1. Field of the Invention
The present invention relates to an active body.
2. Description of the Background Art
Active bodies for the protection of military objects, for example, aircraft, from infrared-guided missiles are known. In the most primitive case, they are pyrotechnically generated heat sources, which emit hot radiation.
An infrared decoy target is disclosed in DE 40 07 811 C2. It has a spectral distribution of an infrared emission of only moderately warm targets. For the decoy target, zeolite powder is used, which is suitable for absorbing air moisture. It can be used for coating a body, or as a finely-distributed cloud of powder particles, which float in the air. Basically, all types of zeolite, or powders of similar crystal structure, can be used.
Another infrared decoy target is known from the publication JP-A-2001-1741 96.
An infrared radiation device of incendiary composition, which is in direct contact with a metal foil, is described in DE 26 14 196 A1. In an embodiment, the incendiary composition is comprised of an inert mixture of potassium nitrate and metallic boron. The incendiary composition is attached to a metal foil with a nitrocellulose binder material.
In DE 42 44 682 A1, which corresponds to U.S. Pat. No. 5,585,594, a high-intensity, pyrotechnic infrared decoy flare is disclosed. Its purpose is to lure an incoming missile away from the aircraft. The decoy flare comprises a compactly clustered substantially void free array of discrete pieces of a gassy high intensity infra-red emitting pyrotechnic composition contained in an air-tight container designed to rupture.
An infra-red decoy target for a helicopter is also described in GB 2 327 116 A. An additional infrared decoy is known from U.S. Pat. No. 5,343,794. Possible material compositions of such decoys can be found in U.S. Pat. No. 6,675,716 as well as U.S. Pat. No. 5,435,224 and U.S. Pat. No. 5,343,794. Pyrotechnic smokescreen units are described in WO 00/58237 A1 and WO 00/58238.
In DE 196 05 337 C2, a method for altering the spatial and temporal infrared structure of an aircraft based on the new generation of infrared-guided missiles with integrated flare protection systems is described. It is suggested to artificially alter the spatial infrared signature of an aircraft, not only in a narrow spatial area at the fuselage but across typical flight dimensions.
A further method for providing a decoy body is found in DE 42 38 038 C1, which corresponds to U.S. Pat. No. 5,397,236. It is characterized in that the active masses simulating the target body are brought into the position of the decoy body to be produced, and are decomposed there in such a manner that a spectral-spatial target signature of the object for a target homing head is generated.
It is therefore an object of the present invention to provide an active body, which against modern missiles has as an effective infrared decoy target, for example, for aircraft, an object-like spectral radiation signature having a high radiation intensity in the area of the plume radiation, which will last for the entire duration of the action starting at initial ignition; features a specific blossoming method with steep leading edges, and has a sufficiently long action period. Furthermore, the effectiveness should be undiminished even at high altitudes with reduced oxygen levels, and no efficiency loss should occur at high output speeds (due to flow effects).
Thus, an active body is provided that includes at least one active mass block of monobasic or polybasic high-energy materials with surface structures. Depending on the type of structure and its depth, this requires an enlargement of the surface, which allows control of speed, with which the active mass block disintegrates, and thus of the duration of effectiveness of the active body.
In an aspect, the active mass block can have one or a plurality of interior channels and/or cavities, which allow an afflux-protected initiation of the active mass block on the inside. In combination with metallic cover plates and protective film, for example, it is thus ensured that loss of infrared radiation at high afflux velocities, as experienced during ejection of the active body (active mass block) from the plane, are avoided. Furthermore, as a result of the gases in the channels produced during the combustion of the active mass, a jet effect is generated, which at the same time can be utilized for the actuation, and thus the kinematics of the active body (flares).
To optimize the duration of the action gas and temperature bridges are provided. These can be made with slots, perforation, and/or bores between the interior channels. With a selectable number, size, and arrangement of these bridges, as well as the remaining wall strength, a defined time control of the cross ignition to the outer surfaces is possible.
