Volatile active compounds such as ethylene response manipulation agents or plant disease and insect controlling materials or other plant growth regulating materials are dispersed in water based mediums to either directly apply to intended plant or plant parts as liquid solution or use water based medium to release bioactive gas from encapsulated matrix to allow gaseous exposure of bioactive compound to intended plant or plant parts under closed environments.
These compounds are mostly manufactured in concentrated and generally stable forms by either encapsulation process, or forming salts or conjugated complexes for storage and distribution. The product in powder or tablet form is packed in water impermeable packaging which is cut open before use, contents transferred into another container containing water based medium to release MCP gas for gaseous exposure under leak proof conditions. This process is complicated and limits the use of the bioactive volatiles to only storage environments that are properly sealed. There is a heartfelt need in the industry to develop a storage and control release package for encapsulated bioactive materials so that the scope of the technology can be extended to benefit produce industry under transit, retail and consumer conditions.
The disclosed invention provides a package for storing and control release volatile active compounds from its solid or liquid formulations which comprise of at least portion of encapsulated, conjugated or salts of bioactive compound. The bioactive compound package incorporates volatile compound, water and gas permeable portions which may include perforations that are sealed with peelable adhesive, water soluble barrier layer or photosensitive polymer barrier layer. A method to ensure complete release of volatile compounds from their encapsulated formulations is provided so that the packaging materials can either be recycled or discarded as non-hazardous waste material.
In one aspect of the invention, a package for storing or containing at least one ethylene response manipulation agent is disclosed. The package can comprise at least 2, and up to 9, film layers; one film layer comprising an inner layer, and at least one other layer comprising an outer layer. The outer layer can comprise a polymer at least partially soluble when contacted with an aqueous media, and the inner layer can comprise an ethylene response manipulation agent permeable film structure. Preferably, the ethylene response manipulation agent, especially 1-methylcyclopropene, is at least partially encapsulated. The partial encapsulation can comprise at least 0.1 percent and up to about 10 percent, preferably up to 5 percent, by weight of the ethylene response manipulation agent. Preferably the encapsulant is cyclodextrin or a cyclodextrin derivative. The ethylene response manipulation agent can be selected from the group consisting of cyclopropene, cyclopropene conjugates, cyclopropene salts or cyclopropene encapsulating materials, but preferably is 1-methylcyclopropene.
The package can be in different forms, but is preferably a sachet or a pad, especially when placed in a storage, transit or food container such that release of the ethylene response manipulation agent is controlled into an environment.
The inner film layer of the package preferably comprises perforations, especially wherein the perforations have a mean diameter from 40 micrometers to 900 micrometers. The inner film layer of the package can also comprise microporous film, spun-bonded (or spunlaced, or carded and bonded fibers, or melt spun) olefin (such as ethylene or propylene polymers and copolymers), waxed paper, non-woven polyester, or non-woven nylon, including mixtures of these fabrics and fibers.
The outer film layer of the package can also comprise a coating material, preferably with a thickness of 1 to 50 μm.
The package can further store or contain a polyol liquid medium, or a hydrogel medium, or a combination of polyol and hydrogel medium, wherein particles comprising the ethylene response manipulation agent are dispersed in said medium. The package can also further store or contain water absorbing or adsorbing materials.
In another embodiment, the invention is a package for storing or containing at least one ethylene response manipulation agent, preferably 1-methylcyclopropene, the package comprising at least 2 film layers, one film layer comprising an inner layer, and at least one other layer comprising an outer layer, wherein the outer layer comprises a polymer at least partially degradable when exposed to light, and the inner layer comprises volatile ethylene response manipulation agent permeable film structure. MCP permeable structure.
In any embodiment, the inner film layer can have an ethylene response manipulation agent (especially 1-methylcyclopropene) transmission rate, FL-1, at 23° C. of 500 to 250,000 cm3/(m2-day). Also in any embodiment, the inner film layer has a moisture transmission rate, FL-1, at 37.8 C of 10 to 500 cm3/(m2-day).
The outer film layer of any embodiment can further comprise water absorbing or adsorbing materials. The water absorbing or adsorbing materials, either in the film layer or contained within the package, are preferably selected from the group consisting of polyacrylate based super absorbent polymers, calcium chloride, clay, starch, and silica gel.
In a third embodiment, the invention is an aerosol comprising at least one partially encapsulated ethylene response manipulation agent, preferably wherein the partial encapsulation comprises at least 0.1 percent and up to about 10 percent by weight of the ethylene response manipulation agent; at least one polyol liquid medium, or a hydrogel medium, or a combination of polyol and hydrogel medium, wherein particles comprising the ethylene response manipulation agent are dispersed or mixed in said medium; and at least one propellant. The ethylene response manipulation agent of the aerosol can be selected from the group consisting of cyclopropene, cyclopropene conjugates, cyclopropene salts or cyclopropene encapsulating materials, preferably 1-methylcyclopropene. The propellent can be selected from the group consisting of compressed air, inert gases, volatile hydrocarbons, ethers, and hydro fluorocarbons.
Partially encapsulated or volatile antimicrobials which may include chlorine dioxide, sulphur dioxide, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate, ethanol, oregano extracts and other synthetic or natural occurring flavanols, phenolic compounds or organic acids or Hydrogen Peroxide can be added to the formulation for aerosol application.
