the solvent and adhesion promoter combination results in swelling of the organic coating.


In a further aspect, the present invention provides a method for the preparation of the activation treatment defined above comprising the step of mixing the solvent with the adhesion promoter.


DETAILED DESCRIPTION

In this specification, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.


As used in the specification the singular forms “a” “an” and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a solvent” includes mixtures of solvents, reference to “an adhesion promoter” includes mixtures of two or more such adhesion promoters, and the like.


The method of the present invention involves activating an organic coating so as to enhance the adhesive properties of at least the surface of the coating towards additional coating layers and/or other entities, for example, adhesives, sealants, fillers, stickers and the like. The term ‘activating’ is used in this context to mean the improvement of the adhesive properties of the organic coating relative to the adhesive properties of that coating, prior to application of the solvent and adhesion promoter.


The word “coating” is used herein its broadest sense and describes decorative topcoats; undercoats; intermediate coatings; primers; sealers; lacquers; coatings which are pigmented or clear; coatings designed for specific purposes, such as, corrosion prevention, temperature resistance, or camouflage; coatings which are high gloss, matte, textured, or smooth in finish; or coatings containing specialty additives, such as, metal flakes.


In general, organic coatings which are cured, dried or aged beyond a certain time period develop resistance to forming strong adhesive linkages towards other entities. Their surface properties become more inert than might be predicted, based on the chemistry of their individual components alone. Without wishing to be limited by theory, it is believed that this phenomena may result from a reduction in coating surface energy and amount of reactive surface functional chemical groups in conjunction with a higher cross-link density as a function of cure time/aging which makes chemical interaction and/or the formation of strong adhesive linkages with other entities difficult.


The organic coatings which may be activated include, but are not limited to, fully or partially cross-linked organic coatings. Examples of organic coatings include, polyurethane, epoxy, polyester, polycarbonate and/or acrylic coatings, more preferably polyurethane coatings. Due to their superior mechanical properties and resistance to abrasion, chemical attack, and environmental degradation, such organic coatings are widely used to protect infrastructure in the aerospace, marine, military, automotive, and construction industries. Many of these coatings show a marked reduction in adhesion to other entities, such as additional coating layers, adhesives, sealants, pressure sensitive decals or logos and the like, with increased time of curing and/or aging.


The activation method involves applying the solvent and the adhesion promoter to a surface of the organic coating. The surface treatment is not a primer coating but rather a chemical method of modifying the surface of the existing coating so that it is more receptive to forming adhesive interactions with further coatings and/or other entities.


Without wishing to be limited by theory, it is believed that a suitable choice of solvent(s) and/or solvent(s)-adhesion promoter(s) combinations allows the coating to be reversibly swollen (expanded). This allows the adhesion promoter(s) to penetrate the highly-chemically-resistant coating surface and engage in attractive interactions with the existing coating, for example molecular entanglement, physiochemical interactions such as hydrogen bonding, or chemical linkages such as covalent or ionic bonds. Upon evaporation or partial evaporation of the solvent(s) and/or adhesion promoter(s), the coating surface is left disordered, with at least some of the securely-tethered functional adhesion promoters protruding from the surface and hence available to form adhesive linkages with separate entities through molecular entanglement, physiochemical, or chemical interactions.


Preferably the solvent and/or adhesion promoter only swell the surface of the organic coating so that the integrity of the first or lower coatings or the underlying substrate are not compromised.


The solvent may be a single solvent or a combination of two or more solvents. Preferably the solvent is an organic solvent. Suitable organic solvents or solvent combinations include:


Ester based solvents such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate and tertiary butyl acetate, acetates based on glycols such as ethylene and propylene glycol repeat units for example glycoletheracetates such as ethyleneglycol-monoetheracetate and diethylene glycol-monoetheracetate and dipropylene glycol monoether acetate where the ether residue may be aliphatic (methyl, ethyl, butyl etc) or optionally aromatic (benzene derivatives);


Ketones such as methyl ethyl ketone, methyl amyl ketone, methyl isoamyl ketone, methyl propyl ketone, methyl isobutyl ketone and acetone;


Alcohols such as benzyl alcohol; tertiary butanol; isopropanol; and mono and dihydroxy glycols based on ethylene and propylene glycol repeat units such as ethylene glycol, diethylene glycol, ethylene glycol monoether, diethylene glycol monoether dipropylene glycol and dipropylene glycol monoether, where the ether residue may be aliphatic (e.g. methyl, ethyl, butyl etc.) or optionally aromatic (e.g. benzene derivatives);


Ethers based on ethylene and propylene glycol repeat units such as ethylene glycol diether, diethylene glycol diether, triethylene glycol diether and dipropylene glycol diether where, the ether residue may be aliphatic (methyl, ethyl, butyl etc) or optionally aromatic (benzene derivatives) (tetrahydrofuran);


Amides such as N-methylpyrrolidinone and dimethylacetaminde;


Aromatics such as toluene and xylene; and


Halogenated solvents such as dichloromethane and tetrachloroethylene.


However, in view of the toxicity and negative environmental impact of halogenated solvents, it will be understood that they should be used within the constraints of environmental, health, and safety regulations.


More preferred solvents are ester based solvents such as ethyl acetate, isopropyl acetate tertiary butyl acetate and glycoletheracetates; ketone solvents such as methyl amyl ketone and methyl isoamyl ketone; alcohols such as benzyl alcohol, isopropylalcohol and glycolmonoethers; ether solvents gylcoldiethers; amide solvents such as N-methylpyrrolidinone; chlorinated solvents such as dichloromethane and dichloroethylene.


More preferred solvent combinations include high and low boiling point solvent combinations such as N-methyl pyrrolidinone: ethyl acetate; dichloromethane: benzyl alcohol; ethyl acetate: benzyl alcohol; ethyl acetate: diglycol ether dimethyl ether; and isopropylalcohol:ethoxyethylacetate.


Particularly preferred solvents are ester based solvents such as ethyl acetate and isopropyl acetate, t-butylacetate and glycoletheracetates based on ethyleneglycol and propyleneglycol repeat units; and ketone solvents such as methyl amyl ketone and methyl isoamyl ketone and ether based solvents such as glycoldiethers.


The solvent(s) are generally present in the activation treatment in an amount of less than about 99.9%, preferably greater than about 50%, most preferably in an amount of about 50 to about 99.9% based on the total weight of the combination of solvent(s), adhesion promoter(s) and any optional additive(s).


The adhesion promoter is preferably a compound having at least one functional group. More preferably, two or more functional groups are present and under these circumstances they can be of the same or different functionality. Examples of such functional groups include but are not limited to amine, alcohol, carboxylic acid, amide, ester, thiol, ether, epoxy, isocyanate, isothiocyanate and anhydride groups. Adhesion promoters with nucleophilic functional groups are preferred. Particularly preferred are adhesion promoters with functional groups based on amines and/or alcohols.


The adhesion promoter may take the form of a linear molecule, or alternatively it may take a branched, hyperbranched or dendritic structure. It may be a discrete molecule or a polymer with a molecular weight distribution.


Adhesion promoters with molecular weights less than about 100,000 have been found to be suitable. Preferably, the molecular weight is less than about 10,000 to achieve suitable activation kinetics.


Suitable adhesion promoters include linear and branched polyethylene imines (PEI); amine, epoxy, isocyanate and/or hydroxyl terminated polyether glycols such as polyethylene glycol, polypropylene glycol and/or polyethylene oxide; dendrimers such as polypropylene imine octamine dendrimer and/or polypropylene imine tetraamine dendrimer; and low molecular weight amines such as ethylene diamine, diethylene tetraamine, triethylene tetraamine (TETA), tetraethylene pentamine, pentaethylene hexamine, piperazine, aminoethylpiperazine, 1,4-bis(3-aminopropyl)piperazine, N,N′-bis(3-aminopropyl)ethylenediamine, 4,9-dioxa-1,12-dodecanediamine, 2,2′-(ethylenendioxy)bis(ethylamine), 4,7,10-trioxamidecane-1,13-diamine (TODA), 4,7-dioxadecane-1,10-diamine (DODA), polyetheramine T 403, N,N-bis(3-aminopropyl)-ethylene diamine, 3-2(2-aminoethyl)aminopropyl amine, dipropyltriamine and 4,4′ diamino-dicyclohexylamine; aminosilanes such as trimethoxysilyl(propyl)diethylenetriamine; epoxysilanes; glycidylethers such as trimethanolpropane triglycidylether and polyethylene glycol diglycidylethers; aziridines such as trimethylolpropanetris(3-aziridinopropionate); and acids such as polyethylene glycoldicarboxylic acid or combinations thereof.


Preferred adhesion promoters are amines such as TODA and/or DODA.


Preferred combinations of adhesion promoters include high and low molecular weight adhesion promoter combinations such as high and low molecular weight polyethylene imines and high and low molecular weight polyether glycols, for example, 4,9-dioxa-1,12-dodecane diamine and polypropylene glycol. Other preferred combinations include aminosilanes such as trimethoxysilyl(propyl)diethylenetriamine and epoxy compounds such as trimethanolpropane triglycidylether; 4,7,10-trioxamidecane-1,13-diamine and epoxy silanes such as trimethylsilyl(propyl)glycidylether; and aziridines and trimethylolpropanetris(3-aziridinopropionate), acids such as polyethylene glycol dicarboxilic acid or glycols such as glycol derivatives.


