ACTIVE BODY

Information

  • Patent Application
  • 20120160121
  • Publication Number
    20120160121
  • Date Filed
    June 15, 2010
    14 years ago
  • Date Published
    June 28, 2012
    12 years ago
Abstract
An active body (1) includes flares (2, 6, 7) arranged adjacent, above, or behind each other, wherein at least one hydrophobic separating layer (3, 5) is integrated between the flares, or flare disks (2, 6, 7), thereby preventing the flares (2, 6, 7) from attaching or sticking. In one embodiment, the hydrophobic separating layer (3) is applied to at least one side of the flares (2), preferably as a powder preferably consisting of microspheres, or the like. In another embodiment, a separating disk is disposed between the flares (6, 7) as the separating layer (5), which in addition is anti-cohesive and anti-adhesive.
Description
FIELD OF THE INVENTION

The invention relates to a so-called “active body,” consisting of individual flares that are arranged alongside one another or one behind the other, and, in particular, to the optimization of flare disk separation by means of a hydrophobic separating layer.


BACKGROUND OF THE INVENTION

One such active body is described briefly in DE 199 51 767 C2, for example, and, in that case, carries out the task of a dual-mode decoy body. The active mass, which emits radiation in the infrared (IR) band, is, in that case, formed from flares. A camouflage and decoy munition of this type for protection of objects against guided missiles, which contains active substances that form smoke and/or decoy targets, is furthermore dealt with in DE 10 2005 020 159 B4.


Red phosphorus (RP) has already been a component of military applications for decades, for example, in smoke grenades for protection of infantry, artillery and watercraft, or aircraft decoy targets with an infrared (IR) effect. The smoke or IR effect is developed by the RP by combustion after corresponding ignition by activation. The RP unit is, itself, traditionally ignited and distributed by means of an ignition or break-up charge, which ensures that the active body or the active mass is ignited and distributed optimally for its respective purpose, that is to say, that the IR decoy target blooms optimally to form a cloud or a decoy target over an area.


However, in conjunction with civil applications, ignition and break-up charges, that is to say, explosives, are undesirable and should not be used in bodies or masses such as these. However, dispensing with a break-up charge has the problem that it is not possible for the IR decoy target to bloom in an ideal manner. New concepts are accordingly required, although these will not be investigated in any more detail here.


Thinking ahead, it should be noted that RP flares with an IR effect are currently produced by application of red phosphorus in conjunction with a binding agent to a mounting film (substrate). This material is shaped in the desired manner (single flare) by stamping, and is stacked for the size of the active body. Until the process of binding has been completed, the individual flares stick to one another in an undesired manner. Since the flares not only have residual moisture but also absorb moisture (they are hygroscopic), these flares often stick to one another in an undesirable manner after processing.


The binding could admittedly be forced by a separate drying process, but this would not prevent permanent adhesion. In order to minimize the residual moisture in the RP flares, the time-controlled and temperature-controlled (complex) drying process is once again tedious, and once again nevertheless results in remaining adhesion. Since, furthermore, the material is hygroscopic, it must be permanently protected against environmental moisture. This condition is satisfied by complex vacuum packages and/or storage in air-conditioned rooms.


However, in any case, ideal blooming of the IR decoy target to form a cloud after activation (i.e., ignition) and deployment of the red phosphorus is made more difficult, and it is even impossible for the alternative ignition and deployment concept for civil aviation and maritime use. However, if optimum blooming is not ensured, this leads to a low radiation yield, a poor radiation profile, and therefore not to an optimum decoy target over an area.


The purpose of the present invention is, therefore, to provide an active body that prevents the disadvantages known from practical use and allows optimum blooming, and not just of the active bodies with a break-up charge. One aim, in this case, is to suppress the adhesion or sticking of the individual flares, which is caused by adhesion as well as residual and environmental moisture.


SUMMARY OF THE INVENTION

The object of the present invention is achieved by the features of a first embodiment, which pertains to an active body (1) consisting of flares (2), which are arranged alongside one another, one above the other or one behind the other, characterized in that at least one hydrophobic (separating) layer (3, 5) is included between the flares or flare disks (2).


Advantageous additional embodiments of the invention are specified as follows.


In accordance with a second embodiment of the present invention, the first embodiment is modified so that the layer (3) can be fitted to the flares (2) on one side or on both sides. In accordance with a third embodiment of the present invention, the first embodiment and the second embodiment are further modified so that the layer (3) is formed by a granulate or powder. In accordance with a fourth embodiment of the present invention, the third embodiment is further modified so that the powder is micro-glass balls.


In accordance with a fifth embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment are further modified so that the powder is applied to the flares (2) by surface treatment. In accordance with a sixth embodiment of the present invention, the first embodiment is modified so the separating layer (5) is a hydrophobically, anti-cohesively and anti-adhesively coated paper. In accordance with a seventh embodiment of the present invention, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment and the sixth embodiment are further modified so that the flare disks (2, 6, 7) are based on RP (red phosphorus) or NC (nitrocellulose).


The present invention is based on the idea of detaching the flares instantaneously (quickly without delay) and permanently, with minimal throughput times and operating costs in the production process. This is done by the introduction of a hydrophobic material. The adhesion, as well as the sticking, between the individual flares are suppressed by covering the entire surface of the individual flares with a hydrophobic layer, preferably granulate/powder—for example, micro-glass balls. In this case, the adhesion is suppressed permanently, with the hydrophobic character of the material (preferably in the form of granulate)—which is used as the separating layer—ensuring that no sticking occurs even when the environmental humidity is raised.


