Active component indicators for photovoltaic systems

Information

  • Patent Grant
  • 12237809
  • Patent Number
    12,237,809
  • Date Filed
    Tuesday, May 30, 2023
    a year ago
  • Date Issued
    Tuesday, February 25, 2025
    15 days ago
  • Inventors
  • Original Assignees
    • GAF Energy LLC (Parsippany, NJ, US)
  • Examiners
    • White; Sadie
    Agents
    • GREENBERG TRAURIG, LLP
Abstract
A system includes a plurality of photovoltaic modules installed and arranged in an array on a roof deck. Each of the photovoltaic modules includes a wire cover bracket configured to receive at least one electrical component. A rapid shutdown device is electrically connected to the at least one electrical component. The rapid shutdown device is configured to reduce an electrical voltage of the system to a predetermined voltage level. At least one visible indicator is electrically connected to the plurality of photovoltaic modules. The at least one visible indicator is activated when the electrical voltage of the system is less than or equal to the predetermined voltage level.
Description
FIELD OF THE INVENTION

The present invention relates to active component indicators for photovoltaic systems.


BACKGROUND OF THE INVENTION

Photovoltaic systems having solar panels and other active components are commonly installed on roofing of structures.


SUMMARY OF THE INVENTION

In some embodiments, a system includes a plurality of photovoltaic modules installed on a roof deck, wherein the photovoltaic modules are arranged in an array on the roof deck, wherein the array includes a first subarray, wherein each of the photovoltaic modules includes a first end and a second end opposite the first end, at least one solar cell, and a wire cover bracket located at the first end, wherein the wire cover bracket is configured to receive at least one electrical component, wherein the wire cover brackets of the plurality of photovoltaic modules of the first subarray are configured to form a wireway; a rapid shutdown device, wherein the rapid shutdown device is electrically connected to the at least one electrical component, wherein the rapid shutdown device is configured to reduce an electrical voltage of the system to a predetermined voltage level; and at least one visible indicator, wherein the at least one visible indicator is electrically connected to the plurality of photovoltaic modules, wherein the at least one visible indicator is activated when the electrical voltage of the system is less than or equal to the predetermined voltage level.


In some embodiments, the at least one visible indicator is a light source. In some embodiments, the light source is a light emitting diode (LED). In some embodiments, the system further includes a transition box, wherein the transition box is located proximate to the wireway, wherein the rapid shutdown device is located within the transition box, wherein the at least one visible indicator is located within the transition box. In some embodiments, the at least one visible indicator is located within the wireway. In some embodiments, the at least one visible indicator is located within a corresponding one of the wire cover bracket. In some embodiments, the at least one visible indicator includes a plurality of visible indicators.


In some embodiments, the system further includes at least one cover removably attached to at least one of the wire cover brackets, wherein the at least one cover is configured to enable visible perception of the at least one visible indicator when the at least one visible indicator is active. In some embodiments, the system further includes at least one voltage monitoring device, wherein the at least one voltage monitoring device is configured to measure the electrical voltage. In some embodiments, the system further includes a jumper module, wherein the jumper module electrically connects the first subarray of the array and a second subarray of the array. In some embodiments, the jumper module includes a first junction box, wherein the at least one electrical component includes a second junction box, wherein the first junction box is electrically connected to the second junction box, and wherein the first junction box includes the at least one voltage monitoring device. In some embodiments, the jumper module includes a plurality of layers, wherein the plurality of layers is laminated, and wherein the at least one voltage monitoring device is laminated within plurality of layers of the jumper module. In some embodiments, the at least one voltage monitoring device is a printed circuit board or flex circuit.


In some embodiments, the at least one visible indicator is located on the jumper module. In some embodiments, the at least one voltage monitoring device includes a plurality of voltage monitoring devices, and wherein each of the plurality of voltage monitoring devices is located on a corresponding one of the plurality of photovoltaic modules. In some embodiments, the at least one visible indicator is electrically connected to the rapid shutdown device. In some embodiments, the predetermined voltage level is 0.1 volt to 30 volts.


In some embodiments, the at least one visible indicator displays a first color when the electrical voltage has a first value, and wherein the at least one visible indicator displays a second color different from the first color when the electrical voltage has a second value, wherein the second value is different from the first value. In some embodiments, the at least one visible indicator displays a first flashing code when the electrical voltage has a first value, and wherein the at least one visible indicator displays a second flashing code different from the first flashing code when the electrical voltage has a second value, wherein the second value is different from the first value.


In some embodiments, a method comprises the steps of: monitoring an electrical voltage of a photovoltaic system, wherein the photovoltaic system includes a plurality of photovoltaic modules installed on a roof deck, wherein the photovoltaic modules are arranged in an array on the roof deck, wherein each of the photovoltaic modules includes a first end and a second end opposite the first end, at least one solar cell, and at least one electrical component, a rapid shutdown device, wherein the rapid shutdown device is electrically connected to the at least one electrical component, and at least one visible indicator, wherein the at least one visible indicator is electrically connected to the plurality of photovoltaic modules; activating the rapid shutdown device to reduce the electrical voltage of the photovoltaic system to a predetermined voltage level; and activating the at least one visible indicator when the electrical voltage of the photovoltaic system is less than or equal to the predetermined voltage level.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are top plan views of some embodiments of a photovoltaic module;



FIGS. 2 and 3 are schematic view of some embodiments of a photovoltaic module;



FIG. 4 is a top perspective view of some embodiments of a jumper module for a photovoltaic system;



FIG. 5 is a top plan view of the jumper module shown in FIG. 4;



FIG. 6 is a side elevational view of the jumper module shown in FIG. 4;



FIG. 7 is a bottom plan view of the jumper module shown in FIG. 4;



FIG. 8 is an exploded, top perspective view of an active portion of the jumper module shown in FIG. 4;



FIG. 9 is schematic view of the active portion of the jumper module shown in FIG. 4;



FIG. 10 is a top plan view of a jumper module shown in FIG. 4 overlaying another one of the jumper module;



FIG. 11 is an exploded, top perspective view of a photovoltaic system;



FIGS. 12A and 12B are views of embodiments of photovoltaic modules and associated wire cover brackets;



FIG. 13 is a top perspective view of embodiments of a cover installed on wire cover brackets;



FIG. 14 is a top perspective view of embodiments of a first flashing base employed by the photovoltaic system shown in FIG. 11;



FIG. 15 is a top perspective view of embodiments of flashing bases installed on a roof deck;



FIGS. 16A through 17 are top perspective views of a transition box employed by the photovoltaic system shown in FIG. 11;



FIG. 18 is a top perspective view of embodiments of the transition box shown in FIGS. 16A through 17 installed on a roof deck;



FIGS. 18A through 18D illustrate some embodiments of a transition box;



FIG. 19 is a top perspective view of embodiments of a second flashing base employed by the photovoltaic system shown in FIG. 11;



FIGS. 20 and 20A are top perspective views of embodiments of a building integrated photovoltaic system installed on a roof deck; and



FIGS. 21 and 22 illustrate block-diagrams of some embodiments of indicators employed by a photovoltaic system.





DETAILED DESCRIPTION

Referring to FIGS. 1A and 1B, in some embodiments, a photovoltaic module 1110 includes an active area 1109 having a plurality of solar cells 1112. In some embodiments, the photovoltaic module 1110 includes an inactive area comprising a head lap portion 1113, a first side lap 1115 located at one end of the photovoltaic module 1110, and a second side lap 1117 located at an opposite end of the photovoltaic module 1110. In some embodiments, the head lap portion 1113 is textured. In some embodiments, the texture of the head lap portion 1113 is different from a texture of the active area 1109. In some embodiments, a wire cover bracket 1300 is attached to the first side lap 1115. In some embodiments, the wire cover bracket 1300 includes a junction box 1423.


In some embodiments, the plurality of solar cells 1112 includes a first set of solar cells 1112a and a second set of solar cells 1112b. In some embodiments, the first set of solar cells 1112a includes eight of the solar cells 1112. In some embodiments, the second set of solar cells 1112b includes eight of the solar cells 1112. In some embodiments, each of the first set of solar cells 1112a and the second set of solar cells 1112b includes more or less than eight of the solar cells 1112. In some embodiments, a last one of the solar cells 1112 of the first set of solar cells 1112a is separated from a first one of the solar cells 1112 of the second set of solar cells 1112b by a space S. In some embodiments, the space S is located approximately half the length of the photovoltaic module 1110. In some embodiments, the solar cells 1112 of each of the first and second sets of solar cells 1112a, 1112b are strung together with bussing 1101. In some embodiments, the bussing 1101 includes nine bussing wires. In some embodiments, the bussing 1101 may include more or less than the nine bussing wires.


In some embodiments, a first bussing wire 1103a extends from the first side lap 1115 to the space S. In some embodiments, the first bussing wire 1103a extends to approximately half the length of the photovoltaic module 1110. In some embodiments, one end of the first bussing wire 1103a is electrically connected to the junction box 1423 and the other end of the first bussing wire 1103a is electrically connected to the first set of solar cells 1112a. In some embodiments, a second bussing wire 1103b extends from the first side lap 1115 to a location proximate to the second side lap 1117. In some embodiments, the second bussing wire 1103b extends substantially the entire length of the photovoltaic module 1110. In some embodiments, one end of the second bussing wire 1103b is electrically connected to the junction box 1423 and the other end of the second bussing wire 1103b is electrically connected to the second set of solar cells 1112b. In some embodiments, each of the first bussing wire 1103a and the second bussing wire 1103b is covered with a polymer layer. In some embodiments, each of the first bussing wire 1103a and the second bussing wire 1103b is covered with an insulating film. In some embodiments, the insulating film is composed of EPE. In some embodiments, the EPE is comprised of a black strip. In some embodiments, each of the first bussing wire 1103a and the second bussing wire 1103b is coated with a colorant or dye to reduce reflectivity.


In some embodiments, the photovoltaic module 1110 includes at least one bypass diode 1123. In some embodiments, the at least one bypass diode 1123 is electrically connected to the bussing 1101. In some embodiments, the at least one bypass diode 1123 includes a plurality of bypass diodes 1123. In some embodiments, the at least one bypass diode 1123 is located within a section of the photovoltaic module 1110 that is located between an upper edge of the photovoltaic module 1110 and the plurality of solar cells 1112.


In some embodiments, the plurality of solar cells 1112 includes a plurality of the solar cells 1112. In some embodiments, the plurality of solar cells 1112 is arranged in one row (i.e., one reveal). In some embodiments, the plurality of solar cells 1112 is arranged in two rows (i.e., two reveals). In some embodiments, the plurality of solar cells 1112 is arranged in three rows (i.e., three reveals). In some embodiments, the plurality of solar cells 1112 is arranged in four rows (i.e., four reveals). In some embodiments, the plurality of solar cells 1112 is arranged in five rows (i.e., five reveals). In some embodiments, the plurality of solar cells 1112 is arranged in six rows (i.e., six reveals). In some embodiments, the plurality of solar cells 1112 is arranged in more than six rows.