The adhesion promoter(s) are generally present in an amount more than about 0.01%, preferably more than about 1%, more preferably up to about 50% and most preferably about 1% to about 50% based on the total weight of the combination of solvent(s), adhesion promoter(s) and any optional additives.


One or more additives known in the art of coatings may also be used in the method or activation treatment of the present invention. Suitable examples include rheology modifiers such as hydroxypropyl methyl cellulose (e.g. Dow, methocell 311), modified urea (e.g. Byk 411, 410) and polyhydroxycarboxylic acid amides (e.g. Byk 405); film formers such as esters of dicarboxylic acid (e.g. Lusolvan FBH, BASF) and glycol ethers (e.g. Dowanol, Dow); wetting agents such as fluorochemical surfactants (e.g. 3M Fluorad) and polyether modified poly-dimethyl-siloxane (e.g. Byk 307/333); surfactants such as fatty acid derivatives (e.g. Akzo, Bermadol SPS 2543) and quaternary ammonium salts; dispersants such as non-ionic surfactants based on primary alcohols (e.g. Merpol 4481, Dupont) and alkylphenol-formaldehyde-bisulfide condensates (e.g. Clariants 1494); substrate cling agents; anti foaming agents; anti corrosion reagents such as phosphate esters (e.g. ADD APT, Anticor C6), alkylammonium salt of (2-benzothiazolylhio) succinic acid (e.g. CIBA, Irgacor 153) and triazine dithiols; stabilizers such as banzimidazole derivatives (e.g. Bayer, Preventol BCM, biocidal film protection); levelling agents such as fluorocarbon-modified polymers (e.g. EFKA 3777); pigments such as fluorescents (Royale Pigment and chemicals), and organic and inorganic dyes such as fluoroscein.


The additives are usually present in an amount of less than about 10% based on the total weight of the combination of solvent(s), adhesion promoter(s) and optional additive(s).


The substrate for the above methods having an activated coating may be of any type including metals such as aluminum; composites such as epoxy-carbon fibre composites; or materials containing plastics, glass, wood or fabric. There may also be various “sub” coating layers beneath the coating requiring reactivation including other decorative coating layers, primers, intermediate layers, conversion or anticorrosion coating layers and the like.


When the solvent and adhesion promoter are combined and applied in the form of an activation treatment this may take different physical forms such as solution, suspension, mixture, aerosol, emulsion, paste or combination thereof. Treatments which take the form of a solution or emulsion are preferred.


The activation treatment may be prepared by mixing the components together with any mixing equipment known to those skilled in the art such as but not limited to stirrers, shakers, high speed mixers, internal mixers, extruders, mills, ultra-sound and gas dispersers. When the activation treatment is in the form of a solution, the solution may be prepared as a concentrate and diluted before use or prepared ready for use.


The activation treatment or the application of the individual components thereof may be applied via any method known to those skilled in the art such as but not limited to spray, brush, dip, knife, blade, hose, roller, wipe, curtain, flood, flow, mist, pipette or combinations thereof. Application by spray is preferred.


The method of activation may be conducted at ambient temperatures or alternatively at higher temperatures if desirable. The activation treatment or individual components thereof may be applied to small or large areas, to sections of larger parts, components or full infrastructure such as infrastructure associated with the aerospace (e.g. aircraft), automotive (e.g. vehicles), marine (e.g. ships), transportation (e.g. trains), military (e.g. helicopter, missile) or construction industries (e.g. buildings, factories, floors). The surface may have simple or complex geometry or may be at any inclination. Treatment may be conducted once or multiple times prior to interaction with the separate entity. The exposure time of the activation treatment on the coating is more limited by the throughput and applications requirements. As such the exposure time may be short for example one minute or extended for example 3 h.


In certain circumstances it may be preferable to remove excess non interlocked adhesion promoter and/or solvent from the surface. This process may be conveniently carried out by techniques such as solvent or water rinsing; dry, water or solvent wiping; air or gas knife; vacuum application; squeegee; and/or natural or forced connection evaporation.


After the coating surface is activated, separate entities such as additional coating layers, adhesives, sealants, pressure sensitive decals or logos and the like may be applied either immediately or at a later time, providing the surface remains predominantly uncontaminated during storage or that the contamination can be conveniently removed. The activation solution may need to be reapplied in some cases.


Any suitable method known to those skilled in the art may be used to assess whether the adhesive linkage between the organic coating and further coatings and/or other entities is fit for purpose. Such tests include but are not limited to ASTM, ISO, and FAA standards, in-house test methods to simulate in-service performance, in-service performance itself, and durability testing either actual or accelerated. For the case of aerospace coatings, test methods based on water impact, such as the Whirling Arm Rain Erosion or the Single Impact Jet Apparatus (MIJA Limited, Cambridge, UK), have been found to be particularly useful for assessing inter-coat adhesion. In this case, the amount of overcoat removal is related to the level of inter-coat adhesion.





BRIEF DESCRIPTION OF DRAWINGS

In the Examples, reference will be made to the accompanying drawings, in which:



FIG. 1 is a schematic diagram showing the general activation strategy; and



FIG. 2 is a diagram showing whirling arm rain erosion performance assessment.



FIGS. 3 A-D show results of intercoat adhesion testing with curing under various conditions.



FIGS. 4-13 show the results of intercoat adhesion testing with treatment with different solvents.



FIGS. 14-22 show the improvement in intercoat adhesion of aged polyurethane treated with various adhesion promoters.



FIGS. 23-24 show the effect of different adhesion promoter concentrations.



FIGS. 25-26 show the effect of treatment with an activation solution for different periods of time.



FIGS. 27-28 show the effect of inclination on adhesion.



FIGS. 29-30 show the effect of additional additives.



FIGS. 31-32 show the effect of the all-time between activating and over-coating.



FIG. 33 shows the effect of various post treatment protocols.



FIGS. 34-36 show the effect of particular adhesion promoters and solvents.



FIGS. 37-44 show the suitability for use on aged coatings, the durability of the activated surface and the durability and chemical resistance of intercoat adhesion.



FIG. 45 shows the intercoat adhesion between an aged and activated coating and an additional coating.



FIGS. 46-47 compare chemical activation with preparation by sanding.



FIGS. 48 A-C are SEMs of coated specimens prepared by various methods.



FIGS. 49 A-D attached are graphs showing depth of various chemical activation treatments into a paint film.



FIG. 50 shows green scribe adhesion of a coating prepared by a particular method.



FIG. 51 shows the intercoat adhesion of a coating prepared by a particular method.



FIG. 52 shows SJIA and green scribe intercoat adhesion of a coating prepared by particular method.



FIG. 53 shows SJIA and green scribe intercoat adhesion of a coating prepared by particular method.



FIG. 54 shows SJIA and green scribe intercoat adhesion of a coating prepared by particular method.



FIGS. 55-58 show the impact of an activation solution on common material used on aircraft.



FIG. 59 shows paint stripping of a coated-treated-over-coated material.



FIG. 60 shows intercoat adhesion of an aged activated surface.





EXAMPLES

The invention will now be described with reference to the following non-limiting examples. The following abbreviations are used in the examples:


TODA—4,7,10-trioxa-1,13-tridecanediamine


PEI—polyethylene imine


TETA—triethylene tetraamine


PEG-DGE—polyethylene glycol diglycidyl ether


IPA—isopropyl acetate


EEA—ethoxyethylacetate


SOLO—spray on-leave on


SOHO—spray on hose off


MEK—methylethylketone


DABCO—diaminebicyclooctane


Although the examples concentrate on coatings derived from polyurethane chemistries it will be understood that the same activation methodology could be applied to coatings such as but not limited to those based on epoxy, acrylic or polyester coatings through the appropriate choice of solvent(s), adhesion promoter(s) and optional additives under appropriate activation conditions.


1. Inter-coat adhesion of polyurethane paint as function of cure conditions/age


2. Effect of different solvent used in the surface activation treatment on inter-coat adhesion


3. Effect of different adhesion promoter used in the surface activation treatment on inter-coat adhesion


4. Effect of different adhesion promoter concentration used in the surface activation treatment on inter-coat adhesion


5. Effect of surface activation treatment time on inter-coat adhesion


6. Effect of substrate inclination (angle) on application of the surface activation treatment and resultant inter-coat adhesion


7. Effect of additives used in the surface activation treatment on inter-coat adhesion


8. Effect of dwell time between activation and re-coating on inter-coat adhesion


9. Impact of different application methods for applying the activation treatment on the resultant inter-coat adhesion


10. Impact of different post treatment steps to remove excess treatment and/or solvent on the resultant inter-coat adhesion


11. Effect of different paint types and curatives on the activation treatment and resultant inter-coat adhesion


12. Durability of coatings applied to activated substrates


13. Inter-coat adhesion between aged and then activated organically pigmented coating towards an additional coating layer


14. Adhesion data from Whirling Arm Rain Erosion and SIJA experiments of activated and re-coated specimens relative to specimens sanded prior to over-coating


15. SEM analysis of coating layers


16. Raman Spectroscopy illustrating activation solution penetration depth


17. Analysis of coating surface by XPS prior to and following activation


18. Scribe adhesion illustrating rapid build-up of intercoat adhesion in chemically reactivated samples


19. Intercoat adhesion of samples activated with two adhesion promoters (SOLO)


20. Intercoat adhesion of chemically activated sample in solvent mixture (SOLO)


21. Scribe and SIJA intercoat adhesion of samples activated with two adhesion promoters (SOLO)


22. Intercoat adhesion of specimen activated over a vinyl mask prior to overcoating


23. Sealant immersion compatibility


24. Epoxy-graphite fibre composite immersion compatibility


25. Sealant immersion compatibility


26. Epoxy-graphite fibre composite immersion compatibility


27. Paint stripping


28. Impact of thermal cycling on surface activity and intercoat adhesion


All the components of the activation treatment influence the physical properties of the treatment and hence its ability to interact with the coating. Such impacts can be assessed theoretically by using solubility parameters (Hanson, Hanson solubility Parameters—a users hand book, CRC, NY, Van Krevelen, D. W., Hoftyzer, P. J., Properties of Polymers—their estimation and correlation with chemical structure, Elsevier, NY) or UNIFAC (Hansen H. K., et al. Ind. Eng. Chem. Res 1991; 30 (10) p 2352) to estimate the contribution of the individual components to the total interaction parameter of the activation treatment.