It is therefore proposed that at least one hydrophobic separating layer be included between the flares in an active body having flares, which are arranged alongside one another, one above the other or one behind the other. The hydrophobic separating layer is preferably provided by a powder, for example, consisting of micro-balls etc., which is applied, or the like, to at least one side of the flares. From the production-engineering point of view, the granulate or powder can be applied to the unstamped flare webs, or, for example, by mixing of granulate and the flares in a mixing drum. A person skilled in the art will be aware of alternatives.


In a further variant of the invention, a separating disk is located as a separating layer between the flares, and additionally has anti-cohesive and anti-adhesive characteristics. An active body design such as this inter alia has the advantage that there is no need for long time-controlled and temperature-controlled processes (e.g., heating-drying). Furthermore, the active bodies can be stored more easily. Furthermore, the RP active mass can be saved by the improved performance of the IR decoy target.


The idea can also be implemented in conjunction with nitrocellulose flares (NC flares) and in conjunction with an active mass mix composed of RP and NC.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be explained in more detail with reference to two exemplary embodiments and drawings, in which:



FIG. 1 shows an active body of the present invention, illustrated in a simplified form, consisting of individual flares with a coating,



FIG. 2 shows a further embodiment of an active body consisting of individual flares with a separate separating layer.





DETAILED DESCRIPTION OF THE INVENTION

An active body 1, which is illustrated schematically in FIG. 1 and FIG. 2, is composed of a plurality of flares 2, which in this case (FIG. 1) have already been stamped. FIG. 1 merely indicates a powder layer 3 between the flares 2 (for example, based on nitrocellulose (NC) and/or red phosphorus (RP), which is preferably applied over the entire surface 4 of the respective lower or upper flare 2. “Coating” on both sides of each flare 2 with the powder layer 3 is also feasible. The layer 3 acts as a separating layer between the flares 2, and can be applied to the unstamped flare webs, or can be created by mixing granulate/powder and stamped flares 2, for example, in a mixing drum.


The other variant of an active body, as shown in FIG. 2, indicates a separate separating layer 5 between the actual active mass (flare disks 6, 7). The separating layer 5 can be provided by a hydrophobically, anti-cohesively and anti-adhesively coated paper. These separating layers 5 are stacked between the flare disks 6, 7, in the layer sequence flare disk 6, separating disk 5, flare disk 7, separating layer 5, etc. This allows flare disks 6, 7 to be based on RP or NC, or else RP and NC. In this case, the flare disks 6, 7 need not be round.


The layer structure itself, according to the present invention, can be individually configured, that is to say, alternately uniformly or non-uniformly, in a sequence or as a mix. Furthermore, the disks can also be formed from NC and from RP in this case.

Claims
  • 1. An active body comprising: (a) a plurality of flares that are arranged alongside one another, one above the other or one behind the other; and,(b) at least one hydrophobic separating layer disposed between adjacent flares of the plurality of flares so as to separate adjacent flares.
  • 2. The active body as claimed in claim 1, wherein in that the layer is fitted to each flare of the plurality of flares on one side or on both sides.
  • 3. The active body as claimed in claim 1, wherein each hydrophobic separating layer is formed by a granulate or powder.
  • 4. The active body as claimed in claim 3, wherein each hydrophobic separating layer is formed by the powder, and the powder comprises micro-glass balls.
  • 5. The active body as claimed in claim 4, wherein the powder is disposed on each flare as a surface treatment laver.
  • 6. The active body as claimed in claim 1, wherein the at least one hydrophobic separating layer comprises a coated paper, wherein the coated paper a hydrophobically, anti-cohesively and anti-adhesively coated paper.
  • 7. The active body as claimed in claim 8, wherein each flare disk comprises, as a base, either red phosphorus or nitrocellulose.
  • 8. The active body as claimed in claim 1, wherein each flare of the plurality of flares is a flare disk.
  • 9. The active body as claimed in claim 2, wherein each hydrophobic separating layer is formed by a granulate or powder.
  • 10. The active body as claimed in claim 9, wherein each hydrophobic separating layer is formed by the powder, and the powder comprises micro-glass balls.
  • 11. The active body as claimed in claim 9, wherein each hydrophobic separating layer is formed by the powder, and the powder consists of micro-glass balls.
  • 12. The active body as claimed in claim 3, wherein each hydrophobic separating layer is formed by the powder, and the powder consists of micro-glass balls.
  • 13. The active body as claimed in claim 10, wherein the powder is disposed on each flare as a surface treatment layer.
  • 14. The active body as claimed in claim 1, wherein each flare is a disk flare that comprises, as a base, either red phosphorus or nitrocellulose.
  • 15. The active body as claimed in claim 2, wherein each flare is a disk flare that comprises, as a base, either red phosphorus or nitrocellulose.
  • 16. The active body as claimed in claim 3, wherein each flare is a disk flare that comprises, as a base, either red phosphorus or nitrocellulose.
  • 17. The active body as claimed in claim 4, wherein each flare is a disk flare that comprises, as a base, either red phosphorus or nitrocellulose.
  • 18. The active body as claimed in claim 5, wherein each flare is a disk flare that comprises, as a base, either red phosphorus or nitrocellulose.
  • 19. The active body as claimed in claim 6, wherein each flare is a disk flare that comprises, as a base, either red phosphorus or nitrocellulose.
Priority Claims (1)
Number Date Country Kind
10 2009 030 870.9 Jun 2009 DE national
Parent Case Info

This is a National Phase Application in the United States of International Patent Application No. PCT/EP2010/003565 filed Jun. 15, 2010, which claims priority on German Patent Application No. DE 10 2009 030 870.9, filed Jun. 26, 2009. The entire disclosures of the above patent applications are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2010/003565 6/15/2010 WO 00 3/19/2012