The present disclosure relates to aircraft surface device heaters, and more particularly to probe heat monitors and a method of use.
Typical aircraft probe heat monitoring systems today look at the current draw through the heater circuit and can trigger when that current falls below a certain value. However, this method is only sufficient if an open circuit or a gross short occurs within the system and the heater circuit experiences a significant reduction in power. Due to the self-compensating nature of many aircraft probe heaters, the trigger level cannot be set at a current of sufficiently high accuracy to warn of conditions where current flow has only been slightly degraded. It is possible that current is flowing above the trigger level, but not enough current is flowing to maintain safe operation in severe icing conditions, especially if conditions suddenly change.
The conventional methods and systems have generally been considered satisfactory for their intended purpose, but with recent industry development, regulatory bodies have begun requiring a more reliable aircraft probe. The purpose of this disclosure is to ensure sufficient heating performance to maintain intended operation in the specific condition encountered at that time.
A method includes providing power to an aircraft probe anti-ice system, monitoring an actual power demand of the aircraft probe anti-ice system, monitoring an air data parameter and atmospheric conditions surrounding an aircraft and calculating an expected power demand of the aircraft probe anti-ice system based on the air data parameters and the atmospheric conditions, comparing the actual power demand of the aircraft probe anti-ice system to the expected power demand, performing a corrective action if the actual power demand and the expected power demand are different by more than an acceptable amount. The air data parameters can include airspeed, total air temperature, altitude, angle of attack, and angle of sideslip. The atmospheric conditions can include temperature, ice water content and liquid water content. The anti-ice system can include a self-compensating heater.
The corrective actions can include changing the power supplied to the probe anti-ice system, removing the probe from the aircraft, removing the aircraft probe data from a voting arrangement, or notifying the pilots and/or aircraft systems that the subject aircraft probe data may not be reliable.
A system includes a device having a first surface configured to be exposed to airflow about an exterior of an aircraft, the device including a first self-compensating heater configured to heat the first surface, at least one current monitor configured to produce a first measurement value representing electrical current flow in and out of the first self-compensating heater, one or more processors, and computer-readable memory encoded with instructions that, when executed by the one or more processors, cause the system to: receive air data parameters and atmospheric conditions surrounding the aircraft, calculate an expected power demand of the self-compensating heater based on the air data parameters and the atmospheric conditions, compare the actual power demand of the self-compensating heater to the expected power demand, perform a corrective action if the actual power demand and the expected power demand are different by more than an acceptable amount.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of an air data probe monitoring system in accordance with the disclosure is shown in
The air data parameter includes but is not limited to airspeed, total air temperature, altitude, angle of attack, and angle of sideslip. The atmospheric conditions include but are not limited to temperature, ice water content and liquid water content. All of the parameters do not necessarily have to be used to calculate the expected power draw from the self-compensating heater. The expected power draw as a function of the air data parameters and atmospheric conditions can be stored on the computer readable memory 112 prior to the flight and continuously compared to the actual power draw at that time.
The corrective action taken or required by the processor 108 can include changing the power supplied to the self-compensating heater 103 by increasing the power in order to avoid icing over the aircraft probe 102, or decreasing the power supplied in order to prevent overheating and damaging the aircraft probe 102. It is also considered that the corrective action can include removing or servicing the aircraft probe 102 when the aircraft 110 has landed. Corrective action can also include removing the aircraft probe 102 from a voting arrangement that includes at least one other aircraft probe 102, indicating the failure of subject probe, and using only other aircraft probe sensors in order to provide the appropriate data to the aircraft.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for an icing monitoring system with superior properties including increased reliability. While the apparatus and methods of the subject disclosure have been shown and described with reference to embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the subject disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3697726 | Geronime | Oct 1972 | A |
4458137 | Kirkpatrick | Jul 1984 | A |
4622667 | Yount | Nov 1986 | A |
5140135 | Freeman | Aug 1992 | A |
6370450 | Kromer | Apr 2002 | B1 |
6414282 | Ice | Jul 2002 | B1 |
6430996 | Anderson | Aug 2002 | B1 |
6654685 | McIntyre | Nov 2003 | B2 |
9745070 | Brouwers et al. | Aug 2017 | B2 |
10018580 | Stothers et al. | Jul 2018 | B2 |
10132824 | Benning | Nov 2018 | B2 |
10435161 | LoPresto | Oct 2019 | B1 |
10716171 | Vadgaonkar | Jul 2020 | B2 |
11111011 | Bottasso | Sep 2021 | B2 |
11111025 | Zha | Sep 2021 | B2 |
20040024538 | Severson | Feb 2004 | A1 |
20040030417 | Gribble | Feb 2004 | A1 |
20040075567 | Peck | Apr 2004 | A1 |
20090276133 | May | Nov 2009 | A1 |
20100100260 | McIntyre et al. | Apr 2010 | A1 |
20100198546 | Kamata | Aug 2010 | A1 |
20100243811 | Stothers | Sep 2010 | A1 |
20110106331 | Heuer | May 2011 | A1 |
20130257391 | Buenz | Oct 2013 | A1 |
20160161343 | Smith | Jun 2016 | A1 |
20170370960 | Benning | Dec 2017 | A1 |
20180111694 | LoPresto | Apr 2018 | A1 |
20180319506 | LoPresto | Nov 2018 | A1 |
20190061958 | Roman | Feb 2019 | A1 |
20190143945 | Webb et al. | May 2019 | A1 |
20190176994 | Burton | Jun 2019 | A1 |
20200025632 | Winter | Jan 2020 | A1 |
20210190715 | Francois | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
1422137 | May 2004 | EP |
2389314 | Nov 2011 | EP |
3264103 | Jan 2018 | EP |
2419673 | May 2006 | GB |
2010070273 | Jun 2010 | WO |
Entry |
---|
Braga Viana Felipe Augusto et al., “Reliable Integration of Thermal Flow Sensors into Air Data Systems”, 2018 VIII Brazilian Symposium on Computing Systems Engineering, IEEE, Nov. 5, 2018, pp. 99-105. |
Extended European Search Report dated Jun. 9, 2020, issued during the prosecution of European Patent Application No. EP 19213983.0. |
EP Communication pursuant to Article 94(3) EPC, dated Mar. 2, 2022, issued during the prosecution of European Patent Application No. EP 19213983.0, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210016886 A1 | Jan 2021 | US |