It is envisaged that suitable combinations of components of the activation treatment will differ depending on the type of coating to be activated. The appropriate choice of solvent(s), adhesion provider(s), optional additives and activation conditions will differ depending on the type of coating to be activated.


GENERAL EXPERIMENTAL DETAIL

1. Aluminium Pre-Treatment


Aluminium test coupons (Alcad 2024-T3) or Rain erosion Foils (Alcad 2024-T3) were cleaned and an Alodine type conversion coating was applied prior to painting.


2. Painting Conditions and Protocol


An epoxy based primer was used for all samples. Desothane HS (Registered Trade Mark) polyurethane topcoats were employed for all trials using the standard flow control agent (CA 8000C) unless specified. The base CA8000:activator CA8000B:flow CA8000C ratio employed was also calculated on a weight basis (121.06:51.32:39.81 for white 7067) unless stated in the example. Following component addition, both primer and topcoats were shaken for 15 min in a “Red Devil” paint shaker and allowed to stand for a further 15 min prior to painting.


Spray painting of flat panels was carried out employing a robotic painting arm incorporating a gravity fed automatic spray gun. Spray painting was conducted using an inlet pressure of 40 PSI, a scan rate of 100 mm/s and a specimen to gun distance of 300 mm. A single pass was employed for the application of the primer whilst four individual passes were required for the top-coats allowing “tack-up” time between each individual pass. The coating thickness was controlled by the gun's fluid needle control position and scan rate with these adjusted in line with paint thickness measurements assessed using a Fischer Isoscope (MPOD). An analogous strategy was employed for the application of the overcoat, Desothane HS polyurethane. For the majority of the research the painted films were over-coated following taping of the top and bottom of the coupons with vinyl tape to form a leading paint edge on its removal. This edge was the impact target for SIJA analysis. Later investigations applied the tape through the middle of the coupon.









TABLE 2







Painting & Cure Schedule








Task
Conditions





Polyurethane
Conducted on the same day as the primer


Top-coat
Cure: 18 h, 49° C., 10-22% relative



humidity, Thickness ~100 micron (measured



each batch)



Alternatively:



Conducted on the same day as the primer



Cure: −116 hrs:



a) 120 F., 8-12% RH, 44 hrs



b) 120 F., 50% RH, 48 hrs



c) 160 F., 3-5% RH, 24 hrs



Thickness ~100 micron (measured each batch)


Surface
Generally conducted directly following completion


modification
of the cure cycle or on the following day


and/or analysis



Polyurethane
Painting conducted on the same or next day


over-coat
following treatment.


repainting
Cure: 40 h, 49° C., 10-22% relative humidity,



Thickness ~100 micron (measured each batch)









Spray painting of curved surfaces (eg: rain erosion foils) was conducted using a Binks M1-H HVLP gun configured with a 94 nozzle. In these cases the aluminium was prepared in the same manner as the SIJA plates prior to the first top-coat being applied. Following cure of the first coating layer the front of the foils were masked prior to over-coating to form a leading edge once the over-coating was applied and tape removed.


3. Surface Modification


The solvents and reagents used for surface modification were purchased from the MERK and Sigma-Aldrich Chemical Companies of an Analytical and Laboratory Reagent grade purity respectively. The specific adhesion promoter or solvent employed for activation is outlined in the main body of the example.


General treatment conditions are presented in Table 3. Activation of the (cured) ‘aged’ painted surfaces was conducted either on the same day or next day following completion of curing unless stated in the example.









TABLE 3







General Activation Protocol








Task
Strategy





Treatment
Coupons were placed:



Horizontally over a grid and then exposed to the



treatment solution from 5 to 180 min, either



periodically re-applying the solution or with just



one application.



At angles of 0, 45, 90, 135° and then exposed to a



treatment solution spray at 10 min intervals for 30



min or with one application.


Post-Treatment
Washed with isopropanol or water



Wiped with an isopropanol or water soaked cloth



Used directly for painting (where specified, SOLO)


Re-coating
Dry Reactivated coating were either painted on the:



Following Day (24 h)



Same day (5 min to 4 hours after treatment)









Application was conducted either by pouring treatment solution over the substrate with a pipette, application with a disposable pump action spray bottle or by using a Binks M1-H HVLP gun employing a 92 or 94 nozzle and 40 psi inlet pressure.


4. Analysis


Table 4 provides the equipment and conditions used for polyurethane surface analysis and adhesion testing.









TABLE 4







Analytical Equipment & Conditions








Equipment
Conditions





FTIR
FTIR analysis was carried out on a BRUKER FTIR/



NIR spectrometer or Nicolet Instruments employing



an ATR KRS-5 TiBr/TiI mixed crystal associated with



the microscope


Raman
Raman spectroscopy was completed on a Renishaw,


Spectroscopy
1000 Raman microprobe spectrometer employing a 780



nm laser, focusing the laser spot down to 1 micron.



Cross sections of the painted films on glass, or alu-



minium were prepared by cutting the paint film and ex-



posing the cross section to the incident laser beam.


XPS
XPS analysis was completed on a Kartos AXISH5



spectrometer at an incident beam of 90° employing an



Alumina source to generate survey and high resolution



spectra. Curve fitting analysis of the data was completed



using GRAMMS RESEARCH software package


Contact
Contact angle analysis was completed using “FIRST


Angle
TEN ANGSTROMS” semi-automated video equipped



contact angle analyser. CH2I2 and H2O were employed as the



reference solvents to calculate the dispersive (γsd) and



polar (γsp) contributions to surface energy (γs) through



the Young-Dupre relationship and Fowkes equation.


SEM
SEM analysis of the polyurethane cross-sections were



collected on a Oxford Pentafet detector controlled by



an Oxford ISIS system. Cross-sections of the samples



prepared with a cut off saw appropriate for non-ferrous



materials and were mounted in epoxy resin, ground and



polished to a 1 micron finish and gold coated. Imaging and



x-ray analysis was conducted using a 15 KV accelerating



voltage and a 17 mm working distance. EDX analysis was



specifically refined for carbon, nitrogen, oxygen, and



chlorine.


SIJA
Adhesion testing was completed using a Single Impact



Jet Apparatus (SIJA) manufactured by MIJA, Ltd in



Cambridge, UK. The initial equipment was configured



using a 0.8 mm nozzle and employed 0.22 calibre 5.5 mm



Crosman Accupell Pointed Pellets (#11246). Testing



was completed following immersion in water for 16 to



18 h employing a line laser to locate the impact position



and using a 45° specimen to impact droplet geometry.



A single water jet was employed at each site to test



adhesion with the pressure employed for the “shot”



indicated below its impact. The velocity of each individual



shot was recorded for future reference, but generally the



pressure to velocity conversion is specified below (±25 m/s).










Pressure (PSI)
Velocity (m/s ±25 m/s)



L
350



100
725



200
895



300
1007



400
1079









In some cases the amount of overcoat removed, and hence



the inter-coat adhesion was assessed employing image



analysis techniques to quantify the area of paint removed.



More overcoat removed corresponded with inferior inter-



coat adhesion


Whirl-
Rain erosion testing was completed on a whirling arm rain


ing
erosion apparatus employing a 52 inch zero lift


Arm
helicopter like propeller run at 3600 rpm. Reference and


Rain
activated polyurethane topcoat foils were over-coated (60


Erosion
to 100 micron paint thickness) following masking to produce


Testing
a leading edge. The foils were attached to the propeller



at a distance along the propeller correlating to a



velocity of 380 mile per hour at the mid point of the



foil. The effective rain field density of 2 mm droplets



used during the experiment was 1 inch per hour. After 30



min the impact of rain erosion on the inter-coat adhesion



of the foils was evaluated according to a 0.5 to 5 rating



correlating the amount of paint removed or tear lengths



(see FIG. 2). The impact of water droplets on the leading



edge of the over-coat formed on removal of the tape during



the experiment erodes the over-coating layer relative to



the strength of the inter-coat adhesion.


Green
Green (scribe) adhesion was assessed according to BSS


Adhe-
7225, Class 5. Briefly heat aged Dethothane polyurethane


sion
coatings were reactivated and then over-coated (60-80



micron thickness) curing the over-coat for 16 h at room



temperature and humidity. The coatings were then scribed



according to BSS 7225 and the adhesion test was performed



with PG-777 grade tape


Paint
Procedure for the complete strip test is described in SAE


Strip-
MA4872, Annex A, pages 51 to 53 and is similar to BMS10-


ping
103 section 8.2.12d on page 13. In this Stage an



abbreviated version was completed using CEEBEE-E2012A and



Turco-1270-5 paint strippers with out thermal cycling to



compare how the activated and over-coated specimens to



untreated and reference specimens.