Referring to FIG. 2, in some embodiments, the active area 1109 of the photovoltaic module 1110 includes the plurality of solar cells 1112, an encapsulant 1114 encapsulating the plurality of solar cells 1112, and a frontsheet 1116 juxtaposed with the encapsulant 1114. In some embodiments, the frontsheet 1116 is juxtaposed with a first surface of the encapsulant 1114. As used herein, the terms “encapsulating” and “encapsulates” mean to partially or fully envelope or enclose, and with respect to certain embodiments of the photovoltaic module 1110, the plurality of solar cells 1112 is fully enveloped by or enclosed within the encapsulant 1114, or partially enveloped by or enclosed within the encapsulant 1114. In some embodiments, the plurality of solar cells 1112 includes a plurality of the solar cells 1112. In some embodiments, the encapsulant 1114 encapsulates 50% to 99.9% of an exterior surface area of the plurality of solar cells 1112.


In some embodiments, the encapsulant 1114 has a thickness of 0.5 mm to 4 mm. In some embodiments, the encapsulant 1114 includes a first layer 1114a and a second layer 1114b. In some embodiments, the first layer 1114a of the encapsulant 1114 initially comprises two layers prior to lamination thereof. In some embodiments, a first layer 1114a of the encapsulant 1114 has a thickness of 0.2 mm to 2 mm. In some embodiments, a second layer 1114b of the encapsulant 1114 has a thickness of 0.2 mm to 2 mm. In some embodiments, the thickness of the first layer 1114a is equal to the thickness of the second layer 1114b. In some embodiments, the thickness of the first layer 1114a is different from the thickness of the second layer 1114b. In some embodiments, the first layer 1114a of the encapsulant 1114 has a thickness that is sufficient to prevent or reduce leakage current to an amount that will not provide a risk of electrocution to a user by touch in the event the glass layer 1122 breaks or shatters. In some embodiments, such thickness of the first layer 1114a of the encapsulant 1114 is described above. In some embodiments, the first layer 1114a of the encapsulant 1114 has a thickness that is sufficient to prevent or reduce leakage current to an amount that will not provide a risk of electrocution to a user by touch when the photovoltaic module 1110 is wet, in the event the glass layer 1122 breaks or shatters. In some embodiments, such thickness of the first layer 1114a of the encapsulant 1114 is described above.


In some embodiments, the photovoltaic module 1110 withstands walking loads/step resistance that conforms to standards under UL 3741 test standards (UL Standard for Safety Photovoltaic Hazard Control). In some embodiments, the photovoltaic module 1110 includes an axe impact resistance that conforms to standards under UL 3741 test standards. In some embodiments, the photovoltaic module 1110 includes a body fall resistance that conforms to standards under UL 3741 test standards. In some embodiments, a wet leakage current test performed in accordance with UL 3741 results in a leakage current of less than 130 nA.


In some embodiments, the photovoltaic module 1110 includes an impact resistance that conforms to standards under UL 1703 test standards. The UL 1703 test involves attaching the photovoltaic module 1110 to a representative model of a roof and dropping a 2-inch diameter steel ball onto the photovoltaic module 1110 from 1.3 meters. A photovoltaic module is deemed to pass the UL 1703 standard if there are no exposed electrical components and no large pieces of glass are ejected.


In some embodiments, the encapsulant 1114 may be composed of polyolefins, ethyl vinyl acetates, ionomers, silicones, poly vinyl butyral, epoxies, polyurethanes, or combinations/hybrids thereof. In some embodiments, the encapsulant 1114 is composed of thermosetting polyolefin.


In some embodiments, the photovoltaic module 1110 includes a first surface 1119 and a second surface 1121 opposite the first surface 1119. In some embodiments, the first surface 1119 is an upper, sun facing-side surface of the photovoltaic module 1110, and the second surface 1121 is a lower surface configured to face a roof deck on which the photovoltaic module 1110 is installed.


In some embodiments, the frontsheet 1116 includes a glass layer 1122 and a polymer layer 1124 attached to a first surface of the glass layer 1122. In some embodiments, the frontsheet 1116 is juxtaposed with the first layer 1114a of the encapsulant 1114. In some embodiments, each of the encapsulant 1114, the glass layer 1122, and the polymer layer 1124 is transparent. In some embodiments, the polymer layer 1124 is attached to the glass layer 1122 by a first adhesive layer 1126. In some embodiments, the first adhesive layer 1126 may include polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the first adhesive layer 1126 may include pressure sensitive adhesives. In some embodiments, the polymer layer 1124 is attached to the glass layer 1122 by thermal bonding. In some embodiments, the frontsheet 1116 includes at least one of the glass layer 1122 or the polymer layer 1124. In some embodiments, the first adhesive layer 1126 is transparent. As used herein, the term “transparent” means having a solar weighted transmittance of 80% or greater, and with respect to certain embodiments of the photovoltaic module 1110, a transparent layer of the photovoltaic module has a solar weighted transmittance of 80% or greater. In some embodiments, the frontsheet 1116 does not include the glass layer 1122. In some embodiments, the polymer layer 1124 is textured. In some embodiments, the glass layer 1122 has a thickness of 1 mm to 6 mm.


In some embodiments, the first adhesive layer 1126 is composed of thermosetting polyolefin, thermosetting polyolefin encapsulant material, thermosetting ethylene-vinyl acetate (EVA), EVA encapsulants, thermoplastic olefin, thermoplastic polyolefin (TPO) or hybrids/combinations thereof. In some embodiments, the first adhesive layer 1126 has a thickness of 0.2 mm to 2 mm. In some embodiments, the first adhesive layer 1126 has a thickness of 1 μm to 900 μm.


In some embodiments, the polymer layer 1124 is composed of a fluoropolymer. In certain embodiments, the fluoropolymer may be ethylene tetrafluoroethylene (ETFE), fluoropolymer is polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), polyvinyl fluoride (PVF), or blends thereof. In some embodiments, the frontsheet is composed of fluoropolymers, acrylics, polyesters, silicones, polycarbonates, or combinations thereof. In some embodiments, the polymer layer 1124 is composed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), polyphenylsulfone (PPSU), polyolefin, cyclic olefin copolymers (CPCs), or polyimide. In some embodiments, the polymer layer 1124 is composed of a crosslinked polymeric material. In some embodiments, 50% to 99% of the polymer chains of the polymeric material are crosslinked. In some embodiments, the polymer layer 1124 has a thickness of 0.01 mm to 0.5 mm.


In some embodiments, a backsheet 1128 is juxtaposed with a second layer 1114b of the encapsulant 1114. In some embodiments, the backsheet 1128 includes a first layer 1130 and a second layer 1132. In some embodiments, the first layer 1130 is juxtaposed with the second layer 1114b of the encapsulant 1114. In some embodiments, the second layer 1132 is juxtaposed with the first layer 1130. In some embodiments, the first layer 1130 of the backsheet 1128 is composed of a polymeric material. In some embodiments, the first layer 1130 of the backsheet 1128 is composed of polyethylene terephthalate (“PET”). In some embodiments, the first layer 1130 of the backsheet 1128 is composed of ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the first layer 1130 of the backsheet 1128 is composed of an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the first layer 1130 of the backsheet 1128 is composed of thermoplastic polyolefin (TPO). In some embodiments, the first layer 1130 of the backsheet 1128 includes of a single ply TPO roofing membrane. In some embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In some embodiments, the first layer 1130 of the backsheet 1128 is composed of polyvinyl chloride. In some embodiments, the first layer 1130 of the backsheet 1128 is composed of ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the first layer 1130 of the backsheet 1128 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the first layer 1130 has a thickness of 0.2 mm to 0.5 mm.


In some embodiments, the second layer 1132 of the backsheet 1128 is composed of a polymeric material. In some embodiments, the second layer 1132 of the backsheet 1128 is composed of thermoplastic polyolefin (TPO). In some embodiments, the second layer 1132 of the backsheet 1128 includes a single ply TPO roofing membrane. In some embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In some embodiments, the second layer 1132 of the backsheet 1128 is composed of polyethylene terephthalate (“PET”). In some embodiments, the second layer 1132 is composed of styrene acrylic copolymer. In some embodiments, the second layer 1132 of the backsheet 1128 is composed of ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the second layer 1132 of the backsheet 1128 is composed of an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the second layer 1132 of the backsheet 1128 is composed of polyvinyl chloride. In some embodiments, the second layer 1132 of the backsheet 1128 is composed of ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the second layer 1132 of the backsheet 1128 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof.



FIG. 3 shows a schematic view of the first side lap 1115. In some embodiments, the first side lap 1115 includes a structure and materials similar to those of the active area 1109, with certain differences. In some embodiments, the first side lap 1115 includes ends of the bussing wires 1103a, 1103b encapsulated by the encapsulant 1114. In some embodiments, the first side lap 1115 includes the polymer layer 1124. In some embodiments, the polymer layer 1124 is an upper, sun facing-side surface of the first side lap 1115. In some embodiments, the second side lap 1117 includes a structure and materials similar to those as the first side lap 1115. In some embodiments, the head lap portion 1113 includes a structure and materials similar to those as the first side lap 1115.


In some embodiments, the wire cover bracket 1300 is located on a surface 1105 of the polymer layer 1124. In some embodiments, the wire cover bracket 1300 is composed of a polymer. In some embodiments, the wire cover bracket 1300 is composed of a composite material. In some embodiments, the wire cover bracket 1300 is composed of a reinforced plastic. In some embodiments, the wire cover bracket 1300 is composed of a fiber-reinforced polymer. In some embodiments, the wire cover bracket 1300 is composed of fiberglass. In some embodiments, the wire cover bracket 1300 is injection molded. In some embodiments, the wire cover bracket 1300 is configured to receive a cover 1304, which shall be described in detail hereinafter. In some embodiments, the wire cover bracket 1300 is attached to the surface 1105 of the polymer layer 1124 by an adhesive. In some embodiments, the wire cover bracket 1300 is attached to the surface 1105 of the polymer layer 1124 by thermal bonding. In some embodiments, the wire cover bracket 1300 is attached to the surface 1105 of the polymer layer 1124 by ultrasonic welding. In some embodiments, the wire cover bracket 1300 has a height of 1 mm to 10 mm.


In some embodiments, the first layer 1130 is attached to the second layer 1132 by a second adhesive layer 1134. In some embodiments, the second adhesive layer 1134 may include polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the second adhesive layer 1134 may include pressure sensitive adhesives. In some embodiments, the second adhesive layer 1134 is composed of thermosetting polyolefin, thermosetting polyolefin encapsulant material, thermosetting ethylene-vinyl acetate (EVA), EVA encapsulants, thermoplastic olefin, thermoplastic polyolefin (TPO) or hybrids/combinations thereof. In some embodiments, the second adhesive layer 1134 has a thickness of 0.2 mm to 2 mm. In some embodiments, the second adhesive layer 1134 has a thickness of 1 μm to 900 μm.


In some embodiments, the first layer 1130 is attached to the second layer 1132 by thermal bonding. In some embodiments, each of the plurality of photovoltaic modules 1110 is installed on the roof deck by an adhesive. In some embodiments, the adhesive is adhered directly to the roof deck. In some embodiments, the adhesive is adhered to an underlayment. In some embodiments, the underlayment is adhered directly to the roof deck. In some embodiments, the adhesive is located on a rear surface of the photovoltaic module 1110. In some embodiments, the adhesive is located on the second layer 1132 of the backsheet 1128. In some embodiments, the adhesive includes at least one adhesive strip. In some embodiments, the adhesive includes a plurality of adhesive strips. In some embodiments, the plurality of adhesive strips is arranged intermittently. In some embodiments, the adhesive is located proximate to one edge of the photovoltaic module 1110. In some embodiments, the adhesive is a peel and stick film sheet. In some embodiments, the peel and stick film sheet includes at least one sheet of film removably attached to the rear surface. In some embodiments, the peel and stick film sheet is composed of EverGuard Freedom HW peel and stick membrane manufactured by GAF. In some embodiments, the adhesive includes polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the adhesive includes pressure sensitive adhesives.


