1. Field
Aspects relate to a device and methods for electronically attenuating pressure and or flow ripple in positive displacement hydraulic pumps/motors.
2. Discussion of Related Art
Typically in positive displacement hydraulic pumps/motors pressure differential generated by constant torque application contains pressure ripple that is largely undesirable. This ripple is typically the result of non-constant flow capacity of the hydraulic pump/motor and of the variable leakage path around the pump/motor as a function of the position. It also typically occurs at frequencies related to the speed of the pump. For a rotary pump such as a form of gear pump, this ripple occurs at a frequency that is equal to the rotational frequency of the unit multiplied by the number of teeth or lobes and in integer harmonics thereof. For a piston-type pump the ripple frequency is proportional to the stroke period of individual pistons multiplied by the total number of pistons.
Methods of reducing the magnitude of this ripple may commonly include increasing the number of ripple pulses per hydraulic cycle (e.g. number of gear teeth, number of pistons) or dampening the ripple downstream or upstream of the pump/motor by some means such as adding compliance. This may be accomplished by inserting a device such as an accumulator. Other methods of reducing the pressure ripple of hydraulic pumps/motors may include an apparatus for sensing the flow ripple generated by the pump and counteracting this with a negative ripple generator to cancel and eliminate the system flow ripple, where the negative ripple generator consists of a moveable piston controlled by a solid state motor.
These arrangements require a second flow control source (e.g. the piston) in order to function, resulting in a complex system with multiple electronically controlled devices. This arrangement also requires direct measurements of the flow or pressure ripple to perform closed loop feedback control of the secondary flow source, resulting in a more expensive system. Another method of reducing the flow ripple in a hydraulic system includes using a hydrostatic motor in fluid communication with a variable displacement pump. In this arrangement a displacement signal is generated and applied to the variable displacement unit in order to reduce the torque ripple of the hydrostatic motor. This arrangement also has the negative attribute of requiring multiple independently controlled hydraulic flow generating devices. It is recognized that the ability to substantially attenuate the ripple of a hydraulic pump/motor without the need for additional flow generating devices, at a broad spectrum of frequencies with minimal cost and minimal efficiency penalties, is highly desirable.
Aspects of the invention relate to a device and methods to electronically control and improve the ripple characteristics of hydraulic pumps/motors. Subsequent references to a hydraulic pump will be synonymous with a hydraulic pump and with a hydraulic motor. Subsequent references to an electric motor will be synonymous with an electric motor and with an electric generator and with a BLDC motor. References to a rotor and position thereof are synonymous with the entire rotating assembly and therefore with the electric motor position and hydraulic pump position. Subsequent references to ripple torque and ripple velocity are synonymous with a torque signal that is commanded by the controller and with a velocity signal commanded by the controller respectively; both are cancellation signals that are added to a nominal command torque or velocity signal. Subsequent references to steady state conditions are synonymous with a substantially constant hydraulic pump velocity. Subsequent references to displacement flow are synonymous with flow that is transported through the hydraulic pump/motor. This displacement flow may vary with the angular position of the rotor. An operating point may be specified by a combination of pressure differential and pump velocity.
According to one aspect, a hydraulic pump is coupled to the shaft of an electric motor such that torque applied to the shaft of the electric motor results in torque applied to the hydraulic pump. A method of electric motor position sensing is provided such that accurate control over motor torque with respect to position is achieved. Pressure differential is generated across the hydraulic pump by applying torque to the shaft of the electric motor. This torque can be either a retarding torque, in which case shaft power is extracted from the pressure differential, or a driving torque, in which case power is input to the electric motor to cause a pressure differential. Normally, constant application of torque at steady state will generate non-constant and periodic fluctuations in pressure differential due predominately to the geometric nature of the hydraulic pump and non-constant flow capacity therein; this fact is well known by those trained in the art. With proper analysis it can be discovered that these fluctuations occur in a predictable manner with respect to the position (angular or linear) of the pump and at a frequency proportional to the rotational speed of the pump. To counteract these natural fluctuations in pressure, a non-constant torque, or ripple torque, can be carefully applied as a function of rotor position by the electric motor in order to attenuate the magnitude of the generated pressure ripple. This torque may fluctuate above and below the nominal mean constant torque to achieve the same mean pressure as the above-mentioned case of constant torque application. In this manner the mean of the ripple torque may be the same value as the constant torque to achieve the same mean pressure differential. Typically, one revolution of the hydraulic motor will generate a predetermined and predictable number of periodic fluctuations in pressure and/or flow, which in steady state operation will comprise a periodic waveform with respect to position. In order to correctly apply torque to achieve this behavior, the position dependent nature of the ripple and therefore the position dependent requirements of ripple torque application must be known or discovered. The ripple torque may result in a ripple velocity to increase velocity and generate increased displacement flow when the displacement flow is lower than the mean flow, and to decrease velocity and generate decreased displacement flow when the displacement flow is higher than the mean flow.
According to one aspect the ripple torque applied is commanded of the controller by a ripple model that includes rotor position. The ripple model specifies the waveform of ripple torque to be applied in order to attenuate pressure ripple at a given operating point. The specification of the torque waveform may include the magnitude of one or more periodic waveforms, relative phase angles between each of the plurality of waveforms, as well as the relative phase angle of the resultant waveform with respect to position of the electric motor. The summation of one or a plurality of waveforms with predominant frequencies with respect to rotor position at any integer harmonic may produce a resultant waveform that serves to attenuate pressure ripple at multiple harmonic frequencies of the primary rotational frequency.