Aged specimens (Al or composite substrate, ex-BOEING)



were untreated, sanded, or activated were over-coated



(60-75 micron) and cured for 40 h at 120° F. The edges



were taped with Aluminized tape (such as 3M Scotch Brand



425) prior to commencing the test.









Example 1

Inter-coat adhesion of white polyurethane painted specimens cured under various conditions prior to over-coating with blue polyurethane as assessed by SIJA:


A. 4 h at 49° C. prior to over-coating


B. 18 h at 49° C. prior to over-coating


C. 156 h at 49° C. prior to over-coating


D. 18 h at 49° C. and then sanded prior to over-coating


Results Indicate:


As shown in FIGS. 3 A-D, excellent inter-coat adhesion is obtained when samples are over-coated within a short cure window (A). Reduced inter-coat adhesion when the cure time or age of samples is increased (B) and (C). Sanding the specimens cured outside their re-application window prior to over-coating (D) re-established the adhesion performance with only limited over-coat paint removal.


Example 2

Inter-coat adhesion as assessed by SIJA of white polyurethane paint cured at 49° C. for 18 h and then treated with the adhesion promoter specified in different solvents prior to over-coating with blue polyurethane.


1. Chlorinated Solvents (amine terminated polypropylene glycol adhesion promoter)—See FIG. 4.


2. Alcohol solvents (amine terminated polypropylene glycol adhesion promoter)—See FIG. 5.


3. Ester Solvents (4,7,10-trioxa-1,13-tridecanediamine adhesion promoter)—See FIG. 6.


4. Ketone Solvents (4,7,10-trioxa-1,13-tridecanediamine adhesion promoter)—See FIG. 7.


5. Ether Solvents (4,7,10-trioxa-1,13-tridecanediamine adhesion promoter)—See FIG. 8.


6. Amide Solvents (4,7,10-trioxa-1,13-tridecanediamine adhesion promoter)—See FIG. 9.


7. Solvent mixtures


N-methyl Pyrrolidinone:Ethyl acetate (1:1) 4,7,10-trioxa-1,13-tridecanediamine—See FIG. 10.

    • Dichloromethane:Benzyl alcohol (1:1) amino terminated polypropylene glycol—See FIG. 11.
    • Ethyl acetate:Benzyl alcohol (1:1) 4,7,10-trioxa-1,13-tridecanediamine—See FIG. 12.
    • Ethyl acetate:diglycol ether dimethyl ether (1:1) 4,7,10-trioxa-1,13-tridecanediamine—See FIG. 13.


      Results Indicate:


As shown in FIGS. 4-13, chemical activation of polyurethane may be conducted with suitable adhesion promoters in a variety of different solvents or solvent combinations to improve inter-coat adhesion relative to samples which are not activated prior to over-coating.


Example 3

The following example show the improvement in inter-coat adhesion of aged polyurethane white coatings (18 h, 49° C.) treated with various adhesion promoters (50%) employing ethyl acetate or benzyl alcohol as the treatment solvent prior to over-coating with blue polyurethane as assessed by SIJA analysis. (Treatment time 30 or 60 min)

  • 1. Amine terminated polypropylene glycol (Benzyl alcohol)—See FIG. 14.
  • 2. Alcohol terminated polypropylene glycol (Benzyl alcohol)—See FIG. 15.
  • 3. Epoxy terminated polypropylene glycol (benzyl alcohol)—See FIG. 16.
  • 4. Polyethylene imine (PEI) (ethyl acetate)—See FIG. 17.
  • 5. Amine functional ether compounds (ethyl acetate)—See FIG. 18.
  • 6. Amine functional compounds (ethyl acetate)—See FIG. 19.
  • 7. Impact of employing a mono-functional adhesion promoter on inter-coat adhesion (benzyl alcohol) (PEI—polyethylene imine linear MW=425)—See FIG. 20.
  • 8. Impact of employing adhesion promoter combinations on adhesion (ethyl acetate)
    • PEI (branched MW 25K), 10% & PEI linear 0.43K 50%—See FIG. 21.
    • 4,7,10-trioxa-1,13-tridecanediamine (40%), diethylene triamine (10%) in benzyl alcohol—See FIG. 22.


      Results Indicate:


As shown in FIGS. 14-22, a variety of different suitably functionalised adhesion promoters or adhesion promoter combinations may be employed to improve inter-coat adhesion including those which are polymeric or discrete molecules. Example 3 (7) illustrates that inter-coat adhesion is slightly improved through the use of monofunctional adhesion promoters such as propyl amine, due to the similar amount of over-coat paint removal compared with untreated samples.


Example 4

The following example shows the effect of using various adhesion promoter concentrations to improve the inter-coat adhesion of aged polyurethane topcoat (49° C., 18 h) to a blue polyurethane over-coat as assessed by SIJA analysis.


1. PEI (linear) in ethyl acetate, 30 min treatment time—See FIG. 23.


2. 4,7,10-trioxa-1,13-tridecanediamine in ethyl acetate, 30 min—See FIG. 24.


Results Indicate:


As shown in FIGS. 23 and 24, when appropriate adhesion promoter and solvent are employed, the adhesion promoter concentration may be varied whilst still providing an improvement in inter-coat adhesion.


Example 5

The following example illustrates the effect on inter-coat adhesion of treating aged white polyurethane coating (18 h, 49° C.) with an activation solution for different time periods prior to over-coating with blue polyurethane coating as assessed by SIJA analysis.


1. 4,7,10-trioxa-1,13-tridecanediamine (50%) in Ethyl acetate—See FIG. 25.


2. Amino-terminated Polypropylene glycol (Mn=230) in Benzyl alcohol—See FIG. 26.


Results Indicate:


As shown in FIGS. 25 and 26, the SIJA results indicate that when suitable adhesion promoters and solvents are employed the activation process may be conducted over short or extended periods to improve inter-coat adhesion.


Example 6

Example 6 shows the effect on inter-coat adhesion as assessed by SIJA analysis of aged white polyurethane coating (49° C., 18 h) activated with suitable adhesion promoters and solvents prior to over-coating with blue polyurethane coating at different inclinations.


A. 4,7,10-trioxa-1,13-tridecanediamine (50%) in ethyl acetate. (30 min treatment time)—See FIG. 27.


2. PEI Linear (50%) in benzyl alcohol (60 min treatment time)—See FIG. 28.


Results Indicate:


As shown in FIGS. 27 and 28, when suitable adhesion promoters and solvents are employed the activation treatment may be used to improve inter-coat adhesion of aged polyurethane substrates at different inclinations and hence is suitable for substrates of different geometries.


Example 7

The following example illustrates the effect of including minor amounts of additives (in this case shear thinning rheology modifiers) in the activation treatment solution. In this case an aged polyurethane white coating (49° C., 18 h) was treated with the activation solution prior to over-coating with a blue polyurethane coating and the inter-coat adhesion assessed by SIJA.

  • A. 10% Polyethylene imine (linear) in ethyl acetate, substrate at 45° incline (30 min treatment time)—See FIG. 29.
  • B. 4,7,10-trioxa-1,13-tridecanediamine (%) in Ethyl acetate substrate at 90° incline (30 min treatment time)—See FIG. 30.


    Results Indicate:


As shown in FIGS. 29-30, additives such as but not limited to rheology modifiers may be added into the activation solution without detrimental impact on the level of inter-coat adhesion improvement as assessed by SIJA techniques. In this case such modifiers limit the amount of activation solution run off during the activation procedure.


Example 8

Example 8 illustrates the effect of different dwell times between activating the surface of the aged white polyurethane coating (18 h, 49° C.) and over-coating with fresh blue polyurethane employing 4,7,10-trioxa-1,13-tridecanediamine (50% in ethyl acetate, 30 min) as the activation solution.


Results Indicate:


As shown in FIG. 31, specimens may be over-coated employing either a short or longer dwell time between activation and over-coating. As long as the specimens are stored appropriately an improved inter-coat adhesion results as assessed by SIJA methods.


Example 9

Example 9 shows the impact on inter-coat adhesion of applying the activation solution to the aged white polyurethane coating (49° C., 18 h) by different techniques. Treatment conducted at a 45° angle (4,7,10-trioxa-1,13-tridecanediamine 50% in ethyl acetate, 30 min) prior to over-coating with blue polyurethane.


Results Indicate:


As shown in FIG. 32, improved inter-coat adhesion results as assessed by SIJA techniques regardless of the application method employed.


Example 10

Example 10 shows the effect of various post treatment protocols employed following treatment of the aged white coating (49° C., 18 h) with the activation solution (1% 4,7,10-trioxa-1,13-tridecanediamine in ethyl acetate) prior to over-coating with blue polyurethane.


Results Indicate:


As shown in FIG. 33, chemical activation treatment is amenable to a variety of different post treatment steps if required for example those to removed excess adhesion promoter, solvent or contaminant whilst retaining an improved level of inter-coat adhesion as assessed by SIJA analysis.


Example 11

The following example shows how the appropriate adhesion promoters such as 4,7,10-trioxa-1,13-tridecanediamine and solvents (eg ethyl acetate) may be used to improve inter-coat adhesion of aged (49° C., 18 h):


a. polyurethane coatings manufactured by different paint manufacturers and


b. polyurethane coatings cured with hot thinners (ie thinners incorporating higher level of cure catalyst) prior to over-coating with blue polyurethane. Water wash employed following treatment.