Referring to FIGS. 4 through 9, in some embodiments, a jumper module 1210 includes an active portion 1212 having a first end 1214, a second end 1216 opposite the first end 1214, a first edge 1218 extending from the first end 1214 to the second end 1216, and a second edge 1220 opposite the first edge 1218 and extending from the first end 1214 to the second end 1216. In some embodiments, the active portion 1212 includes a first surface 1222 and a second surface 1224 opposite the first surface 1222. In some embodiments, the jumper module 1210 is configured to be installed on a roof deck. In some embodiments, the jumper module 1210 is installed on the roof deck by a plurality of fasteners. In some embodiments, the active portion 1212 includes a first zone 1226 (nail zone) that extends from the first end 1214 to the second end 1216 and from the first edge 1218 to a location intermediate the first edge 1218 and the second edge 1220. In some embodiments, the first zone 1226 is configured to receive the plurality of fasteners. In some embodiments, the plurality of fasteners is installed through the first zone 1226. In some embodiments, the plurality of fasteners includes a plurality of nails. In some embodiments, the plurality of fasteners includes a plurality of rivets. In some embodiments, the plurality of fasteners includes a plurality of staples. In some embodiments, the plurality of fasteners includes a plurality of screws.


In some embodiments, the jumper module 1210 is installed on the roof deck by an adhesive 1228. In some embodiments, the adhesive 1228 is adhered to the head lap portion 1113 of a photovoltaic module 1110 below the jumper module 1210. In some embodiments, the adhesive 1228 is adhered directly to the roof deck. In some embodiments, the adhesive 1228 is adhered to an underlayment. In some embodiments, the underlayment is adhered directly to the roof deck. In some embodiments, the adhesive 1228 includes at least one adhesive strip. In some embodiments, the adhesive 1228 includes a plurality of adhesive strips. In some embodiments, the adhesive 1228 is located on the second surface 1224. In some embodiments, the adhesive 1228 is located proximate to the first edge 1218. In some embodiments, the adhesive 1228 is located intermediate the first edge 1218 and the second edge 1220. In some embodiments, the adhesive 1228 is located proximate to the second edge 1220. In some embodiments, the adhesive 1228 is a peel and stick film sheet. In some embodiments, the peel and stick film sheet includes at least one sheet of film removably attached to the second surface 1224. In some embodiments, the peel and stick film sheet is composed of EverGuard Freedom HW peel and stick membrane manufactured by GAF. In some embodiments, the adhesive 1228 is covered by a release liner. In some embodiments, the release liner includes paper with a silicone coating. In some embodiments, the adhesive 1228 includes polyvinyl butyrate, butyl, acrylic, silicone, or polycarbonate. In some embodiments, the adhesive 1228 includes pressure sensitive adhesives.


Still referring to FIGS. 4 through 9, in some embodiments, the jumper module 1210 includes a first side lap 1230 located the first end 1214. In some embodiments, the jumper module 1210 includes a second side lap 1232 located at the second end 1216. In some embodiments, the first side lap 1230 includes a surface 1234. In some embodiments, the second side lap 1232 includes a surface 1236. In some embodiments, the first side lap 1230 is square in shape. In some embodiments, the first side lap 1230 is rectangular in shape. In some embodiments, the first side lap 1230 includes other suitable shapes and sizes. In some embodiments, the second side lap 1232 is square in shape. In some embodiments, the second side lap 1232 is rectangular in shape. In some embodiments, the second side lap 1232 includes other suitable shapes and sizes. In some embodiments, the first side lap 1230 is integral with the active portion 1212. In some embodiments, the first side lap 1230 is a separate component from the active portion 1212. In some embodiments, the first side lap 1230 is attached to the active portion 1212. In some embodiments, the second side lap 1232 is integral with the active portion 1212. In some embodiments, the second side lap 1232 is a separate component from the active portion 1212. In some embodiments, the second side lap 1232 is attached to the active portion 1212.


In some embodiments, the first side lap 1230 includes a first width W1. In some embodiments, the first width W1 extends from the second edge 1220 to a location intermediate the first edge 1218 and the second edge 1220. In some embodiments, the second side lap 1232 includes a second width W2. In some embodiments, the second width W2 extends from the first edge 1218 to the second edge 1220. In some embodiments, the width W1 of the first side lap 1230 is approximately half the width W2 of the second side lap 1232. In some embodiments, the width W1 of the first side lap 1230 is 70 mm to 120 mm. In some embodiments, the width W2 of the second side lap 1232 is 70 mm to 200 mm.


In some embodiments, the jumper module 1210 includes a first junction box 1238. In some embodiments, the first junction box 1238 is located on the surface 1234 of the first side lap 1230. In some embodiments, the first junction box 1238 is attached to the surface 1234 by an adhesive. In some embodiments, the first junction box 1238 is encapsulated by the first side lap 1230. In some embodiments, the jumper module 1210 includes a second junction box 1240. In some embodiments, the second junction box 1240 is located on the surface 1236 of the second side lap 1232. In some embodiments, the second junction box 1240 is attached to the surface 1236 by an adhesive. In some embodiments, the second junction box 1240 is encapsulated by the second side lap 1232. In certain embodiments, other electronic and electrical components may be attached to the first side lap 1230 and/or the second side lap 1232. In some embodiments, non-limiting examples of such electronic and electrical components include an electrical connector, a rapid shutdown device, an optimizer, and a microinverter. In some embodiments, the electrical connector includes a flat wire connector.


Referring to FIGS. 8 and 9, in some embodiments, the active portion 1212 is a laminated structure. In some embodiments, the active portion 1212 includes electrical bussing 1242, an encapsulant 1244 encapsulating the electrical bussing 1242, a frontsheet 1246 juxtaposed with the encapsulant 1244, and a backsheet 1248 juxtaposed with the encapsulant 1244. As used herein, the terms “encapsulating” and “encapsulates” mean to partially or fully envelope or enclose, and with respect to certain embodiments of the jumper module 1210, the electrical bussing 1242 is fully enveloped by or enclosed within the encapsulant 1244, or partially enveloped by or enclosed within the encapsulant 1244. In some embodiments, the encapsulant 1244 includes a first layer 1244a and a second layer 1244b. In some embodiments, the encapsulant 1244 includes a structure and/or materials that is similar to the encapsulant 1114.


In some embodiments, the electrical bussing 1242 includes a first bus ribbon 1250 extending from a first end 1252 proximate to the first end 1214 and a second end 1254 proximate to the second end 1216. In some embodiments, the first bus ribbon 1250 includes a first terminal 1256 located at the first end 1252 and a second terminal 1258 located at the second end 1254. In some embodiments, the first terminal 1256 is a positive terminal, while the second terminal 1258 is a negative terminal. In some embodiments, the first terminal 1256 is a negative terminal, while the second terminal 1258 is a positive terminal.


In some embodiments, the electrical bussing 1242 includes a second bus ribbon 1260 extending from a first end 1262 proximate to the first end 1214 and a second end 1264 proximate to the second end 1216. In some embodiments, the second bus ribbon 1260 includes a first terminal 1266 located at the first end 1262 and a second terminal 1268 located at the second end 1264. In some embodiments, the first terminal 1266 is a negative terminal, while the second terminal 1268 is a positive terminal. In some embodiments, the first terminal 1266 is a positive terminal, while the second terminal 1268 is a negative terminal.


In some embodiments, the encapsulant 1244 may be composed of polyolefins, ethyl vinyl acetates, ionomers, silicones, poly vinyl butyral, epoxies, polyurethanes, or combinations/hybrids thereof. In some embodiments, the encapsulant 1244 is composed of thermosetting polyolefin.


In some embodiments, the encapsulant 1244 has a thickness of 0.4 mm to 1.8 mm. In some embodiments, the encapsulant 1244 has a thickness similar to those of the encapsulant 1114 of the photovoltaic module 1110 described above. In some embodiments, the first layer 1244a of the encapsulant 1244 has a thickness of 0.2 mm to 0.9 mm. In some embodiments, the first layer 1244a of the encapsulant 1244 has a thickness similar to those of the first layer 1114a of the encapsulant 1114 described above. In some embodiments, the second layer 1244b of the encapsulant 1244 has a thickness of 0.2 mm to 0.9 mm. In some embodiments, the second layer 1244b of the encapsulant 1244 has a thickness similar to those of the second layer 1114b of the encapsulant 1114 described above. In some embodiments, the thickness of the first layer 1244a is equal to the thickness of the second layer 1244b. In some embodiments, the thickness of the first layer 1244a is different from the thickness of the second layer 1244b.


In some embodiments, the first layer 1244a is white in color. In some embodiments, the second layer 1244b is white in color.


In some embodiments, the frontsheet 1246 includes an upper layer 1270 and a polymer layer 1272 attached to the upper layer 1270. In some embodiments, the frontsheet 1246 is juxtaposed with the first layer 1244a of the encapsulant 1244. In some embodiments, the polymer layer 1272 is attached to the upper layer 1270 by an adhesive layer 1274. In some embodiments, the adhesive layer 1274 may include polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the adhesive layer 1274 may include pressure sensitive adhesives. In some embodiments, the polymer layer 1272 is attached to the upper layer 1270 by thermal bonding. In some embodiments, the frontsheet 1246 includes at least one of the upper layer 1270 or the polymer layer 1272. In some embodiments, the upper layer 1270 is an upper, sun facing-side surface of the jumper module 1210.


In some embodiments, the upper layer 1270 is composed of thermoplastic polyolefin (TPO). In some embodiments, the upper layer 1270 includes a single ply TPO roofing membrane. In some embodiments, the upper layer 1270 is colored black. In some embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety.


In some embodiments, the upper layer 1270 is composed of polyvinyl chloride (PVC). In some embodiments, the upper layer 1270 is composed of ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the upper layer 1270 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the upper layer 1270 is white in color. In some embodiments, the upper layer 1270 has a thickness of 2.5 mm to 4 mm.


In some embodiments, the adhesive layer 1274 is composed of thermosetting polyolefin, thermosetting polyolefin encapsulant material, thermosetting ethylene-vinyl acetate (EVA), EVA encapsulants, thermoplastic olefin, thermoplastic polyolefin (TPO) or hybrids/combinations thereof. In some embodiments, the adhesive layer 1274 is white in color.


In some embodiments, the adhesive layer 1274 has a thickness of 1 μm to 900 μm. In some embodiments, the adhesive layer 1274 has a thickness similar to those of the first adhesive layer 1126 of the photovoltaic module 1110 described above. In some embodiments, the adhesive layer 1274 has a structure and/or is composed of materials similar to the first adhesive layer 1126.


In some embodiments, the frontsheet 1246 does not include the upper layer 1270 or the adhesive layer 1274.