The specific blossoming behavior is preferably adjusted by filling the channels with, for example, fine-structured material of the same substance, but compared to the active mass block clearly higher surface to mass ratio. The steepness of the leading edge can hereby be increased by increasing the surface to mass ratio.
In an embodiment, the igniting of the active masses takes place inside the channels in the active mass block, by, for example, pyrotechnical primer charges. This ensures a spontaneous, flow-dependent ignition on the one hand, while on the other hand, interference radiation caused by the primer composition is suppressed.
In the way described above, a bi-spectral active body is constructed, which reacts sufficiently well to new sensors.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein the figure illustrates an active mass block.
In the figure, an active mass block is illustrated, which on its surface is provided with two structures, for example, in the form of grooves. On its inside, the active mass block 1 has one of, or a plurality of, channels and/or cavities 3 filled with active mass substances 4. This substance can be a fine-structured material of the same substance, but with a distinctly increased surface to mass ratio as compared to the active mass block 1. Suitable fine-structured materials are materials having a high incidence of radiation in the wavelength range, preferably between 4.1 to 4.6 μm, for example, a nitrocellulose mixture of about 60 percent nitroglycerine and 40 percent, diethylene glycol dinitrate. These active mass substances 4 can be in the form of sticks (about 0.2 to 3 mm in diameter), flakes, wafers, or granulate, and can be used in this form.
Furthermore, the active mass block 1 has an afflux protector 5, which in this embodiment is formed by a cover and/or protective cap 5a and a protective film 5b. Gas and temperature bridges, which are formed by slots, perforations, or bores, are identified with the reference numeral 6.
A pyrotechnical primer composition 7, which preferably is made of pulverized boron and potassium nitrate (at a ratio of about 50 percent boron to 50 percent potassium nitrate), is provided for the ignition. This primer charge 7 can thereby be used in a grain size of about 0.2 to 3 mm.
It is understood that the quantities and measurements stated in the embodiment (caliber 2″×1″×8″) described above are beneficial ones not to be viewed as limitations. Especially with different calibers, adjustments must be made in order to meet the criteria sufficiently.
Experience has shown that the integration of only one active mass block 1 in the active body will meet the objective. However, it is also possible to combine a plurality of active mass blocks 1 to form one active body.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 047 231 | Sep 2004 | DE | national |
This nonprovisional application is a continuation of International Application No. PCT/EP2005/008167, which was filed on Jul. 28, 2005, and which claims priority to German Patent Application No. DE 102004047231, which was filed in Germany on Sep. 28, 2004, and which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2210871 | Boddicker | Aug 1940 | A |
3938444 | Foote et al. | Feb 1976 | A |
5074216 | Dunne et al. | Dec 1991 | A |
5343794 | Andreotti et al. | Sep 1994 | A |
5397236 | Fegg et al. | Mar 1995 | A |
5435224 | Andreotti et al. | Jul 1995 | A |
5531163 | Dillehay et al. | Jul 1996 | A |
5565150 | Dillehay et al. | Oct 1996 | A |
5585594 | Pelham et al. | Dec 1996 | A |
6427599 | Posson et al. | Aug 2002 | B1 |
6578492 | Koch et al. | Jun 2003 | B1 |
6581520 | Koch et al. | Jun 2003 | B1 |
6675716 | Nadler | Jan 2004 | B1 |
Number | Date | Country |
---|---|---|
26 14 196 | Oct 1977 | DE |
40 07 811 | Dec 1993 | DE |
42 38 038 | Jun 1994 | DE |
42 44 682 | Oct 1995 | DE |
196 05 337 | Aug 1997 | DE |
0 309 097 | Mar 1989 | EP |
0 665 415 | Aug 1995 | EP |
2 266 944 | Nov 1993 | GB |
2 300 035 | Oct 1996 | GB |
2 327 116 | Jan 1999 | GB |
2001-174196 | Jun 2001 | JP |
WO 0058237 | Oct 2000 | WO |
WO 0058238 | Oct 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20070266882 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2005/008167 | Jul 2005 | US |
Child | 11727869 | US |