A1. PPG Aerospace PRC Desoto—See FIG. 34.


A2. Eclipse Range (Akzo Nobel Aerospace Coatings)—See FIG. 35.


B. Desothane HS cured with hot thinners—See FIG. 36.


Results Indicate:


As shown in FIGS. 34-36, the activation procedure is amenable for improving the adhesion between different types of polyurethane coatings and coating cured with different thinners (catalyst levels) and hence different cure rates and fresh coating layers as assessed by SIJA analysis.


Example 12

The following example illustrates that the activation procedure may be:


A. Carried out on aged coatings, that


B. Under appropriate storage conditions the activated surface is durable, that


C. Inter-coat adhesion is durable over time and that


D. Inter-coat adhesion is resistant to chemical exposure.


A. Inter-coat adhesion of aged coatings prior to over-coating




  • (1) White coating aged for 156 h, 49° C. prior to over-coating with Blue coating. Treatment:Amino-terminated polypropyleneglycol 50% in dichloromethane (30 min)—See FIG. 37.

  • (2) White topcoats cured for 16 h, 49° C. and stored for 3 months under ambient conditions prior to over-coating with blue polyurethane coating (treatment: 50% adhesion promoter in ethyl acetate, 30 min)—See FIG. 38.


    B. Inter-coat adhesion of aged activated surface. (Aged white polyurethane coatings (49° C., 18 h), activated, and stored under ambient conditions for three months prior to over-coating with blue polyurethane).
    • Treatment 50% 4,7,10-trioxa-1,13-tridecanediamine in ethyl acetate, 30 min—See FIG. 39.
    • Treatment 50% Polyethylene imine (linear) in ethyl acetate, 30 min—See FIG. 40.


      C. Inter-coat adhesion over time. (Activation of aged white polyurethane coatings (49° C., 18 h) prior to over-coating with blue polyurethane).
    • Treatment 50% 4,7,10-trioxa-1,13-tridecanediamine in ethyl acetate, 30 min—See FIG. 41.
    • Treatment 50% Polyethylenen imine (linear) in ethyl acetate, 30 min—See FIG. 42.


      D. Following exposure to Skydrol Hydraulic Fluid for 30 days Treatment 50% adhesion promoter in ethyl acetate.
    • No Exposure—See FIG. 43.
    • 30 day exposure—See FIG. 44.


      Results Indicate:



As shown in FIGS. 37-44, polyurethane coatings aged for extended periods under ambient or higher temperatures may be activated by application of the activation treatment to produce improved inter-coat adhesion as assessed by SIJA techniques. The activated surface itself is also robust under appropriate storage conditions, as is the inter-coat adhesion between paint layers over time as well as following exposure to chemicals such as those used in hydraulic fluid.


Example 13

The example shown in FIG. 45 illustrates the inter-coat adhesion between aged and then activated organically pigmented polyurethane coating (blue) towards an additional coating layer (white).


Treatment 50% adhesion promoter in ethyl acetate, 30 min.


Results Indicate:


As shown in FIG. 45, the adhesion promoting treatment provides improved inter-coat adhesion between aged organically pigmented coating (eg blue) and additional coating layers.


Example 14

The following example indicates that the inter-coat adhesion produced through chemical activation with suitable adhesion promoter/s and solvent/s is comparable to that produced by sanding and as such it may be used to replace the sanding process as a mechanism of improving the adhesion of coatings which are aged to fresh coating layers.


A. SIJA inter-coat adhesion of aged polyurethane coatings (49° C., 18 h) which were then over-coated with blue polyurethane top-coat (activation solution 50% adhesion promoter in ethyl acetate). See FIG. 46.


B. Whirling arm rain erosion results of inter-coat adhesion of aged polyurethane coatings (49° C., 18 h) which were then over-coated with blue polyurethane top-coat (activation solution 50% adhesion promoter in ethyl acetate). See FIG. 47.


Results Indicate:


Analysis by SIJA and whirling arm rain erosion experiments indicate that inter-coat adhesion of specimens activated with suitable adhesion promoter and solvent is comparable to the performance obtained by sanding aged polyurethane coating prior to over-coating. In terms of rain erosion analysis: 88% of the over coat is removed from untreated samples, 0.4% from sanded, 0.6% from sample chemically activated with PEI and 0% with those activated with 4,7,10-trioxa-1,13-tridecanediamine prior to over-coating. In terms of SIJA experiments assessment of the paint area removed indicated that 177 mm2 of the over coat is removed from untreated samples, 13 mm2 from sanded, 28 mm2 from sample chemically activated with PEI and 13 mm2 with those activated with 4,7,10-trioxa-1,13-tridecanediamine prior to over-coating.


Example 15

SEM analysis of inter-coat adhesion of specimens painted with white polyurethane cured/aged for 18 h at 49° C. and activated prior to over-coating with blue polyurethane:



FIG. 48A. 18 h at 49° C. prior to over-coating



FIG. 48B. 18 h at 49° C. and then sanded prior to over-coating



FIG. 48C. 18 h at 49° C. and then treated with amine terminated polypropylene glycol (Mn 230, 50%, 60 min) in benzyl alcohol prior to over-coating


Results Indicate:


Poor inter-coat bonding in FIG. 48A. with voids, cracks and de-lamination between the coatings. Additional coat does not appear to wet the aged white existing coating layer.


Good inter-coat adhesion in FIG. 48B. when the sample has been sanded prior to re-painting.


Good inter-coat adhesion in FIG. 48C. when sample has been chemically activated prior to over-coating.


In both Examples 48B & 48 C the fresh coating appears to wet the aged coating well.


Example 16

Penetration depth of various chemical activation treatments into the paint film as determined by raman spectroscopy through the ratio of benzyl alcohol (˜1000 cm−1) and polyurethane CH2 (1450 cm−1) peaks.

    • Benzyl alcohol only (30 min exposure)—See FIG. 49A-B.
    • 4,7,10-trioxa-1,13-tridecanediamine in benzyl alcohol (50%)—See FIG. 49C.
    • Polyethylene imine (linear, Mw=425) in benzyl alcohol (50%)—See FIG. 49D.


      Results Indicate:


As shown in FIGS. 49 A-D, unlike benzyl alcohol when used on the painted surface alone, solutions of 4,7,10-trioxa-1,13-tridecanediamine or polyethylene imine in benzyl alcohol even after 30 min exposure time penetrate the paint film less than 7 micron (re: 55 micron for benzyl alcohol alone). This indicates that the activation treatment is limited to the coating surface through the appropriate choice of solvent/s adhesion promoter/s and adhesion promoter/s concentration.


Example 17

XPS analysis of a polyurethane coating before and following surface treatment in Dichlormethane.















Treatment
% Carbon
% Oxygen
% Nitrogen







Untreated (average of 3 batches)
78.2
19.8
2.0









60 min Treatment










Amine-terminated polypropylene
70.5
26.1
3.4


glycol Mn = 230, 10%





Amine-terminated polypropylene
66.3
26.7
3.7


glycol Mn = 230, 50%












180 min Treatment










Amine-terminated polypropylene
69.2
28.1
2.7


glycol Mn = 230, 10%





Amine-terminated polypropylene
68.5
28.2
3.3


glycol Mn = 230, 50%









XPS analysis of a polyurethane coating before and following surface treatment in benzyl alcohol.














Treatment
% Oxygen
% Nitrogen







Untreated
27.9
5.5









60 min treatment









Polyethylene imine (Linear) Mw 425
25.7
8.9


Polyethylene imine (branched) Mw 800
25.5
8.5










Results Indicate:


Changes in elemental composition occur on treatment of an aged polyurethane surface (49° C., 18 h) following treatment with appropriate activation solution. The changes in elemental composition are consistent with adhesion promoter being embedded or bonded to the coating.


Example 18

Green scribe adhesion of Desothane HS 70846 white (30±5 μm, C-thinner) cured 40 h at 120° F. (5% RH), 48 h at 120° F. (50% RH) and 24 h at 160° F., activated and over-coated with Desothane HS S601X blue (65±10 μm, 16 h ambient ˜30-40% RH). 16 hrs between over-coat and the scribe adhesion.

    • Activation Conditions: Treatment ethyl acetate 30 min/iPOH wipe, horizontal application position


      Results Indicate:


As shown in FIG. 50, adhesion between the activated coating surface and the fresh coating builds up quickly which is important in terms of practical use of the activation method.


Example 19

SIJA inter-coat adhesion of Desothane HS 70846 white (30±5 μm, C2-thinner) cured 40 h at 120° F., 5% RH, 48 h at 120° F., 50% RH and 24 h at 160° F., activated in NMP (30 min) SOLO and over-coated with Desothane HS S601X blue (93±10 μm).


Appearance rating (1 to 3): 1 normal paint quality, 2 minor defects 3 obvious defects.


The Results Indicate:


As shown in FIG. 51, results indicate improve inter-coat adhesion is provided through use of two or more adhesion promoters with varied chemical functionality.


Example 20

SIJA and green scribe inter-coat adhesion of Desothane HS 70846 white (30±5 μm, C2-thinner) cured 40 h at 120° F., 5% RH, 48 h at 120° F., 50% RH and 24 h at 160° F., activated with trimethoxy silyl(propyl)diethylenetriamine in IPA—EEA solvent SOLO and over-coated with Desothane HS S601X blue (93±10 μm).