In some embodiments, the polymer layer 1272 is composed of a fluoropolymer. In certain embodiments, the fluoropolymer may be ethylene tetrafluoroethylene (ETFE), fluoropolymer is polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), polyvinyl fluoride (PVF), or blends thereof. In some embodiments, the frontsheet is composed of fluoropolymers, acrylics, polyesters, silicones, polycarbonates, or combinations thereof. In some embodiments, the polymer layer 1272 is composed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), polyphenylsulfone (PPSU), polyolefin, cyclic olefin copolymers (CPCs), or polyimide. In some embodiments, the polymer layer 1272 is composed of a crosslinked polymeric material. In some embodiments, 50% to 99% of the polymer chains of the polymeric material are crosslinked. In some embodiments, the polymer layer 1272 is white in color. In some embodiments, the polymer layer 1272 has a thickness of 0.01 mm to 0.5 mm.


In some embodiments, the backsheet 1248 includes a lower layer 1276. In some embodiments, the backsheet 1248 includes a polymer layer 1278. In some embodiments, the lower layer 1276 and the polymer layer 1278 are attached to one another by an adhesive layer 1280. In some embodiments, the adhesive layer 1280 may include polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the adhesive layer 1280 may include pressure sensitive adhesives. In some embodiments, the adhesive layer 1280 is composed of thermosetting polyolefin, thermosetting polyolefin encapsulant material, thermosetting ethylene-vinyl acetate (EVA), EVA encapsulants, thermoplastic olefin, thermoplastic polyolefin (TPO) or hybrids/combinations thereof. In some embodiments, the adhesive layer 1280 is white in color. In some embodiments, the lower layer 1276 is attached to the polymer layer 1278 by thermal bonding. In some embodiments, the backsheet 1248 includes at least one of the lower layer 1276 or the polymer layer 1278. In some embodiments, the lower layer 1276 is a lower surface of the jumper module 1210 configured to face a roof deck on which the jumper module 1210 is installed.


In some embodiments, the lower layer 1276 is composed of thermoplastic polyolefin (TPO). In some embodiments, the lower layer 1276 includes a single ply TPO roofing membrane. In some embodiments, the lower layer 1276 is colored black. In some embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety.


In some embodiments, the lower layer 1276 is composed of polyvinyl chloride. In some embodiments, the lower layer 1276 is composed of ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the lower layer 1276 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the lower layer 1276 is white in color. In some embodiments, the lower layer 1276 has a thickness of 2.5 mm to 4 mm.


In some embodiments, the backsheet 1248 does not include the lower layer 1276 or the adhesive layer 1280. In some embodiments, the frontsheet 1246 does not include the upper layer 1270 or the adhesive layer 1274 and the backsheet 1248 does not include the lower layer 1276 or the adhesive layer 1280.


In some embodiments, the polymer layer 1278 is composed of a fluoropolymer. In certain embodiments, the fluoropolymer may be ethylene tetrafluoroethylene (ETFE), fluoropolymer is polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), polyvinyl fluoride (PVF), or blends thereof. In some embodiments, the frontsheet is composed of fluoropolymers, acrylics, polyesters, silicones, polycarbonates, or combinations thereof. In some embodiments, the polymer layer 1278 is composed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), polyphenylsulfone (PPSU), polyolefin, cyclic olefin copolymers (CPCs), or polyimide. In some embodiments, the polymer layer 1278 is composed of a crosslinked polymeric material. In some embodiments, 50% to 99% of the polymer chains of the polymeric material are crosslinked. In some embodiments, the polymer layer 1278 is white in color. In some embodiments, the polymer layer 1278 has a thickness of 0.01 mm to 0.5 mm. In some embodiments, the adhesive layer 1280 has a thickness of 1 μm to 900 μm. In some embodiments, the jumper module 1210 has a thickness of 1 mm to 10 mm.


In some embodiments, the jumper module 1210 is moisture resistant. As used herein, the term “moisture resistant” means having a water transmission rate of less than or equal to 0.05 U.S. perms, as measured by ASTM E 96, Procedure B—Standard Test Methods for Water Vapor Transmission of Materials. In some embodiments, the jumper module 1210 withstands walking loads/step resistance that conforms to standards under UL 3741 test standards (UL Standard for Safety Photovoltaic Hazard Control). In some embodiments, the jumper module 1210 includes an axe impact resistance that conforms to standards under UL 3741 test standards. In some embodiments, the jumper module 1210 includes a body fall resistance that conforms to standards under UL 3741 test standards.


Referring to FIG. 10, in some embodiments, one of the jumper module 1210a is configured to overlay another one of the jumper module 1210b. In some embodiments, the first side lap 1230 of the jumper module 1210a overlays the second side lap 1232 of the jumper module 1210b. In some embodiments, the first side lap 1230 of the jumper module 1210a is attached to the second side lap 1232 of the jumper module 1210b. In some embodiments, the first side lap 1230 of the jumper module 1210a is attached to the second side lap 1232 of the jumper module 1210b by an adhesive. In some embodiments, the first side lap 1230 of the jumper module 1210a is attached to the second side lap 1232 of the jumper module 1210b by thermal bonding. In some embodiments, the first side lap 1230 of the jumper module 1210a is attached to the second side lap 1232 of the jumper module 1210b by ultrasonic welding. In some embodiments, the first side lap 1230 of the jumper module 1210a is attached to the second side lap 1232 of the jumper module 1210b by at least one fastener. In some embodiments, the first junction box 1238 of the jumper module 1210a is positioned proximate to the second junction box 1240 of the jumper module 1210b. In some embodiments, the first junction box 1238 and the second junction box 1240 are arranged in a linear array.


Referring to FIG. 11, in some embodiments, a photovoltaic system 1400 includes an underlayment layer 1404 installed on a roof deck 1402. In some embodiments, the photovoltaic system 1400 includes a plurality of the photovoltaic modules 1110. In some embodiments, the plurality of photovoltaic modules 1110 overlay the underlayment layer 1404. In some embodiments, the photovoltaic modules 1110 are arranged in an array on the roof deck 1402. In some embodiments, the array of the photovoltaic modules 1110 includes subarrays S1, S2. In certain embodiments, the array includes more than the two subarrays S1, S2. In some embodiments, the array includes a single array S1. In some embodiments, each of the subarrays S1, S2 include a plurality of rows R of the photovoltaic modules 1110.


In some embodiments, the photovoltaic system 1400 includes at least one indicator 1500. In some embodiments, the at least one indicator 1500 is electrically connected to the photovoltaic modules 1110. In some embodiments, the at least one indicator 1500 is configured to visually indicate at least one electrically active component of the photovoltaic system 1400. In some embodiments, the at least one indicator 1500 includes a plurality of indicators 1500. In some embodiments, the indicator 1500 is a visible indicator. In some embodiments, the visible indicator is an illuminated light source. In some embodiments, the illuminated light source is a light emitting diode (LED). In some embodiments, the light emitting diode is a colored light emitting diode (LED). In some embodiments, the indicator 1500 is configured to provide a steady or constant illumination. In some embodiments, the indicator 1500 is configured to provide intermittent illumination (e.g., a flashing light). In some embodiments, the intermittent illumination is patterned. In some embodiments, the intermittent illumination is random. In some embodiments, the voltage difference (between Voc and Vmp) is utilized to toggle a state machine and turn on or off the indicator 1500. In some embodiments, locations of the at least one indicator 1500 is described hereinbelow.


Referring to FIGS. 12A and 12B, in some embodiments, the reveal portion 1111 of one 1110a of the photovoltaic modules 1110 in the subarray S1 overlays the head lap portion 1113 of an adjacent another one of the photovoltaic modules 1110b of the subarray S1. In some embodiments, at least a portion of the first side lap 1115 of the one of the photovoltaic modules 1110a overlays at least a portion of the first side lap 1115 of the another one of the photovoltaic modules 1110b. In some embodiments, at least a portion of the second side lap 1117 of the one of the photovoltaic modules 1110a overlays at least a portion of the second side lap 1117 of the another one of the photovoltaic modules 1110b. In some embodiments, the wire cover bracket 1300 of the photovoltaic module 1110a overlaps the wire cover bracket 1300 of the photovoltaic module 1110b.


In some embodiments, the overlay of the first side laps 1115 form at least one wireway 1422. In some embodiments, the at least one wireway 1422 includes a plurality of wireways. In some embodiments, the at least one wireway 1422 includes a plurality of the wire cover brackets 1300. In some embodiments, the wire cover brackets 1300 are aligned in a column.


Referring to FIGS. 11 and 13, in some embodiments, at least one of the cover 1304 is attached to at least a corresponding one of the wire cover brackets 1300. In some embodiments, the at least one cover 1304 is removably attached to at least a corresponding one of the wire cover brackets 1300. In some embodiments, one of the covers 1304 is attached to a plurality of the wire cover brackets 1300. In some embodiments, the at least one cover 1304 includes a plurality of covers 1304. In some embodiments, each of the plurality of covers 1304 is configured to removably interlock with one another.


With reference to FIG. 11, in some embodiments, the first side lap 1115 of one of the photovoltaic modules 1110 in the subarray S2 overlays the second side lap 1117 of an adjacent another one of the photovoltaic modules 1110 in the subarray S1 in the same one of the rows R. In some embodiments, one of the jumper modules 1210 overlays an uppermost one of the photovoltaic modules 1110a in a column of the subarray S1. In some embodiments, the active portion 1212 of the jumper module 1210 overlays the head lap portion 1113 of the photovoltaic module 1110a. In some embodiments, the active portion 1212 of the jumper module 1210 overlays a portion of the head lap portion 1113 of the photovoltaic module 1110a. In some embodiments, the active portion 1212 of the jumper module 1210 overlays the entirety of the head lap portion 1113 of the photovoltaic module 1110a. In some embodiments, the first side lap 1230 of the jumper module 1210 aligns with the first side lap 1115 of the photovoltaic module 1110a.


In some embodiments, the second side lap 1232 of the jumper module 1210 aligns with the second side lap 1117 of the photovoltaic module 1110a. In some embodiments, the first junction box 1238 of the jumper module 1210 is electrically connected to a junction box 1423 of the photovoltaic module 1110a. In some embodiments, the second junction box 1240 of the jumper module 1210 is electrically connected to the junction box 1423 of another of the photovoltaic modules 1110b. In some embodiments, the jumper module 1210 electrically connects the subarrays S1, S2 of the photovoltaic modules 1110 within the array of the photovoltaic system 1400. In some embodiments, the first bus ribbon 1250 and the second bus ribbon 1260 electrically connect the subarrays of the photovoltaic modules 1110 with one another. In some embodiments, the first bus ribbon 1250 and the second bus ribbon 1260 electrically connect the junction boxes 1423 of the first subarray S1 of the photovoltaic modules 1110 with the junction boxes 1423 of the second subarray S2 of the photovoltaic modules 1110.


In some embodiments, the jumper module 1210 is coplanar with the plurality of photovoltaic modules 1110. As used herein, the term “coplanar” means the jumper module 1210 and the plurality of photovoltaic modules 1110 are positioned and extend within the same plane, or the jumper module 1210 is positioned and extends in a first plane, and the plurality of photovoltaic modules 1110 is positioned and extends within a second plane that is offset from the first plane of no more than ten percent of a height measured from the roof deck 1402 to an upper surface of the jumper module 1210.


