The Application Claims were submitted to Patent Office of the People's Republic of China on Nov. 12, 2021 and named as an Active Cable Avoiding Influence of RX Power Consumption, with an application No. 202111338440.4. And the priority of the Chinese patent application mentioned above is incorporated herein by reference in its entirety.
The present invention relates to the field of the active cable, specifically, to the active cable that avoids influence of RX power consumption on IR-drop and thickness of the active cable.
With development of high-speed wireless network, high-speed USB and HD video, such cables as the USB, the HDMI, the DP and the Type C are more and more popular.
Taking the USB as an example, the USB cable is used for connection and communication between a computer and an external device, and for charging of the device and connecting with outside. Generally speaking, it is used for data transmission and charging.
The U promotion group composed of such industry giants as Intel, Microsoft, HP, Texas Instruments, NEC and ST-NXP announced on Nov. 18, 2008 that the USB 3.0 Specification was officially completed and publicly released. A transmission speed that 10 times USB 2.0 and a higher energy-saving efficiency are provided in the standard, which can be widely used in peripherals of PC and consumer electronics products.
As shown in
The USB 3.0 Specifications stipulates that any length of the cables can be used only if two requirements are satisfied, namely attenuation requirement of high-speed cable and IR-drop requirement, wherein, loss requirements of the high-speed signal cable are shown as
Voltage between the VBUS and the GND is within 450 mV at 5V, 900 mA as required by IR-drop. In order to make the cable longer, two requirements mentioned above should be met. An active optical cable (AOC) is currently commercially available, that is, the active component is used to reduce or compensate the attenuation produced during transmission.
Specifically, as shown in
Therefore, the copper wire ensures that the active cable cannot only satisfy with the attenuation requirement of the high-speed signal cable and IR-drop requirement of the cable, but also improve the softness of the cable and experience of end-users when the cable extends has become an urgent problem to be solved in the prior art.
The present invention is intended to provide an active cable avoiding influence of RX power consumption for satisfaction with the attenuation of wire size and the IR-drop of the cables and reduction of the cable thickness to improve user experience.
To achieve the object, the present invention employs the following technical solution.
An active line avoiding influence of RX power consumption, comprising:
a host connection end to connect the host, a device connection end to connect the device, and a data wire and an auxiliary wire between the host connection end and the device connection end.
The auxiliary power wire consists of the main power wire and the auxiliary power wire.
Wherein, the main power wire is used for current transmission between the VBUS of the host and the device.
One end of the auxiliary power wire is located at the host connection end and connected with the main power wire, and another end of the auxiliary power wire is located at the device connection end to supply power to the active component of the device connection end.
Optionally, the one end of the auxiliary power wire is located at the host connection end and connected with the main power wire. Specifically, one end of the auxiliary power wire is directly connected with the main power wire at the host connection end, or one end of the auxiliary power wire is used for direct connection with the electrode pins of the VBUS of the host connection end, thereby connecting with the main power wire indirectly.
Optionally, the active component in the host connection end is directly connected with the main power wire and takes electricity from the main power wire.
Optionally, the active component in the host connection end is connected with the auxiliary power wire and takes electricity from the auxiliary power wire.
Optionally, the power module is arranged between the auxiliary power wire and the active component of the host connection end and/or the device connection end to satisfy with different voltage requirements.
Optionally, the host connection end and the device connection end is configured to be plugged into the host and the device.
Optionally, the main power wire and the auxiliary power wire are copper cables.
Optionally, the active cable is an USB, an HDMI, an DP, or a Type C cable.
Optionally, the auxiliary wires also include ground wire.
In conclusion, the present invention has following advantages:
Now, the invention will be explained further in combination with the figures and embodiments. It should be understood that the specific embodiments described here are only used for explanation of the present invention instead of limitation. In addition, for easy description, it should be noted that that only the parts related to the invention are shown in the figures rather than the whole structure.