The Results Indicate:


As shown in FIG. 52, results indicate that amino functional silane may be used to improve inter-coat adhesion when applied. Results also indicate that a combination of alcohol and acetate ether solvent may be employed.


Example 21

SIJA and green scribe inter-coat adhesion of Desothane HS 70846 white (30±5 μm, C2-thinner) cured 40 h at 120° F., 5% RH, 48 h at 120° F., 50% RH and 24 h at 160° F., activated with amine—epoxy mix in various solvent combinations SOLO and over-coated with Desothane HS S601X blue (93±10 μm).


The Results Indicate:


As shown in FIG. 53, the results indicate that improved inter-coat adhesion results from the activation treatment incorporating an amine and epoxy derivatized adhesion promoters.


Example 22

SIJA and green scribe inter-coat adhesion of Desothane HS 70846 white (30±5 μm, C2-thinner) cured 40 h at 120° F., 5% RH, 48 h at 120° F., 50% RH and 24 h at 160° F., activated with amine—epoxy mix in the solvent combination SOLO. Prior to activation vinyl mask was placed over the coating surface, the specimen activated and then overcoated with Desothane HS S601X blue (93±10 μm).


Results Indicate:


As shown in FIG. 54, the results indicate that application over the vinyl mask was possible to provide intricate designs/shapes and improved inter-coat adhesion.


Example 23

Impact of activation solution (2 hour immersion) on common material used on aircraft (polysulfide sealant).


Results Indicate:


As shown in FIG. 55, at the concentrations specified the activation solution does not appear to impact the polysulfide sealant after 2 h.


Example 24

Impact of activation solution on common material used on aircraft (epoxy—graphite fibre composite) relative to various solvents and Cee-Bee paint stripper.


Results Indicate:


As shown in FIG. 56, that the treatment solution does not impact on the composite substrate in terms of weight gain or loss.


Example 25

Impact of activation solution (Trimethanol propanetriglycidyl ether, trimethoxysilyl(propyl) diethylene triamine (1:1.3 wt % in iPA:EEA, 7:3, 40 hour immersion) on common material used on aircraft (polysulfide sealant) relative to water and methylpropylketone.


Results Indicate:


As shown in FIG. 57, that the sealant material is not degraded on immersion into the activation treatment solution.


Example 26

Impact of activation solution (Trimethanol propanetriglycidyl ether, trimethoxysilyl(propyl) diethylene triamine (1:1.3 wt % in iPA:EEA, 7:3, 40 hour immersion) on common material used on aircraft (epoxy-graphite fibre composite) relative to various solvents and Cee-Bee paint stripper.


Results Indicate:


As shown in FIG. 58, that the treatment solution does not impact on the composite substrate in terms of weight gain or loss.


Example 27

Example 26 illustrates paint stripping of Desothane HS 70846 white (30±5 μm, C2-thinner) cured 40 h at 120° F., 5% RH, 48 h at 120° F., 50% RH and 24 h at 160° F., chemically activated and overcoated with Desothane HS S601X blue (93±10 μm) relative to reference samples.


Results Indicate:


As shown in FIG. 59, chemically activated samples strip similarly to samples reactivated by sanding.


Example 28

Example 28 Illustrates SIJA Inter-coat adhesion of aged activated surface. (Aged white polyurethane coatings (49° C., 18 h), activated, 50% TODA/Ethylacetate, 30 min water wash post treatment (SOHO), and passed through 0-3 heat cycles (49° C., 4 h) prior to overcoating with Blue.


Results Indicate:


As shown in FIG. 60, reactivated surface remains active even after the thermal cycles.


In summary, the present writing relates to a method of activating an organic coating, a coated substrate having an activated coating and an activation treatment for an organic coating. In particular, the activation method improves the adhesion of the organic coating to further coating layers and/or to other entities.