In some embodiments, a plurality of step flaps 1426 is installed adjacent to one of the subarrays S1 of the photovoltaic modules 1110. In some embodiments, roofing shingles are configured to overlay the step flaps 1426. In some embodiments, the roofing shingles are asphalt shingles. In some embodiments, the roofing shingles are electrically inactive solar shingles. In some embodiments, a roofing shingle 1427 overlays the active portion 1212 of the jumper module 1210. In some embodiments, another one of the jumper module 1210 overlays the jumper module 1210 of the first subarray, as shown in FIG. 11. In some embodiments, the roofing shingle 1427 conceals the jumper modules 1210. In some embodiments, the roofing shingle 1427 is a watershedding layer. In some embodiments, the roofing shingle 1427 is an asphalt shingle. In some embodiments, the roofing shingle 1427 is located at least 36 inches away from the roof ridge.


In some embodiments, the second side lap 1117 of at least one of the photovoltaic modules 1110 of the subarray S2 overlaps a roofing shingle. In some embodiments, the roofing shingle is an asphalt shingle. In some embodiments, the second layer 1132 of the backsheet 1128 is attached to the roofing shingle by an adhesive. In some embodiments, the adhesive is a butyl adhesive. In some embodiments, a fleece layer and an adhesive are utilized between the second layer 1132 of the backsheet 1128 and the roofing shingle to secure the bonding thereof. In some embodiments, the second layer 1132 of the backsheet 1128 is attached to the roofing shingle by plasma treatment. In some embodiments, the second layer 1132 of the backsheet 1128 is attached to the roofing shingle by a combination of any of the adhesive, the fleece layer and/or plasma treatment. In some embodiments, one or more roofing shingle overlays the second side laps 1117 of the photovoltaic modules 1110 of the subarray S2. In some embodiments, the roofing shingle is an asphalt shingle.


Referring to FIGS. 11, 14 and 15, in some embodiments, the photovoltaic system 1400 includes a first flashing base 1428. In some embodiments, the first flashing base 1428 includes a flat base portion 1431 having a first surface and a second surface opposite the first surface, an aperture 1433 extending from the first surface to the second surface, and a sidewall 1435 extending from the first surface to the second surface and surrounding the aperture 1433. In some embodiments, the base portion 1431 is rectangular in shape. In some embodiments, the base portion 1431 is square in shape. In some embodiments, the base portion 1431 is trapezoidal in shape. In some embodiments, the base portion 1431 is circular in shape. In some embodiments, the sidewall 1435 includes flanged portions 1437 extending obliquely and inwardly. In some embodiments, an opening 1439 is located proximate to a lower end 1441 of the first flashing base 1428. In some embodiments, the aperture 1433 is substantially rectangular in shape. In some embodiments, the aperture 1433 extends from a first end 1443 located proximate to the lower end 1441 of the first flashing base 1428 and a second end 1445 located intermediate the lower end 1441 and an upper end 1447 of the first flashing base 1428. In some embodiments, the aperture 1433 is sized and shaped to receive at least one electrical component therein. In some embodiments, the second end 1445 includes a width that is wider than a width of the first end 1443. In some embodiments, the wider width of the second end 1445 is sized and shaped to receive relatively larger sized electrical components. In some embodiments, the at least one electrical component is the junction box 1238 of the jumper module 1210. In some embodiments, the lower end 1441 of the first flashing base 1428 includes a tab 1449. In some embodiments, screw tabs 1451 are located on the flanged portions 1437 and/or an upper end of the sidewall 1435.


In some embodiments, the first flashing base 1428 is configured to be installed on the roof deck 1402. In some embodiments, the first flashing base 1428 is installed at the top of the wireway 1422 of the subarray S1. In some embodiments, the sidewall 1435, the aperture 1433 and the flanged portions 1437 of the first flashing base 1428 are aligned with the wire cover bracket 1300 of the photovoltaic module 1110 in the uppermost row R of the subarray S1. In some embodiments, the tab 1449 is sized and shaped to contact an end of the wire cover bracket 1300.


In some embodiments, a first flashing base 1428 overlays the first side lap 1230 of the jumper module 1210. In some embodiments, the first flashing base is 1428 is configured to be installed to the roof deck 1402 by at least one fastener. In some embodiments, the base portion 1431 is configured to receive the at least one fastener. In some embodiments, the at least one fastener includes a plurality of fasteners. In some embodiments, the plurality of fasteners is roofing nails. In some embodiments, the first flashing base is 1428 is configured to be installed to the roof deck by an adhesive. In some embodiments, the first flashing base 1428 overlays at least one of the step flaps 1426.


In some embodiments, the photovoltaic system 1400 includes a second flashing base 1430. In some embodiments, the second flashing base 1430 has a structure and function similar to those of the first flashing base 1428, with certain differences. In some embodiments, the second flashing base 1430 overlays the second side lap 1232 of the jumper module 1210. In some embodiments, the second flashing base 1430 is installed on the roof deck and is aligned with the wireway 1422 of the second subarray S2 in a manner similar to that of the first flashing base 1428.


In some embodiments, one of the roofing shingles 1427 overlays the base portion 1431 of the first flashing base 1428 on at least one side of the sidewall 1435 thereof. In some embodiments, each of a plurality of the roofing shingles 1427 overlays the base portion 1431 of the first flashing base 1428 on opposite sides of the sidewall 1435. In some embodiments, one of the roofing shingles 1427 overlays the base portion 1431 of the second flashing base 1430 on at least one side of the sidewall 1435 thereof. In some embodiments, each of a plurality of the roofing shingles 1427 overlays the base portion 1431 of the second flashing base 1430 on opposite sides of the sidewall 1435. In some embodiments, the roofing shingles 1427 are asphalt shingles. In some embodiments, the roofing shingles 1427 are composition shingles. In some embodiments, the roofing shingles 1427 are non-asphaltic shingles. In some embodiments, the roofing shingles 1427 are composed of a polymer. In some embodiments, the roofing shingles 1427 are composed of thermoplastic polyolefin (TPO).


Referring to FIGS. 11 and 16A and 16B, in some embodiments, a transition box 1432 is installed on the first flashing base 1428. In some embodiments, the transition box 1432 includes a housing 1453 having an interior portion 1455. In some embodiments, the interior portion includes at least one base 1457. In some embodiments, the at least one base 1457 is configured to receive an electrical component mounted thereto. In some embodiments, the at least one base 1457 includes a plurality of the bases 1457. In some embodiments, the interior portion 1455 includes an aperture 1459 that extends through a bottom portion of the housing 1453. In some embodiments, a cover portion 1461 extends outwardly from a lower wall 1463 of the housing 1453. In some embodiments, the cover portion 1461 includes flanged walls 1465. In some embodiments, the flanged walls 1465 are angled. In some embodiments, the cover portion includes tabs 1467 extending outwardly from the free end thereof.


In some embodiments, the transition box 1432 is installed on the first flashing base 1428 by fasteners. In some embodiments, the fasteners are screws that engage corresponding ones of the screw tabs 1451 of the first flashing base 1428. In some embodiments, the transition box 1432 is installed on the first flashing base 1428 by an adhesive. In some embodiments, the transition box 1432 is installed on the first flashing base 1428 by snap tabs. In some embodiments, the cover portion 1461 is sized and shaped to cover at least a portion of the sidewall 1435 and at least a portion of the aperture 1433 of the first flashing base 1428. In some embodiments, the flanged walls 1465 of the cover portion 1461 are juxtaposed with the flanged portions 1437 of the first flashing base 1428. In some embodiments, the tabs 1467 of the cover portion 1461 engage the cover 1304 of the wire cover bracket 1300. In some embodiments, the cover portion 1461 slidably engages the cover 1304 of the wire cover bracket 1300, such that a lower end of the cover portion 1461 is juxtaposed with an upper end of the cover 1304. In some embodiments, the cover portion 1461 of the transition box 1432 covers the first junction box 1238 of the jumper module 1210.


In some embodiments, the housing 1453 of the transition box 1432 is sized and shaped to cover at least another portion of the sidewall 1435 and at least a portion of the aperture 1433 of the first flashing base 1428. In some embodiments, at least a portion of the aperture 1459 of the transition box 1432 is substantially aligned with the aperture 1433 of the first flashing base 1428. In some embodiments, the aperture 1459 and the aperture 1433 substantially align with an aperture or penetration within the roof deck 1402. In some embodiments, the transition box 1432 covers the aperture or penetration in the roof deck 1402 and is used as part of a pathway to run electrical wiring therethrough. In some embodiments, a passthrough 1460 is located within the aperture 1459 and the aperture 1433. In some embodiments, the passthrough 1460 is inserted within the aperture or penetration of the roof deck 1402. In some embodiments, the passthrough 1460 is configured to receive an electrical wire or cable to facilitate its insertion through the roof deck aperture an into the associated structure.


Referring to FIG. 17, in some embodiments, the transition box 1432 includes power electronics for the photovoltaic system 1400. In some embodiments, the transition box 1432 includes a rapid shutdown device (RSD). In some embodiments, the transition box 1432 includes a middle circuit interrupter (MCI) 1469. In some embodiments, the transition box includes a splice box 1471. In some embodiments, the transition box 1432 houses electrical wiring for the photovoltaic system 1400. In some embodiments, the electrical wiring includes THHN electrical wiring. In some embodiments, the THHN electrical wire is electrically connected to an inverter. In some embodiments, the rapid shutdown device (RSD) is located within 1 foot of the subarray S1. In some embodiments, the inverter drives the output voltage of the subarrays S1, S2 to a point where the inverter can extract the most power (Vmp). In some embodiments, the inverter drives the output voltage of the subarrays S1, S2 of 80% to 85% of the maximum voltage or open circuit voltage (Voc) of the photovoltaic system 1400. In some embodiments, Voc is greater than Vmp. In some embodiments, the inverter is configured to be shut down by a user by turning off a DC switch at the inverter. In some embodiments, the inverter is configured to be shut down by a user by turning off an AC breaker. In some embodiments, when the inverter is shut down, home-run cables between the subarrays S1, S2 and the inverter are de-energized. In some embodiments, the home-run cables between the subarrays S1, S2 and the inverter are de-energized to less than 30 volts in less than 30 seconds. In some embodiments, the photovoltaic modules 1110a, 1110b are in their open circuit voltage condition (Voc) with no current flowing.


Referring to FIG. 18, in some embodiments, the transition box 1432 includes a cover 1434. In some embodiments, the cover 1434 is removably attached to the housing 1453. In some embodiments, the cover 1434 includes an interior surface. In some embodiments, the interior surface includes an interior wall structure that is configured to provide structural integrity and strength to the cover 1434. In some embodiments, the interior wall structure is configured to maintain its structural integrity due to hail impacts. In some embodiments, the interior wall structure is a honeycomb structure. In some embodiments, a sidewall 1470 of the transition box 1432 is configured to have an aperture formed therein, either by drilling or cutting. In some embodiments, the aperture is sized and shaped to receive a conduit connected to the splice box 1471. In some embodiments, the conduit is configured to house and run electrical wiring across the roof.



FIGS. 18A through 18D show other embodiments of a transition box 1432A.