For the active cable, power from outside is required because the active component is used to enhance signals. In general, power is supplied by the VBUS directly. When the VBUS in the cable is transmitting current (supplying power to the device), the current actually transmitted by the VBUS cable will rise due to the current consumed by the active component with addition of power current, thus leading to a risk that IR-drop of VBUS exceeds the specification in the protocol. In the present invention, the VBUS refers to a connector, a plug of various AOC cables or a pin for power supply in the connection terminal.
The invention is mainly intended to satisfy with cable extension and reduction of thickness of the copper wire, the present invention is mainly intended to disconnect the active component located in the device connection end (RX) from the VBUS at the device connection end and connect one additional auxiliary power wire from the host connection end to supply power to the active component in the device connection end
Specifically,
The host connection end 13 to connect the host 11, the device connection end 14 to connect device 12, and the data wire and the auxiliary wire between the host connection end 13 and the device connection end 14.
The auxiliary power wire consists of the main power wire 15, the ground wire 16 and the auxiliary power wire 18.
Wherein, the main power wire 15 is used to transmit current between the VBUS of the host 11 and the device 12.
The auxiliary power wire 18, one end of it is located at the host connection end 13 and connected with the main power wire 15, and another end is located at the device connection end 14 to supply power to the active component 17 of the device connection end 14.
Therefore, in the present invention, the active component 17 at the device connection end 14 does not directly take electricity from the VBUS of the device connection end 14, and thus the current transmitted by the VBUS cable is equal to the current absorbed by the device, thereby the problems, such as unattractive appearance of the device caused by too thick cable, are resolved.
One end of the auxiliary power wire 18 in the present invention is connected with the main power wire 15 at the host connection end 13, or one end of the auxiliary power wire 18 is used for direct connection with the electrode pins of the VBUS of the host connection end 13 so as to connect with the main power wire 15 indirectly.
Furthermore, as shown in
Furthermore, as shown in
Furthermore, when adapting to different active components requiring different power voltages, the power module 19 is arranged between the auxiliary power wire 18 and the active component 17 of the host connection end 13 and/or the device connection end 14, thereby satisfying with different voltage requirements.
In the present invention, the host connection end 13 and the device connection end 14 can be the electric socket or other types, as long as they can be plugged into the host 11 and the device 12.
The copper cable can be used as the main power wire and the auxiliary power wire in the present invention.
The active cable can be the USB, the HDMI, the DR, or the Type C cables.
Consequently, the present invention has following advantages:
The information mentioned above is intended to make further detailed description and illustration for the present invention in combination with recommended embodiments, and it cannot be asserted that the specific embodiments of the present invention are limited to here. For the ordinary persons skilled in the art of the present invention, they can perform a number of simple derivations or replacements without departing from the concept of the present invention, which should be regarded to be in the protection scope as defined by the Claims applied by the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2021113388440.4 | Nov 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6310286 | Troxel | Oct 2001 | B1 |