It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A method of activating an organic coating present on a substrate to increase adhesion of the organic coating to a further coating and/or to other entities selected from adhesives, sealants, fillers and pressure sensitive decals or logos, the method comprising: applying an activation treatment to the organic coating present on the substrate wherein the activation treatment increases adhesion of a further coating and/or other entities selected from adhesives, sealants, fillers and pressure sensitive decals or logos to the organic coating on the substrate, wherein,the organic coating is a cross-linked organic coating which is a polyurethane, epoxy, polyester and/or acrylic cross-linked coating, and wherein,the activation treatment consists of: an organic solvent selected from ester based solvents, ketones, alcohols, ethers, amides, aromatics and halogenated solvents and combinations thereof;an adhesion promoter selected from linear and branched polyethylene imines (PEI), amine and/or hydroxyl terminated polyether glycols, dendrimers, ethylene diamine, diethylene tetraamine, triethylene tetraamine (TETA), tetraethylene pentamine, pentaethylene hexamine, piperazine, aminoethylpiperazine, 1,4-bis(3-aminopropyl)piperazine, N,N′-bis(3-aminopropyl)ethylenediamine, 4,9-dioxa-1,12-dodecanediamine, 2,2′-(ethylenedioxy)bis(ethylamine), 4,7,10-trioxamidecane-1,13-diamine (TODA), 4,7-dioxadecane-1,10-diamine (DODA), polyetheramine T 403, N,N-bis (3-aminopropyl)-ethylene diamine, 3-2(2-aminoethyl)aminopropyl amine, dipropyltriamine, 4,4′ diamino-dicyclohexylamine, glycidylethers, aziridines and combinations thereof and optionally an additive,wherein contact of the cross-linked organic coating with the solvent or the solvent and adhesion promoter combination results in swelling of the cross-linked organic coating.
  • 2. A method according to claim 1, in which the adhesion promoter is a compound selected from linear and branched polyethylene imines (PEI), amine and/or hydroxyl terminated polyether glycols and dedrimers having at least one functional group.
  • 3. A method according to claim 2, in which the adhesion promoter is a compound having two or more functional groups which are of the same or different functionality.
  • 4. A method according to claim 2, in which the functional group is nucleophilic.
  • 5. A method according to claim 4, in which the functional group is selected from amine, alcohol, carboxylic acid, amide, ester, thiol, ether, and anhydride groups.
  • 6. A method according to claim 1, in which the amine and/or hydroxyl terminated polyether glycols are selected from polyethylene glycol, polypropylene glycol and polyethylene oxide.
  • 7. A method according to claim 1, in which the dendrimers are selected from polypropylene imine octamine dendrimer and polypropylene imine tetraamine dendrimer.
  • 8. A method according to claim 1, in which the adhesion promoter is selected from ethylene diamine, diethylene tetraamine, triethylene tetraamine (TETA), tetraethylene pentamine, pentaethylene hexamine, piperazine, aminoethylpiperazine, 1,4-bis(3-aminopropyl)piperazine, N,N′-bis(3-aminopropyl)ethylenediamine, 4,9-dioxa-1,12-dodecanediamine, 2,2′-(ethylenedioxy)bis(ethylamine), 4,7,10-trioxamidecane-1,13-diamine (TODA), 4,7-dioxadecane-1,10-diamine (DODA), polyetheramine T 403, N,N-bis(3-aminopropyl)-ethylene diamine, 3-2(2-aminoethyl)aminopropyl amine, dipropyltriamine, 4,4′ diamino-dicyclohexylamine, glycidylethers, aziridines and combinations thereof.
  • 9. A method according to claim 8, in which the adhesion promoter is selected from TODA and DODA, and combinations thereof.
  • 10. A method according to claim 1, in which the glycidylethers are selected from trimethanolpropane triglycidylether and polyethylene glycol diglycidyl ethers.
  • 11. A method according to claim 1, in which the aziridine is trimethylolpropanetris (3-aziridino propionate).
  • 12. A method according to claim 1, in which the adhesion promoter has a molecular weight less than about 100,000.
  • 13. A method according to claim 12, in which the adhesion promoter has a molecular weight less than about 10,000.
  • 14. A method according to claim 1, in which two or more adhesion promoters are present.
  • 15. A method according to claim 14, in which high and low molecular weight adhesion promoters are present.
  • 16. A method according to claim 15, in which the high and low molecular weight adhesion promoters are high and low molecular weight polyether glycols.
  • 17. A method according to claim 16, in which the high and low molecular weight polyether glycols are 4,9-dioxa-1,12-dodecane diamine and polypropylene glycol, respectively.
  • 18. A method according to claim 14, in which the adhesion promoter is a combination of aziridines and trimethylolpropanetris (3-aziridino propionate); aziridine and acids; or aziridine and glycols.
  • 19. A method according to claim 1, in which the adhesion promoter is present in an amount more than about 0.01% based on the total weight of the combination of solvent and adhesion promoter.
  • 20. A method according to claim 1, in which the adhesion promoter is present in an amount of about 1% to about 50% based on the total weight of the combination of solvent and adhesion promoter.
  • 21. A method according to claim 1, in which the solvent is selected from ethyl acetate, isopropyl acetate, tertiary butyl acetate, glycolether acetates based on ethyleneglycol and propylene glycol repeat units, methyl amyl ketone, methyl isoamyl ketone, benzyl alcohol, isopropylalcohol, glycoldiethers, N-methylpyrrolidinone, dichloromethane and dichloroethylene.
  • 22. A method according to claim 1, in which the solvent is a combination of N-methylpyrrolidinone and ethyl acetate; dichloromethane and benzyl alcohol; ethyl acetate and benzyl alcohol; ethyl acetate and diglycol ether dimethyl ether; or isopropylalcohol and ethoxyethylacetate.
  • 23. A method according to claim 1, in which the solvent is present in an amount less than about 99.9% based on the total weight of the combination of solvent and adhesion promoter.
  • 24. A method according to claim 23, in which the solvent is present in an amount of about 50 to about 99.9% based on the total weight of the combination of solvent and adhesion promoter.
  • 25. A method according to claim 1, in which the additive is selected from rheology modifiers, film formers, wetting agents, surfactants, dispersants, substrate cling agents, anti-foaming agents, anti-corrosion reagents, stabilizers, leveling agents, pigments and dyes.
  • 26. A method according to claim 1, in which the additive is present in an amount of less than about 10% based on the total weight of the combination of solvent, adhesion promoter and additive.
  • 27. A method according to claim 1, in which the solvent and adhesion promoter are applied either simultaneously, sequentially or separately.
  • 28. A method according to claim 1, in which the solvent and adhesion promoter are applied simultaneously in the form of an activation treatment.
  • 29. A method according to claim 1, in which the solvent and adhesion promoter are applied via a spray, brush, dip, knife, blade, hose, roller, wipe, curtain, flood, flow, mist, pipette or combinations thereof.
  • 30. A method according to claim 1, in which excess solvent and/or adhesion promoter is removed by solvent or water rinsing; dry, water or solvent wiping; air or gas knife; vacuum application; squeegee; and/or natural or forced convection evaporation.
  • 31. A method according to claim 1, in which the solvent, adhesion promoter and additive are applied either simultaneously, sequentially or separately.
  • 32. A method according to claim 1, in which the solvent, adhesion promoter and additive are applied simultaneously in the form of an activation treatment.
  • 33. The method of claim 1, wherein the cross-linked organic coating comprises multiple layers.
  • 34. A coated substrate comprising: a substrate;a cross-linked organic coating, which is one or more of a polyurethane, epoxy, polyester and/or acrylic coating adhered to the substrate and adhered to one or more of a further organic coating, adhesive, sealant, pressure sensitive decal and logo,wherein a surface of the cross-linked organic coating has been activated by application of an activation treatment prior to adhesion of the one or more of a further organic coating, adhesive, sealant, pressure sensitive decal and logo, the activation treatment consisting of: an organic solvent selected from ester based solvents, ketones, alcohols, ethers, amides, aromatics and halogenated solvents, and combinations thereof;an adhesion promoter selected from linear and branched polyethylene imines (PEI), amine and/or hydroxyl terminated polyether glycols, dendrimers, ethylene diamine, diethylene tetraamine, triethylene tetraamine (TETA), tetraethylene pentamine, pentaethylene hexamine, piperazine, aminoethylpiperazine, 1,4-bis(3-aminopropyl)piperazine, N,N′-bis(3-aminopropyl)ethylenediamine, 4,9-dioxa-1,12-dodecanediamine, 2,2′-(ethylenedioxy)bis(ethylamine), 4,7,10-trioxamidecane-1,13-diamine (TODA), 4,7-dioxadecane-1,10-diamine (DODA), polyetheramine T 403, N,N-bis (3-aminopropyl)-ethylene diamine, 3-2(2-aminoethyl)aminopropyl amine, dipropyltriamine, 4,4′ diamino-dicyclohexylamine, glycidylethers, aziridines and combinations thereof; andoptionally an additivewherein contact of the cross-linked organic coating with the solvent or the solvent and adhesion promoter combination results in swelling of the cross-linked organic coating.
  • 35. A coated substrate according to claim 34, in which the substrate is a metal, composite or a material containing wood or fabric.
Priority Claims (1)
Number Date Country Kind
2004901481 Mar 2004 AU national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2005/009091 3/17/2005 WO 00 3/28/2007
Publishing Document Publishing Date Country Kind
WO2005/089480 9/29/2005 WO A
US Referenced Citations (168)
Number Name Date Kind
3286009 Yumoto et al. Nov 1966 A
3499853 Drawert et al. Mar 1970 A
3570748 Coyle et al. Mar 1971 A
3607473 Homrok et al. Sep 1971 A
3751280 Neruker et al. Aug 1973 A