Referring to FIG. 19, in some embodiments, the second flashing base 1430 includes a cover 1473. In some embodiments, the cover 1473 is sized and shaped to cover the aperture 1433 of the second flashing base 1430. In some embodiments, flanged walls 1475 of the cover 1473 are juxtaposed with the flanged portions 1437 of the second flashing base 1430. In some embodiments, the cover portion 1461 slidably engages the cover 1304 of the wire cover bracket 1300, such that a lower end of the cover 1473 is juxtaposed with an upper end of the cover 1304. In some embodiments, the cover 1473 covers the second junction box 1240 of the jumper module 1210.


Referring to FIG. 20, in some embodiments, the photovoltaic system 1400 is installed on the roof deck 1402. In some embodiments, an additional, non-active (i.e., “dummy”) wireway 1480 and associated cover 1304, similar to the at least one wireway 1422 and the associated covers 1304, may be installed on the end of the second subarray S2 for symmetry and aesthetics. In some embodiments, the non-active wireway 1480 is installed over the second side laps 1117 of the photovoltaic modules 1110b. In some embodiments, the non-active wireway 1480 does not include any electrical components or electrical wiring. In some embodiments, the non-active wireway 1480 includes electrical components and/or electrical wiring. In some embodiments, the non-active wireway 1480 is optional and need not be included. In some embodiments, roofing shingles overlay the second side laps 1117 of the photovoltaic modules 1110b of the second subarray S2. In some embodiments, it should be understood that the non-active wireway 1480 or roofing shingles may overlay the second side laps 1117 of the photovoltaic modules 1110a of the first subarray S1 in the absence of the second subarray S2.


Referring to FIGS. 17 and 20, in some embodiments, at least one of the electronic component in the transition box 1432 includes at least one of the indicator 1500. In some embodiments, the rapid shutdown device (RSD) include at least one of the indicator 1500. In some embodiments, the middle circuit interrupter (MCI) 1469 includes at least one of the indicator 1500. In some embodiments, the splice box 1471 includes at least one of the indicator 1500. In some embodiments, the cover 1434 of the transition box 1432 includes a transparent section. In some embodiments, the transparent section of the cover 1434 is configured to enable visible perception of the at least one indicator 1500 when it is active (e.g., illuminated). In some embodiments, the indicator 1500 is not illuminated during normal operation of the photovoltaic system 1400. In some embodiments, the indicator 1500 is configured to turn on and illuminate when the rapid shutdown device is triggered. In some embodiments, the indicator 1500 is configured to turn on and illuminate when the inverter is shut down. In some embodiments, the indicator 1500 is configured to turn on and illuminate when the electrical voltage of the photovoltaic system 1400 is less than or equal to the predetermined voltage level. In some embodiments, the predetermined voltage level is 0.1 volt to 30 volts. In some embodiments, the indicator 1500 is configured to turn on and illuminate when a loss of a power line communication (PLC) signal to the rapid shutdown device is detected.


In some embodiments, the indicator 1500 is configured to show different status colors. In some embodiments, the indicator 1500 is configured to show different status colors, each of which depend on a measurable condition of either or both of the subarrays S1, S2. In some embodiments, the indicator 1500 is configured to show a first color when a voltage of the subarray S1 is a first value above a predetermined voltage level. In some embodiments, the first color is green. In some embodiments, the indicator 1500 is configured to show a second color when a voltage of the subarray S1 is above below a predetermined voltage level by at least a second value. In some embodiments, the second color is yellow. In some embodiments, the indicator 1500 is configured to show a third color when a voltage of the subarray S1 is above below a predetermined voltage level by at least a third value. In some embodiments, the third color is red. In some embodiments, a status of the indicator 1500 is communicated to a user. In some embodiments, the third color is red.


In some embodiments, a status of the indicator 1500 is communicated electronically a user. In some embodiments, the third color is red. In some embodiments, the indicator 1500 is configured to pulse out a code. In some embodiments, the code is representative of the status of the voltage of the subarray S1. In some embodiments, the indicator 1500 is configured to pulse out a first code when a voltage of the subarray S1 is above a predetermined voltage level by a first value. In some embodiments, the indicator 1500 is configured to pulse out a second code when a voltage of the subarray S1 is above below a predetermined voltage level by at least a second value. In some embodiments, the indicator 1500 is configured to pulse out a third code when a voltage of the subarray S1 is above below a predetermined voltage level by at least a third value. In some embodiments, a status of the indicator 1500 is communicated to an electronic device of a user. In some embodiments, the electronic device is a computer device. In some embodiments, the electronic device is a personal computer, laptop computer, smartphone, computer tablet, or a smart watch. It is understood that the foregoing function of the indicator 1500 may be applied to the subarray S2. In some embodiments, the predetermined voltage level is programmable by a user. In some embodiments, the predetermined voltage level is field programmable by a user.


In some embodiments, the indicators 1500 remains in an inactive (e.g., off or dark) states when the inverter is operating within normal parameters. In some embodiments, when the array S1, S2 are not activated and not powered during normal operation (e.g., at night), the indicators 1500 remain in their inactive state.


In some embodiments, at least one of the indicators 1500 is activated when the at least one bypass diode 1123 fails. In some embodiments, the failure of the at least one bypass diode 1123 may be caused by a long period at high current and high temperature when they are actively bypassing shaded cells 1112, or due to their peak inverse voltage rating being exceeded such as when a nearby lightning strike occurs. In some embodiments, the failed at least one bypass diode 1123 results in a closed circuit with the connected solar cells 1112. In some embodiments, the indicator 1500 is configured to be electrically connected to the closed circuit and activate.



FIG. 20A illustrates another embodiment of a photovoltaic system including a plurality of the indicators 1500.



FIG. 21 illustrates a block-diagram of some embodiments of the indicators 1500 integrated with a rapid shutdown system 1600. In some embodiments, the rapid shutdown system 1600 includes an emergency shutdown receiver 1602, an emergency shutdown transmitter 1604 electrically connected to the emergency shutdown receiver 1602, a shutdown power circuit 1606 electrically connected to the emergency shutdown receiver 1602, and a power supply 1608, all of which are electrically connected to a photovoltaic array (PV array) 1610 comprising a plurality of photovoltaic modules. In some embodiments, the rapid shutdown system 1600 includes an indicator circuit that comprises at least one indicator 1500 and indicator drivers 1612. In some embodiments, the indicator circuit is electrically connected to the emergency shutdown receiver 1602 and the shutdown power circuit 1606. In some embodiments, the indicator circuit is powered by the power supply 1608. In some embodiments, the power supply 1608 is a photovoltaic module. In some embodiment, the power supply 1608 is an independent source of power. In some embodiments, the power supply 1608 is an energy storage device. In some embodiments, the power supply 1608 is at least one battery. In some embodiments, the emergency shutdown receiver 1602 detects a shutdown command or senses a lack of a signal indicating normal operation. In some embodiments, the signal is a power line communication signal. In some embodiments, a shutdown code or word is transmitted by the emergency shutdown transmitter 1604 to the emergency shutdown receiver 1602. In some embodiments, the transmission of the shutdown code or word is via wired communication. In some embodiments, the transmission of the shutdown code or word is via wireless communication. In some embodiments, a user initiates a turn off state. In some embodiments, the indicator circuit utilizes the turnoff signal and activates the indicators 1500.



FIG. 22 illustrates a block-diagram of some embodiments of the indicators 1500 as part of a stand-alone system 1700 independent of the rapid shutdown device. In some embodiments, the system 1700 includes an indicator driver 1702, an indicator receiver circuit 1704 electrically connected to the indicator driver 1702, an indicator status state machine 1706 electrically connected to the indicator receiver circuit 1704, at least one of the indicators 1500 electrically connected to the indicator driver, and a power supply 1708. In some embodiments, the indicator receiver circuit 1704 detects a status state signal of the indicator status state machine 1706. In some embodiments, a turn-on signal 1710 is generated and the indicator driver 1702 turns on the indicators 1500. In some embodiments, the system 1700 includes switch to turn on and off the indicators 1500. In some embodiments, the switch is a wired switch. In some embodiments, the switch is a wireless switch.


Referring to FIGS. 11 and 20, in some embodiments, power electronic components (e.g., a rapid shutdown device (RSD), middle circuit interrupter (MCI), junction box) are located at a top portion of the wireway 1422. In some embodiments, the power electronic components are located at bottom portion of the wireway 1422. In some embodiments, at least one of the power electronic components includes at least one of the indicators 1500. In some embodiments, each of a plurality of the power electronic components includes at least one of the indicators 1500. In some embodiments, each of the covers 1304 of the corresponding wire cover brackets 1300 includes a transparent section. In some embodiments, the transparent section of the cover 1304 is configured to enable visible perception of the at least one indicator 1500 when it is active (e.g., illuminated).


In some embodiments, the junction box 1238 of the jumper module 1210 includes a voltage monitoring device and at least one of the indicators 1500. In some embodiments, the cover portion 1461 of the first flashing base 1428 includes a transparent section. In some embodiments, the transparent section of the cover portion 1461 is configured to enable visible perception of the at least one indicator 1500 when it is active (e.g., illuminated). In some embodiments, the junction box 1240 of the jumper module 1210 includes a voltage monitoring device and at least one of the indicators 1500. In some embodiments, the cover 1473 of the second flashing base 1430 includes a transparent section. In some embodiments, the transparent section of the cover 1473 is configured to enable visible perception of the at least one indicator 1500 when it is active (e.g., illuminated). In some embodiments, the voltage monitoring device is an in-laminate printed circuit board (PCB) or flex circuit. In some embodiments, the flex circuit is located on an exposed surface of the jumper module 1210. In some embodiments, the flex circuit is laminated within the active portion 1212 of the jumper module 1210. In some embodiments, the flex circuit is laminated within the frontsheet 1246 of the jumper module 1210.


In some embodiments, each of the photovoltaic modules 1110a, 1110b includes a voltage monitoring device and at least one of the indicators 1500. In some embodiments, the voltage monitoring device is an in-laminate printed circuit board (PCB) or flex circuit. In some embodiments, the flex circuit is located on an exposed surface of each of the photovoltaic modules 1110a, 1110b. In some embodiments, the flex circuit is laminated within the active area 1109 of the photovoltaic module 1110. In some embodiments, the flex circuit is laminated within the frontsheet 1116 of the photovoltaic module 1110. In some embodiments, the flex circuit is laminated within the first side lap 1115 of the photovoltaic module 1110.


In some embodiments, a method comprises the steps of:

    • monitoring an electrical voltage of the photovoltaic system 1400 wherein the photovoltaic system 1400 includes a plurality of the photovoltaic modules 1110 installed on a roof deck, wherein the photovoltaic modules 1110 are arranged in an array on the roof deck, wherein each of the photovoltaic modules 1110 includes a first end and a second end opposite the first end, at least one solar cell 1112, and at least one electrical component, a rapid shutdown device, wherein the rapid shutdown device is electrically connected to the at least one electrical component, and at least one visible indicator 1500, wherein the at least one visible indicator 1500 is electrically connected to the plurality of photovoltaic modules 1110;
    • activating the rapid shutdown device to reduce the electrical voltage of the photovoltaic system 1400 to a predetermined voltage level; and
    • activating the at least one visible indicator 1500 when the electrical voltage of the photovoltaic system 1400 is less than or equal to the predetermined voltage level.