In one embodiment the mean ripple torque applied in order to achieve a substantially constant pressure differential value is substantially equal to the constant torque value applied to achieve a mean pressure ripple of the same value. The root mean square value of the ripple torque may be higher than the mean ripple torque. In this manner the additional electric power losses associated with this method of ripple cancellation are a result of the electrical resistance losses due to the difference between the root mean square current and the mean current required to produce the tipple current. This may be considered small in comparison with the overall electrical resistance losses and therefore negligible as a loss of the system.
In one embodiment the ripple model takes as direct inputs any of rotor velocity, electric motor torque, hydraulic flow rate, and hydraulic pressure. An operating point may be determined by a combination of rotor velocity or hydraulic flow rate, and motor torque or hydraulic pressure. The model may be a function or a series of functions in which the direct inputs serve as independent variables. The model may otherwise be a multidimensional array indexed by any combination of the direct inputs.
In one embodiment the parameters of the ripple model with either of the above detailed formulations are adaptable and or updatable. Sensor input from one or a plurality of secondary sensors that are not used to detect rotor position are used as feedback to the ripple model in order to update model parameters that specify the ripple torque waveform. In this manner the model need not account for all effects of externalities and perturbations but rather, may dynamically update its parameters to account for these factors as they relate to the hydraulic pressure ripple and the corresponding cancellation waveform.
In one embodiment, the ripple model is a feed-forward ripple model of any of torque and velocity. The inputs to the model are based on commanded or sensed parameters while the system response is not monitored as a feedback signal. In this manner the model does not have a measure of its performance and does not dynamically adjust its output accordingly to system response in a time scale on the order of the system time constant.
In one embodiment ripple cancellation is carried out in a closed loop feedback based control system. A sensor that correlates with pressure ripple (a pressure sensor, a flow sensor, a strain gauge, an accelerometer etc.) is used to feed back the ripple response and compare it to a desired output, which may be based on an input parameter (pressure, flow, force etc.), the difference between the desired and actual being considered the error or ripple. This signal is then fed into the motor controller, which adjusts the applied torque in order to minimize the magnitude of the ripple signal.
In one embodiment rotor position may be detected by any of a number of methods including a rotary encoder, a Hall effect sensor, optical sensors, or model-based position estimation that utilize external signals such as phase voltages and phase current signals of the electric motor. The latter are known in the field as “sensor-less” algorithms for controlling electric motors. Sensor-less methods may include comparing electric motor parameters to a model of motor back EMF.
In one embodiment the output of the ripple model is a specified ripple velocity as opposed to a ripple torque. At constant velocity the displacement flow of the hydraulic pump is non-constant so it may be necessary for the speed to ripple accordingly. In this manner the motor controller performs closed-loop velocity control in order to achieve the ripple velocity specified by the ripple model. No ripple torque specification is necessary and no feedback on torque is performed. The output of a ripple velocity has the same attenuation effect on pressure ripple as the model that specifies ripple torque. The factors that influence how ripple torque leads to a ripple velocity primarily include hydraulic drag torque and rotational inertia. The primary difference of a ripple velocity model over a ripple torque model is that these influences and changes therein are external to the model set parameters and are instead accounted for in the closed loop velocity control. Any changes in torque requirements to achieve a specified ripple velocity will be directly handled by the velocity feedback control.
In one embodiment the electric motor is immersed in a hydraulic fluid along with the hydraulic pump. In this manner position sensing of the electric motor must be performed inside a pressurized fluid environment. The hydraulic pump is preferably located coaxially with the electric motor.
In one embodiment the electric motor and hydraulic pump are contained in an actuator of a vehicle suspension system. Pressure differential generated across the hydraulic pump results in a force on the piston of the actuator. Command torque on the electric motor may be the output of a separate vehicle dynamics model and or feedback control system. The ripple torque may be added to the command torque to impart an overall torque applied to the rotor. In the event that a ripple velocity model is used, the command torque is used to specify the mean pressure, which may be used as an input to the ripple velocity model.
In one embodiment, operating the electric motor comprises adjusting the current flow through the windings of the electric motor in response to sensed angular position of the rotor. Operating the electric motor may also be accomplished by adjusting the voltage in the windings of the electric motor in response to sensed angular position of the rotor. The electric motor may be a BLDC motor.
It should be appreciated that the foregoing concepts, and additional concepts discussed below, may be arranged in any suitable combination, as the present disclosure is not limited in this respect. Further, other advantages and novel features of the present disclosure will become apparent from the following detailed description of various non-limiting embodiments when considered in conjunction with the accompanying figures.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing, and some similar components may have different numbers. In the drawings:
Some aspects relate to a system and feed-forward control method of electronically attenuating pressure ripple in a positive displacement pump/motor. Other aspects relate to a method of adapting a model based feed-forward control on the basis of output sensor information.
Regarding
In
In
In
In
In
In
In
This application claims priority to PCT application serial number PCT/US2014/029654, entitled “ACTIVE VEHICLE SUSPENSION IMPROVEMENTS”, filed Mar. 14, 2014, which claims the priority under 35 U.S.C. §119(e) of U.S. provisional application Ser. No. 61/913,644, entitled “WIDE BAND HYDRAULIC RIPPLE NOISE BUFFER”, filed Dec. 9, 2013, U.S. provisional application Ser. No. 61/865,970, entitled “MULTI-PATH FLUID DIVERTER VALVE”, filed Aug. 14, 2013, U.S. provisional application Ser. No. 61/815,251, entitled “METHOD AND ACTIVE SUSPENSION”, filed Apr. 23, 2013, and U.S. provisional application Ser. No. 61/789,600, entitled “IMPROVEMENTS IN ACTIVE SUSPENSION”, filed Mar. 15, 2013 , the disclosures of which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61913644 | Dec 2013 | US | |
61865970 | Aug 2013 | US | |
61815251 | Apr 2013 | US | |
61789600 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/029654 | Mar 2014 | US |
Child | 14242636 | US |