3751287 Baier et al. Aug 1973 A
3839078 Birchall et al. Oct 1974 A
3994751 Ingram Nov 1976 A
4223115 Zalucha et al. Sep 1980 A
4233354 Hasegawa et al. Nov 1980 A
4234628 DuRose Nov 1980 A
4281037 Choung Jul 1981 A
4293665 Zalucha et al. Oct 1981 A
4525511 Kirby et al. Jun 1985 A
4609746 Barfurth et al. Sep 1986 A
4643789 Parker et al. Feb 1987 A
4647680 Barfurth et al. Mar 1987 A
4741931 Lin et al. May 1988 A
4743503 Lin et al. May 1988 A
4818325 Hiraiwa et al. Apr 1989 A
4839454 Lin et al. Jun 1989 A
4855001 Damico et al. Aug 1989 A
4874462 Makita et al. Oct 1989 A
4885218 Andou et al. Dec 1989 A
4902578 Kerr et al. Feb 1990 A
5116637 Baney et al. May 1992 A
5124180 Proscia Jun 1992 A
5212017 Meder May 1993 A
5240989 Bernard et al. Aug 1993 A
5248334 Fey Sep 1993 A
5292364 Hiraiwa et al. Mar 1994 A
5368894 Lammers et al. Nov 1994 A
5393907 Hashimoto et al. Feb 1995 A
5512527 Ritter Apr 1996 A
5623010 Groves Apr 1997 A
5743951 Ozai et al. Apr 1998 A
5858462 Yamazaki Jan 1999 A
5878153 Mikulec et al. Mar 1999 A
5879757 Gutowski et al. Mar 1999 A
5889115 Yabuta et al. Mar 1999 A
5922161 Wu et al. Jul 1999 A
5958509 Neumann Sep 1999 A
6042877 Lyon et al. Mar 2000 A
6066406 McComas May 2000 A
6099939 Mittal et al. Aug 2000 A
6175009 Confalone et al. Jan 2001 B1
6436530 Szonn et al. Aug 2002 B1
6436615 Brandow et al. Aug 2002 B1
6495309 Brabbs et al. Dec 2002 B1
6511752 Yao et al. Jan 2003 B1
6524658 Murofushi et al. Feb 2003 B2
6562428 Ohrui May 2003 B1
6592973 Nakata et al. Jul 2003 B1
6737145 Watanabe et al. May 2004 B1
6743267 Jernakoff et al. Jun 2004 B2
6759178 Brabbs et al. Jul 2004 B2
6783692 Bhagwagar Aug 2004 B2
6897151 Winter et al. May 2005 B2
6990904 Ibarra et al. Jan 2006 B2
7014669 Small et al. Mar 2006 B2
7029508 Scott et al. Apr 2006 B2
7077880 Siddiqui Jul 2006 B2
7097882 Seo et al. Aug 2006 B2
7156945 Chaug et al. Jan 2007 B2
7211320 Cooper et May 2007 B1
7261920 Haubrich et al. Aug 2007 B2
7273821 Sezi Sep 2007 B2
7311978 Fukasawa et al. Dec 2007 B2
7399376 Wang et al. Jul 2008 B2
7419601 Cooper et al. Sep 2008 B2
7419615 Strauss Sep 2008 B2
7427305 Scott et al. Sep 2008 B2
7429338 Siddiqui Sep 2008 B2
7442412 Miller Oct 2008 B2
7445815 Kagan et al. Nov 2008 B2
7513920 Siddiqui et al. Apr 2009 B2
7588801 Endo et al. Sep 2009 B2
7625840 Pellin et al. Dec 2009 B2
7632535 Carlson et al. Dec 2009 B2
7670797 Vacanti et al. Mar 2010 B2
7740940 Hanson Jun 2010 B2
20020064602 Murofushi et al. May 2002 A1
20020098347 Szonn et al. Jul 2002 A1
20020132061 Sezi Sep 2002 A1
20030013042 Brabbs et al. Jan 2003 A1
20030072951 Seo et al. Apr 2003 A1
20030114083 Jernakoff et al. Jun 2003 A1
20030162398 Small et al. Aug 2003 A1
20030194504 Bilyk et al. Oct 2003 A1
20040006924 Scott et al. Jan 2004 A1
20040023052 Ambroise Feb 2004 A1
20040025444 Small et al. Feb 2004 A1
20040029495 Small et al. Feb 2004 A1
20040075076 Bhagwagar Apr 2004 A1
20040077766 De Cooman et al. Apr 2004 A1
20040091625 Winter et al. May 2004 A1
20040112237 Chaug et al. Jun 2004 A1
20040131779 Haubrich et al. Jul 2004 A1
20040224095 Miller Nov 2004 A1
20050065028 Pellin et al. Mar 2005 A1
20050065060 Kin et al. Mar 2005 A1
20050079201 Rathenow et al. Apr 2005 A1
20050155296 Siddiqui Jul 2005 A1
20050249932 Wang et al. Nov 2005 A1
20050263456 Cooper et al. Dec 2005 A1
20060019326 Vacanti et al. Jan 2006 A1
20060089292 Wirz et al. Apr 2006 A1
20060117667 Siddiqui et al. Jun 2006 A1
20060127681 Domes et al. Jun 2006 A1
20060166013 Endo et al. Jul 2006 A1
20060180788 Scott et al. Aug 2006 A1
20060188657 Kimura et al. Aug 2006 A1
20060251908 Fukasawa et al. Nov 2006 A1
20060255015 Siddiqui Nov 2006 A1
20070003705 Strauss Jan 2007 A1
20070037904 Jeong et al. Feb 2007 A1
20070084797 Cooper et al. Apr 2007 A1
20070093600 De Cooman et al. Apr 2007 A1
20070104956 Grandhee May 2007 A1
20070134428 Carlson et al. Jun 2007 A1
20070148441 Kagan et al. Jun 2007 A1
20070166226 Holmes et al. Jul 2007 A1
20070184576 Chang et al. Aug 2007 A1
20070231496 Eriksson et al. Oct 2007 A1
20070256600 Hedouin et al. Nov 2007 A1
20080024527 Phillips et al. Jan 2008 A1
20080041791 Cooper et al. Feb 2008 A1
20080050598 Bateman et al. Feb 2008 A1
20080102212 Endo et al. May 2008 A1
20080111027 Blohowiak et al. May 2008 A1
20080152930 Hanson Jun 2008 A1
20080160328 Jaworowski et al. Jul 2008 A1
20080193746 Beaurain et al. Aug 2008 A1
20080245271 Trabesinger et al. Oct 2008 A1
20080254315 Sato et al. Oct 2008 A1
20080260950 Schottner Oct 2008 A1
20080283425 Trabesinger et al. Nov 2008 A1
20090017082 Morimitsu et al. Jan 2009 A1
20090017312 Allam et al. Jan 2009 A1
20090029553 Scott et al. Jan 2009 A1
20090061239 Burckhardt et al. Mar 2009 A1
20090104474 Schwartz et al. Apr 2009 A1
20090123741 Bhatt et al. May 2009 A1
20090148603 Goscha Jun 2009 A1
20090148711 Le Blanc et al. Jun 2009 A1
20090155607 Huck et al. Jun 2009 A1
20090165913 Hergenrother et al. Jul 2009 A1
20090181248 van Ooij et al. Jul 2009 A1
20090186232 Okubo et al. Jul 2009 A1
20090246539 Huck Oct 2009 A1
20090250656 Siddiqui et al. Oct 2009 A1
20090297829 Pyles et al. Dec 2009 A1
20090297830 Pyles et al. Dec 2009 A1
20090305051 Corsaro Dec 2009 A1
20090324836 Tsurugi et al. Dec 2009 A1
20090326146 Sepeur et al. Dec 2009 A1
20100009173 Lee et al. Jan 2010 A1
20100027192 Perry et al. Feb 2010 A1
20100028692 Hedouin et al. Feb 2010 A1
20100044219 Carlson et al. Feb 2010 A1
20100055795 Lee Mar 2010 A1
20100068392 Bauerochse et al. Mar 2010 A1
20100068542 Bright et al. Mar 2010 A1
20100078123 Huang et al. Apr 2010 A1
20100098877 Cooper et al. Apr 2010 A1
20100143731 DeZurik et al. Jun 2010 A1
20100196718 Oltean et al. Aug 2010 A1
20110008765 Vacanti et al. Jan 2011 A1
Foreign Referenced Citations (90)
Number Date Country
1184717 Jun 1998 CN
153973 Nov 1985 EP
0241851 Oct 1987 EP
0247539 Dec 1987 EP
0268330 May 1988 EP
347049 Dec 1988 EP
0268330 May 1992 EP
0761738 Mar 1997 EP
1042419 Aug 2004 EP
1042419 Aug 2007 EP
1894979 Mar 2008 EP
2692276 Dec 1993 FR
1401296 Jul 1975 GB
2110705 Jun 1983 GB
59-152961 Aug 1984 JP
59152961 Aug 1984 JP
62-250975 Oct 1987 JP
2169681 Jun 1990 JP
3006275 Jan 1991 JP
3031370 Feb 1991 JP
04351643 Dec 1992 JP
5247412 Sep 1993 JP
6091783 Apr 1994 JP
09087588 Mar 1997 JP
10-183051 Jul 1998 JP
10183051 Jul 1998 JP
2002235179 Aug 2002 JP
2003-512490 Apr 2003 JP
2004155983 Jun 2004 JP
29034589 Feb 2009 JP
WO 9108238 Jun 1991 WO
WO 9322070 Nov 1993 WO
9520006 Jul 1995 WO
WO 9700913 Jan 1997 WO
WO 9702310 Jan 1997 WO
WO 9706896 Feb 1997 WO
WO 9932303 Jul 1999 WO
WO 9958741 Nov 1999 WO
WO 0006210 Feb 2000 WO
WO 0023523 Apr 2000 WO
WO 0101199 Jan 2001 WO
0129118 Apr 2001 WO
WO 01029118 Apr 2001 WO
WO 02070620 Sep 2002 WO
WO 03002500 Jan 2003 WO
WO 03068882 Aug 2003 WO
03097756 Nov 2003 WO
2003093386 Nov 2003 WO
WO 2004011253 Feb 2004 WO
WO 2004038732 May 2004 WO
WO 2004065616 Aug 2004 WO
WO 2004076568 Sep 2004 WO
WO 2004076717 Sep 2004 WO
WO 2004076718 Sep 2004 WO
WO 2004080578 Sep 2004 WO
WO 2004091810 Oct 2004 WO
WO 2004101852 Nov 2004 WO
WO 2004105826 Dec 2004 WO
WO 2005023949 Mar 2005 WO
WO 2005028176 Mar 2005 WO
WO 2005054391 Jun 2005 WO
2005089480 Sep 2005 WO
WO 2005093002 Oct 2005 WO
WO 2005100452 Oct 2005 WO
WO 2005111665 Nov 2005 WO
WO 2006086828 Aug 2006 WO
WO 2006092536 Sep 2006 WO
WO 2006124670 Nov 2006 WO
WO 2007003828 Jan 2007 WO
WO 2007056002 May 2007 WO
WO 2007058724 May 2007 WO
WO 2007077136 Jul 2007 WO
WO 2007094253 Aug 2007 WO
WO 2007099157 Sep 2007 WO
WO 2007113141 Oct 2007 WO
WO 2007122056 Nov 2007 WO
WO 2007123071 Nov 2007 WO
WO 2007142279 Dec 2007 WO
WO 2008010230 Jan 2008 WO
WO 2008034409 Mar 2008 WO
WO 2008048201 Apr 2008 WO
WO 2008060582 May 2008 WO
WO 2008025845 Jun 2008 WO
WO 2008082493 Jul 2008 WO
WO 2008083304 Jul 2008 WO
WO 2009009159 Jan 2009 WO
WO 2009052352 Apr 2009 WO
WO 2010007882 Jan 2010 WO
WO 2010039636 Apr 2010 WO
WO 2010078251 Jul 2010 WO
Non-Patent Literature Citations (21)
Entry
Office action dated Jan. 8, 2013 from related Japanese Patent Application No. 2007-551517 with English translation (5 pages).
Examination Report for related Japanese Application No. 2007-551517 issued on Oct. 4, 2011 with English-language translation.
Extended European Search Report for European Patent Appl. No. EP 06 74 1074 dated Jan. 28, 2008.
Derwent Abstract Accession No. 97-255794, (A18 A26), JP 0987588 A (Kanebuchi Kagaku Kogyo KK) Mar. 31, 1997.
STN File Caplus, Abstract 1993 :235997, & JP 04351643 A2 (Nippon Petrochemicals Co Ltd) Dec. 7, 1992.
ISR and WO for related International Appl. PCT/AU2006/000070 dated Feb. 27, 2006.
IPRP (Chapter II) for related International Appl. PCT/AU2006/000070 dated Dec. 11, 2006.
Office Action dated Apr. 19, 2010 for related U.S. Appl. No. 11/784,534.
Office Action dated Aug. 19, 2010 for related U.S. Appl. No. 11/784,534.
Office Action dated Apr. 13, 2011 for related U.S. Appl. No. 11/784,534.
Office Action dated Aug. 6, 2012 for related U.S. Appl. No. 11/784,534.
FluoroEtch—Material Safety Data Sheet Prepared Jan. 25, 2001, published 2002.
Rompp Lexikon Chemie “Rompp Lexikon Chemie-10.” Georg Thieme Verlag, 1998.
Sathyanarayana, M.N. et al “Role of promoters in improving adhesion of organic coatings to a substrate” Progress in Organic Coatings . vol. 26. pp. 275-313. Sep.-Dec. 1995.
EPA et al “Organic Coating Replacements” Guide to Cleaner Technologies Sep. 1994.
Gu, Xiaohong et al “Advanced Techniques for Nanocharacterization of Polymeric Coating Surfaces” JCT Research, vol. 1, No. 3, Jul. 1, 2004.
Ge J. et al “Effects of surface treatment on the adhesion of copper to a hybrid polymer material” Journal of Materials Research vol. 18 No. 11, Nov. 2003.
Gu, X. et al “Advanced Techniques for Nanocharacterization of Polymeric Coating Surfaces”, National Institute of Standards and Technology, Nov. 2003.
Rahimi Azam, “Inorganic and Organometallic Polymers: A Review” Iranian Polymer Journal, vol. 13., No. 2., Nov. 2004.
English translation of Office Action for Chinese Patent Application No. 200680001495.3 corresponding to U.S. Appl. No. 11/784,534, dated Jan. 30, 2011.
EPO Notice of Opposition for EPO Application No. 06741074.6 corresponding to U.S. Appl. No. 11/784,534, dated Mar. 10, 2010 including English language translation (Google Translate).
Related Publications (1)
Number Date Country
20070218295 A1 Sep 2007 US