It should be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. All such variations and modifications are intended to be included within the scope of the invention.

Claims
  • 1. A system, comprising: a plurality of photovoltaic modules installed on a roof deck, wherein the photovoltaic modules are arranged in an array on the roof deck, wherein the array includes an upper surface,wherein the array includes a first subarray,wherein the first subarray includes a first side, a second side opposite the first side, an upper side extending from the first side to the second side, and a lower side extending from the first side to the second side,wherein each of the photovoltaic modules includes a first end and a second end opposite the first end,at least one solar cell, anda wire cover bracket located at the first end and configured to receive at least one electrical component, wherein the wire cover brackets of the plurality of photovoltaic modules of the first subarray are configured to form a wireway on the first side of the first subarray;a rapid shutdown device, wherein the rapid shutdown device is electrically connected to the at least one electrical component,wherein the rapid shutdown device is configured to reduce an electrical voltage of the system to a predetermined voltage level;a transition box, wherein the transition box is located above and adjacent to the wireway and above the upper side of the first subarray,wherein the rapid shutdown device is located within the transition box;andat least one first visible indicator above the upper surface, wherein the at least one first visible indicator is electrically connected to the plurality of photovoltaic modules,wherein the at least one first visible indicator is activated when the electrical voltage of the system is less than or equal to the predetermined voltage level; andat least one second visible indicator is located within the transition box, wherein the at least one second visible indicator is electrically connected to the rapid shutdown device, andwherein the at least one second visible indicator is activated when the rapid shutdown device is activated as a result of the electrical voltage of the system being less than or equal to the predetermined voltage level.
  • 2. The system of claim 1, wherein each of the at least one first visible indicator and the at least one second visible indicator includes a light source.
  • 3. The system of claim 2, wherein the light source of the at least one first visible indicator is a first light emitting diode (LED), and wherein the light source of the at least one second visible indicator is a second light emitting diode (LED).
  • 4. The system of claim 1, wherein the at least one first visible indicator is located within a corresponding one of the wire cover bracket.
  • 5. The system of claim 4, wherein the at least one first visible indicator includes a plurality of first visible indicators.
  • 6. The system of claim 4, further comprising at least one cover removably attached to at least one of the wire cover brackets, wherein the at least one cover is configured to enable visible perception of the at least one first visible indicator when the at least one first visible indicator is active.
  • 7. The system of claim 1, further comprising at least one voltage monitoring device, wherein the at least one voltage monitoring device is configured to measure the electrical voltage of the system.
  • 8. The system of claim 7, further comprising a jumper module, wherein the jumper module electrically connects the first subarray of the array and a second subarray of the array.
  • 9. The system of claim 8, wherein the jumper module includes a first junction box, wherein the at least one electrical component includes a second junction box, wherein the first junction box is electrically connected to the second junction box, and wherein the first junction box includes the at least one voltage monitoring device.
  • 10. The system of claim 8, wherein the jumper module includes a plurality of layers, wherein the plurality of layers is laminated, and wherein the at least one voltage monitoring device is laminated within the plurality of layers of the jumper module.
  • 11. The system of claim 9, wherein the at least one voltage monitoring device is a printed circuit board or flex circuit.
  • 12. The system of claim 10, wherein at least one third visible indicator is located on the jumper module.
  • 13. The system of claim 7, wherein the at least one voltage monitoring device includes a plurality of voltage monitoring devices, and wherein each of the plurality of voltage monitoring devices is located on a corresponding one of the plurality of photovoltaic modules.
  • 14. The system of claim 1, wherein the at least one first visible indicator is electrically connected to the rapid shutdown device.
  • 15. The system of claim 1, wherein the predetermined voltage level is 0.1 volt to 30 volts.
  • 16. The system of claim 1, wherein the at least one first visible indicator displays a first color when the electrical voltage has a first value, and wherein the at least one first visible indicator displays a second color different from the first color when the electrical voltage has a second value, wherein the second value is different from the first value.
  • 17. The system of claim 1, wherein the at least one first visible indicator displays a first flashing code when the electrical voltage has a first value, and wherein the at least one first visible indicator displays a second flashing code different from the first flashing code when the electrical voltage has a second value, wherein the second value is different from the first value.
  • 18. The system of claim 6, wherein the at least one cover includes a transparent section, and wherein the transparent section enables visible perception of the at least one first visible indicator when the at least one first visible indicator is active.
  • 19. The system of claim 1, wherein the rapid shutdown device includes a shutdown receiver,a shutdown transmitter electrically connected to the shutdown receiver,a shutdown power circuit electrically connected to the shutdown receiver, and an indicator circuit electrically connected to the shutdown receiver and the shutdown power circuit, wherein the shutdown receiver, the shutdown transmitter and the shutdown power circuit are electrically connected to the photovoltaic modules,wherein the indicator circuit is electrically connected to the shutdown receiver and the shutdown power circuit,wherein the shutdown receiver is configured to detect a shutdown signal transmitted by the shutdown transmitter when the electrical voltage of the system is less than or equal to the predetermined voltage level, andwherein the indicator circuit is configured to receive the shutdown signal and activate the at least one first visible indicator and the at least one second visible indicator in response to the receipt of the shutdown signal.
  • 20. The system of claim 19, wherein the shutdown signal is a shutdown code, and wherein the transmitter is configured to transmit the shutdown code to the shutdown receiver by wired communication or wireless communication.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Section 111(a) application relating to and claiming the benefit of commonly-owned, U.S. Provisional Patent Application Ser. No. 63/349,389, filed Jun. 6, 2022, entitled “ACTIVE COMPONENT INDICATORS FOR PHOTOVOLTAIC SYSTEMS,” the contents of each of which are incorporated herein by reference in its entirety.