6793539 | Lee | Sep 2004 | B1 |
7607920 | Chen | Oct 2009 | B1 |
8332664 | Farrar | Dec 2012 | B2 |
8870598 | Qi | Oct 2014 | B2 |
11334139 | Vishwakarma | May 2022 | B1 |
20040023520 | Schriefer | Feb 2004 | A1 |
20040085694 | Germagian | May 2004 | A1 |
20040203275 | Jeansonne | Oct 2004 | A1 |
20050009404 | Lee | Jan 2005 | A1 |
20050020144 | Lunecki | Jan 2005 | A1 |
20050109841 | Ryan | May 2005 | A1 |
20050138239 | Kasahara | Jun 2005 | A1 |
20050240705 | Novotney | Oct 2005 | A1 |
20070220499 | Bannatyne | Sep 2007 | A1 |
20070233294 | Holden | Oct 2007 | A1 |
20070263703 | Mahaffey | Nov 2007 | A1 |
20080153351 | Chung | Jun 2008 | A1 |
20090254771 | So | Oct 2009 | A1 |
20090295327 | McGinley | Dec 2009 | A1 |
20110244728 | Chang | Oct 2011 | A1 |
20120012358 | Horan | Jan 2012 | A1 |
20120012359 | Horan | Jan 2012 | A1 |
20130249777 | Olsson | Sep 2013 | A1 |
20140049904 | Hume | Feb 2014 | A1 |
20140099808 | McClelland | Apr 2014 | A1 |
20140272506 | Kwon | Sep 2014 | A1 |
20150268688 | Leinonen | Sep 2015 | A1 |
20150357835 | Naskali | Dec 2015 | A1 |
20160321210 | Baterina | Nov 2016 | A1 |
20170093104 | Powers | Mar 2017 | A1 |
20170222381 | Shpiro | Aug 2017 | A1 |
20170293335 | Dunstan | Oct 2017 | A1 |
20170329386 | Winemiller | Nov 2017 | A1 |
20180212418 | Golubovic | Jul 2018 | A1 |
20190296569 | Chen | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
2814854 | Sep 2006 | CN |
2821911 | Sep 2006 | CN |
2842785 | Nov 2006 | CN |
101207256 | Jun 2008 | CN |
201298648 | Aug 2009 | CN |
201392501 | Jan 2010 | CN |
102084556 | Jun 2011 | CN |
203085207 | Jul 2013 | CN |
203811289 | Sep 2014 | CN |
104733936 | Jun 2015 | CN |
104737140 | Jun 2015 | CN |
104756200 | Jul 2015 | CN |
104882742 | Sep 2015 | CN |
105826782 | Aug 2016 | CN |
106159613 | Nov 2016 | CN |
106374298 | Feb 2017 | CN |
106450999 | Feb 2017 | CN |
108321648 | Jul 2018 | CN |
108376872 | Aug 2018 | CN |
108475560 | Aug 2018 | CN |
109038130 | Dec 2018 | CN |
109510045 | Mar 2019 | CN |
109524169 | Mar 2019 | CN |
109687199 | Apr 2019 | CN |
109687231 | Apr 2019 | CN |
109994281 | Jul 2019 | CN |
209401944 | Sep 2019 | CN |
210692932 | Jun 2020 | CN |
210723605 | Jun 2020 | CN |
112086830 | Dec 2020 | CN |
212725889 | Mar 2021 | CN |
113783055 | Dec 2021 | CN |
19917352 | Oct 2000 | DE |
102014019263 | Jul 2015 | DE |
2026426 | Feb 2009 | EP |
2002073219 | Mar 2002 | JP |
2004021993 | Jan 2004 | JP |
2004054408 | Feb 2004 | JP |
2004056909 | Feb 2004 | JP |
2004185194 | Jul 2004 | JP |
2004241093 | Aug 2004 | JP |
6779999 | Nov 2020 | JP |
200326739 | Sep 2003 | KR |
20060119671 | Nov 2006 | KR |
20090013345 | Feb 2009 | KR |
20100015158 | Feb 2010 | KR |
20110007632 | Jan 2011 | KR |
20120043851 | May 2012 | KR |
20130074592 | Jul 2013 | KR |
WO-2012007785 | Jan 2012 | WO |
WO-2012068567 | May 2012 | WO |
WO-2014006619 | Jan 2014 | WO |
WO-2016013013 | Jan 2016 | WO |
WO-2018137298 | Aug 2018 | WO |
WO-2019178158 | Sep 2019 | WO |
Entry |
---|
Notification to Grant Patent from corresponding Chinese Application No. 202111338440.4, dated Dec. 17, 2021. English translation attached. |
Chinese search report from corresponding Chinese Application No. 202111338440.4, dated Dec. 9, 2021. English translation attached. |
Number | Date | Country | |
---|---|---|---|
20230155334 A1 | May 2023 | US |