US Referenced Citations (300)
Number Name Date Kind
1981467 Radtke Nov 1934 A
3156497 Lessard Nov 1964 A
3581779 Gilbert, Jr. Jun 1971 A
4258948 Hoffmann Mar 1981 A
4349220 Carroll et al. Sep 1982 A
4499702 Turner Feb 1985 A
4636577 Peterpaul Jan 1987 A
5167579 Rotter Dec 1992 A
5437735 Younan et al. Aug 1995 A
5590495 Bressler et al. Jan 1997 A
5642596 Waddington Jul 1997 A
6008450 Ohtsuka et al. Dec 1999 A
6033270 Stuart Mar 2000 A
6046399 Kapner Apr 2000 A
6201180 Meyer et al. Mar 2001 B1
6220329 King et al. Apr 2001 B1
6308482 Strait Oct 2001 B1
6320114 Kuechler Nov 2001 B1
6320115 Kataoka et al. Nov 2001 B1
6336304 Mimura et al. Jan 2002 B1
6341454 Koleoglou Jan 2002 B1
6407329 Iino et al. Jun 2002 B1
6545211 Mimura Apr 2003 B1
6576830 Nagao et al. Jun 2003 B2
6928781 Desbois et al. Aug 2005 B2
6972367 Federspiel et al. Dec 2005 B2
7138578 Komamine Nov 2006 B2
7155870 Almy Jan 2007 B2
7178295 Dinwoodie Feb 2007 B2
7487771 Eifert et al. Feb 2009 B1
7587864 McCaskill et al. Sep 2009 B2
7678990 McCaskill et al. Mar 2010 B2
7678991 McCaskill et al. Mar 2010 B2
7748191 Podirsky Jul 2010 B2
7819114 Augenbraun et al. Oct 2010 B2
7824191 Podirsky Nov 2010 B1
7832176 McCaskill et al. Nov 2010 B2
8118109 Hacker Feb 2012 B1
8168880 Jacobs et al. May 2012 B2
8173889 Kalkanoglu et al. May 2012 B2
8210570 Railkar et al. Jul 2012 B1
8276329 Lenox Oct 2012 B2
8312693 Cappelli Nov 2012 B2
8319093 Kalkanoglu et al. Nov 2012 B2
8333040 Shiao et al. Dec 2012 B2
8371076 Jones et al. Feb 2013 B2
8375653 Shiao et al. Feb 2013 B2
8404967 Kalkanoglu et al. Mar 2013 B2
8410349 Kalkanoglu et al. Apr 2013 B2
8418415 Shiao et al. Apr 2013 B2
8438796 Shiao et al. May 2013 B2
8468754 Railkar et al. Jun 2013 B2
8468757 Krause et al. Jun 2013 B2
8505249 Geary Aug 2013 B2
8512866 Taylor Aug 2013 B2
8513517 Kalkanoglu et al. Aug 2013 B2
8586856 Kalkanoglu et al. Nov 2013 B2
8601754 Jenkins et al. Dec 2013 B2
8629578 Kurs et al. Jan 2014 B2
8646228 Jenkins Feb 2014 B2
8656657 Livsey et al. Feb 2014 B2
8671630 Lena et al. Mar 2014 B2
8677702 Jenkins Mar 2014 B2
8695289 Koch et al. Apr 2014 B2
8713858 Xie May 2014 B1
8713860 Railkar et al. May 2014 B2
8733038 Kalkanoglu et al. May 2014 B2
8776455 Azoulay Jul 2014 B2
8789321 Ishida Jul 2014 B2
8793940 Kalkanoglu et al. Aug 2014 B2
8793941 Bosler et al. Aug 2014 B2
8826607 Shiao et al. Sep 2014 B2
8835751 Kalkanoglu et al. Sep 2014 B2
8863451 Jenkins et al. Oct 2014 B2
8898970 Jenkins et al. Dec 2014 B2
8925262 Railkar et al. Jan 2015 B2
8943766 Gombarick et al. Feb 2015 B2
8946544 Jabos et al. Feb 2015 B2
8950128 Kalkanoglu et al. Feb 2015 B2
8959848 Jenkins et al. Feb 2015 B2
8966838 Jenkins Mar 2015 B2
8966850 Jenkins et al. Mar 2015 B2
8994224 Mehta et al. Mar 2015 B2
9032672 Livsey et al. May 2015 B2
9153950 Yamanaka et al. Oct 2015 B2
9166087 Chihlas et al. Oct 2015 B2
9169646 Rodrigues et al. Oct 2015 B2
9170034 Bosler et al. Oct 2015 B2
9178465 Shiao et al. Nov 2015 B2
9202955 Livsey et al. Dec 2015 B2
9212832 Jenkins Dec 2015 B2
9217584 Kalkanoglu et al. Dec 2015 B2
9270221 Zhao Feb 2016 B2
9273885 Rordigues et al. Mar 2016 B2
9276141 Kalkanoglu et al. Mar 2016 B2
9331224 Koch et al. May 2016 B2
9356174 Duarte et al. May 2016 B2
9359014 Yang et al. Jun 2016 B1
9412890 Meyers Aug 2016 B1
9528270 Jenkins et al. Dec 2016 B2
9605432 Robbins Mar 2017 B1
9711672 Wang Jul 2017 B2
9755573 Livsey et al. Sep 2017 B2
9786802 Shiao et al. Oct 2017 B2
9831818 West Nov 2017 B2
9912284 Svec Mar 2018 B2
9923515 Rodrigues et al. Mar 2018 B2
9938729 Coon Apr 2018 B2
9991412 Gonzalez et al. Jun 2018 B2
9998067 Kalkanoglu et al. Jun 2018 B2
10027273 West et al. Jul 2018 B2
10115850 Rodrigues et al. Oct 2018 B2
10128660 Apte et al. Nov 2018 B1
10156075 McDonough Dec 2018 B1
10187005 Rodrigues et al. Jan 2019 B2
10256765 Rodrigues et al. Apr 2019 B2
10284136 Mayfield et al. May 2019 B1
10454408 Livsey et al. Oct 2019 B2
10530292 Cropper et al. Jan 2020 B1
10560048 Fisher et al. Feb 2020 B2
10563406 Kalkanoglu et al. Feb 2020 B2
D879031 Lance et al. Mar 2020 S
10579028 Jacob Mar 2020 B1
10784813 Kalkanoglu et al. Sep 2020 B2
D904289 Lance et al. Dec 2020 S
11012026 Kalkanoglu et al. May 2021 B2
11177639 Nguyen et al. Nov 2021 B1
11217715 Sharenko et al. Jan 2022 B2
11251744 Bunea et al. Feb 2022 B1
11258399 Kalkanoglu et al. Feb 2022 B2
11283394 Perkins et al. Mar 2022 B2
11309828 Sirski et al. Apr 2022 B2
11394344 Perkins et al. Jul 2022 B2
11424379 Sharenko et al. Aug 2022 B2
11431280 Liu et al. Aug 2022 B2
11431281 Perkins et al. Aug 2022 B2
11444569 Clemente et al. Sep 2022 B2
11454027 Kuiper et al. Sep 2022 B2
11459757 Nguyen et al. Oct 2022 B2
11486144 Bunea et al. Nov 2022 B2
11489482 Peterson et al. Nov 2022 B2
11496088 Sirski et al. Nov 2022 B2
11508861 Perkins et al. Nov 2022 B1
11512480 Achor et al. Nov 2022 B1
11527665 Boitnott Dec 2022 B2
11545927 Abra et al. Jan 2023 B2
11545928 Perkins et al. Jan 2023 B2
11658470 Nguyen et al. May 2023 B2
11661745 Bunea et al. May 2023 B2
11689149 Clemente et al. Jun 2023 B2
11705531 Sharenko et al. Jul 2023 B2
11728759 Nguyen et al. Aug 2023 B2
11732490 Achor et al. Aug 2023 B2
11811361 Farhangi et al. Nov 2023 B1
11824486 Nguyen et al. Nov 2023 B2
11824487 Nguyen et al. Nov 2023 B2
11843067 Nguyen et al. Dec 2023 B2
20020053360 Kinoshita et al. May 2002 A1
20020129849 Heckeroth Sep 2002 A1
20030062078 Mimura Apr 2003 A1
20030101662 Ullman Jun 2003 A1
20030132265 Villela et al. Jul 2003 A1
20030217768 Guha Nov 2003 A1
20040000334 Ressler Jan 2004 A1
20040211456 Brown Oct 2004 A1
20050030187 Peress et al. Feb 2005 A1
20050115603 Yoshida et al. Jun 2005 A1
20050144870 Dinwoodie Jul 2005 A1
20050178428 Laaly et al. Aug 2005 A1
20050193673 Rodrigues et al. Sep 2005 A1
20060042683 Gangemi Mar 2006 A1
20060046084 Yang et al. Mar 2006 A1
20070074757 Mellott et al. Apr 2007 A1
20070181174 Ressler Aug 2007 A1
20070193618 Bressler et al. Aug 2007 A1
20070249194 Liao Oct 2007 A1
20070295385 Sheats et al. Dec 2007 A1
20080000174 Flaherty Jan 2008 A1
20080006323 Kalkanoglu et al. Jan 2008 A1
20080035140 Placer et al. Feb 2008 A1
20080078440 Lim et al. Apr 2008 A1
20080185748 Kalkanoglu Aug 2008 A1
20080271774 Kalkanoglu et al. Nov 2008 A1
20080302030 Stancel et al. Dec 2008 A1
20080315061 Fath Dec 2008 A1
20090000222 Kalkanoglu et al. Jan 2009 A1
20090014057 Croft et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090019795 Szacsvay et al. Jan 2009 A1
20090044850 Kimberley Feb 2009 A1
20090114261 Stancel et al. May 2009 A1
20090133340 Shiao et al. May 2009 A1
20090159118 Kalkanoglu et al. Jun 2009 A1
20090178350 Kalkanoglu et al. Jul 2009 A1
20090182532 Stoeber Jul 2009 A1
20090229652 Mapel et al. Sep 2009 A1
20090275247 Richter et al. Nov 2009 A1
20090293932 Augenbraun Dec 2009 A1
20100019580 Croft et al. Jan 2010 A1
20100095618 Edison et al. Apr 2010 A1
20100101634 Frank et al. Apr 2010 A1
20100116325 Nikoonahad May 2010 A1
20100131108 Meyer May 2010 A1
20100139184 Williams et al. Jun 2010 A1
20100146878 Koch et al. Jun 2010 A1
20100159221 Kourtakis et al. Jun 2010 A1
20100170169 Railkar et al. Jul 2010 A1
20100186798 Tormen et al. Jul 2010 A1
20100242381 Jenkins Sep 2010 A1
20100313499 Gangemi Dec 2010 A1
20100325976 DeGenfelder et al. Dec 2010 A1
20100326488 Aue et al. Dec 2010 A1
20100326501 Zhao et al. Dec 2010 A1
20110030761 Kalkanoglu et al. Feb 2011 A1
20110036386 Browder Feb 2011 A1
20110036389 Hardikar et al. Feb 2011 A1
20110048507 Livsey et al. Mar 2011 A1
20110058337 Han et al. Mar 2011 A1
20110061326 Jenkins Mar 2011 A1
20110100436 Cleereman et al. May 2011 A1
20110104488 Muessig et al. May 2011 A1
20110132427 Kalkanoglu et al. Jun 2011 A1
20110168238 Metin et al. Jul 2011 A1
20110183540 Keenihan Jul 2011 A1
20110239555 Cook et al. Oct 2011 A1
20110302859 Crasnianski Dec 2011 A1
20110314753 Farmer et al. Dec 2011 A1
20120034799 Hunt Feb 2012 A1
20120060434 Jacobs Mar 2012 A1
20120060902 Drake Mar 2012 A1
20120085392 Albert et al. Apr 2012 A1
20120137600 Jenkins Jun 2012 A1
20120176077 Oh et al. Jul 2012 A1
20120212065 Cheng et al. Aug 2012 A1
20120233940 Perkins et al. Sep 2012 A1
20120240490 Gangemi Sep 2012 A1
20120260977 Stancel Oct 2012 A1
20120266942 Komatsu et al. Oct 2012 A1
20120279150 Pisikak et al. Nov 2012 A1
20120282437 Clark et al. Nov 2012 A1
20120291848 Sherman et al. Nov 2012 A1
20130008499 Verger et al. Jan 2013 A1
20130014455 Grieco Jan 2013 A1
20130118558 Sherman May 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130247988 Reese et al. Sep 2013 A1
20130284267 Plug et al. Oct 2013 A1
20130306137 Ko Nov 2013 A1
20140053892 Seol Feb 2014 A1
20140090697 Rodrigues et al. Apr 2014 A1
20140150843 Pearce et al. Jun 2014 A1
20140173997 Jenkins Jun 2014 A1
20140179220 Railkar et al. Jun 2014 A1
20140182222 Kalkanoglu et al. Jul 2014 A1
20140208675 Beerer et al. Jul 2014 A1
20140254776 O'Connor et al. Sep 2014 A1
20140266289 Della Sera et al. Sep 2014 A1
20140311556 Feng et al. Oct 2014 A1
20140352760 Haynes et al. Dec 2014 A1
20140366464 Rodrigues et al. Dec 2014 A1
20150089895 Leitch Apr 2015 A1
20150162459 Lu et al. Jun 2015 A1
20150340516 Kim et al. Nov 2015 A1
20150349173 Morad et al. Dec 2015 A1
20160105144 Haynes et al. Apr 2016 A1
20160142008 Lopez et al. May 2016 A1
20160254776 Rodrigues et al. Sep 2016 A1
20160276508 Huang et al. Sep 2016 A1
20160329715 Orr Nov 2016 A1
20160359451 Mao et al. Dec 2016 A1
20170054406 Narla Feb 2017 A1
20170099027 Park Apr 2017 A1
20170159292 Chihlas et al. Jun 2017 A1
20170179319 Yamashita et al. Jun 2017 A1
20170179726 Garrity et al. Jun 2017 A1
20170237390 Hudson et al. Aug 2017 A1
20170331415 Koppi et al. Nov 2017 A1
20180094438 Wu et al. Apr 2018 A1
20180097472 Anderson et al. Apr 2018 A1
20180115275 Flanigan et al. Apr 2018 A1
20180254738 Yang et al. Sep 2018 A1
20180294765 Friedrich et al. Oct 2018 A1
20180351502 Almy et al. Dec 2018 A1
20180367089 Stutterheim et al. Dec 2018 A1
20190030867 Sun et al. Jan 2019 A1
20190081436 Onodi et al. Mar 2019 A1
20190123679 Rodrigues et al. Apr 2019 A1
20190253022 Hardar et al. Aug 2019 A1
20190305717 Allen et al. Oct 2019 A1
20200109320 Jiang Apr 2020 A1
20200144958 Rodrigues et al. May 2020 A1
20200220819 Vu et al. Jul 2020 A1
20200224419 Boss et al. Jul 2020 A1
20200343397 Hem-Jensen Oct 2020 A1
20210083619 Hegedus Mar 2021 A1
20210115223 Bonekamp et al. Apr 2021 A1
20210159353 Li et al. May 2021 A1
20210301536 Baggs et al. Sep 2021 A1
20210343886 Sharenko et al. Nov 2021 A1
20220149213 Mensink et al. May 2022 A1
Foreign Referenced Citations (28)
Number Date Country
2829440 May 2019 CA
700095 Jun 2010 CH
202797032 Mar 2013 CN
217150978 Aug 2022 CN
1958248 Nov 1971 DE
1039361 Sep 2000 EP
1837162 Sep 2007 EP
1774372 Jul 2011 EP
2446481 May 2012 EP
2784241 Oct 2014 EP
3772175 Feb 2021 EP
10046767 Feb 1998 JP
2002-106151 Apr 2002 JP
2001-098703 Oct 2002 JP
2017-027735 Feb 2017 JP
2018053707 Apr 2018 JP
20090084060 Aug 2009 KR
10-1348283 Jan 2014 KR
10-2019-0000367 Jan 2019 KR
10-2253483 May 2021 KR
2026856 81 Jun 2022 NL
2010151777 Dec 2010 WO
2011049944 Apr 2011 WO
2015133632 Sep 2015 WO
2018000589 Jan 2018 WO
2019201416 Oct 2019 WO
2020-159358 Aug 2020 WO
2021-247098 Dec 2021 WO
Non-Patent Literature Citations (4)
Entry
Sunflare, Procducts: “Sunflare Develops Prototype For New Residential Solar Shingles”; 2019 <<sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021.
RGS Energy, 3.5kW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021.
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021.
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021.
Related Publications (1)
Number Date Country
20230396213 A1 Dec 2023 US
Provisional Applications (1)
Number Date Country
63349389 Jun 2022 US