In a fourth embodiment, the invention is a multilayer film structure, preferably 2 to 9 layer film structure, formed into a package for storing and containing an ethylene response manipulation agent, such as 1-methycyclopropene, and controlling its release into an environment. This controlled release is accomplished by selecting an outer film layer of the film structure to be at least partially water soluble, or at least partially light degradable, and by having both inner and outer film layers (at a minimum) enabled with porosity to enable the volatile ethylene response manipulation agent (such as 1-MCP, preferably encapsulated) capable of migrating though the film structure of the package and into an exterior environment.
A storage and control release package for ethylene response manipulation agents include ethylene analogues such as propylene, acetylene, carbon monoxide, 1-butene, etc.; Ethylene releasing compounds such as 2-(chloroethyl) phosphonic acid [an example of commercial name is Etheral], 2-(chloroethylmethyl)bis(phenylmethoxy) silane [commercial name is Silaid], 2-(chloroethyl)tris(2-methoxyethoxy) Silane [an example of commercial name is Alsol]; Ethylene synthesis inhibitors such as aminoethoxyvinylglycine (AVG) [an example of commercial name is RETAIN], aminooxyacetic acid (AOA); and Ethylene action inhibitors such as Silver ions, 2,5-norbornadiene (NBD) and 1-methylcyclopropene.
While the invention discloses packaging for formulations comprising of encapsulated 1-MCP, a person with ordinary skill and art can use the invention for other control release ethylene manipulation agents as listed above or other chemicals of agricultural importance. For instance the disclosed invention may be applied to package partially encapsulated or volatile antimicrobials which may include chlorine dioxide, sulphur dioxide, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate, ethanol, oregano extracts and other synthetic or natural occurring flavanols, phenolic compounds or organic acids or Hydrogen Peroxide. One aspect of this invention may be to package formulations that may contain at least one fungicide, insecticide or biopesticide, antioxidants such as diphenylamine, ethoxyquin, etc., plant growth regulators such as Gibberellic Acid (GA3), Etheral, aminoethoxyvinylglycine (AVG), etc. or mixtures of these in addition to encapsulated ethylene response manipulation agents such as 1-MCP for application of plants or plant parts such as fruit, vegetable, flowers and field crops.
The packaging device provides a web for at least partially encompassing encapsulated ethylene effect modifier mixture within which may be in solid, liquid or a combination thereof form, that may be constructed using one or more polymeric base films and in various configurations. For example, the web may be constructed as a bag, lid stock, stand-up pouch, and the like. It is contemplated that the base films may be any one of or combination of polymer groups such as polyalkenes (e.g., polyethylene—low density, linear low density, high density, metallocene polyethylene, etc.), polyvinyls (e.g., polypropelene), polystyrenes (e.g., polyvinyl chloride), polysiloxanes (e.g., silicone rubber), and polydiens (e.g., natural rubber), compostable polymers such as polylactic acid (PLA), Polycaprolactone (PCL) and Polyvinyl Alcohol (PVA) or gelatin. Further, the base films may be extruded from a single polymer or blends of various polymers where each polymer performs a specific function, such as contributing strength, transparency, sealability, or machinability, to meet specific product requirements. Similarly, the material(s) of the base film may be processed using various technologies and treatment applications, such as lamination, to provide the packaging device with specific properties and for achieving particular configurations.
In one embodiment, the package comprises various base film layers of similar or different film materials which are bonded together through lamination, adhesive coating or heat sealing. The bonding or coating material may contain pressure or temperature sensitive materials. One or all the layers may be made up of water soluble materials such as Ethylene vinyl Alcohol (EVOH) or photodegradable material such as Ethylene carbon monoxide.
In another embodiment, the inner film layer may be perforated flexible film bonded or adhered to the outer film layer comprising of water soluble or photodegradable polymers such that when the package is exposed to moisture or high relative humidity environment or light, the outer film layer will solubilize or degrade, and covered perforation open such that water vapor or free water can enter the package in a controlled manner, hydrate the encapsulated 1-MCP matrix thus leading to 1-MCP release from the package. One such application of this invention may be to release MCP under transit and handling conditions.
In another embodiment, the inner film layer may be made from spun-bonded olefin such as Tyvek available from DuPont, microporous films with a pore size of 5 to 300μ, waxed paper or non woven nylon, polyethylene, polypropylene, etc. which are coated or adhered to the outer film layer generally in the range of 1 to 50μ thickness and comprising of water soluble or photodegradable polymers such that when the package is exposed to moisture or high relative humidity environment or light, the outer film layer will solubilize or degrade, and covered pores or open spaces in the inner layer open such that water vapor or free water can enter the package in a controlled manner, hydrate the encapsulated 1-MCP matrix thus leading to 1-MCP release from the package. One such application of this invention may be to release MCP under transit or storage conditions.
In another embodiment, the formulation comprising of at least one ethylene response manipulation agent which is at least partially encapsulated, a polyol liquid medium, or a hydrogel medium, or a combination of polyol and hydrogel medium, wherein particles are dispersed in said medium, wherein said ethylene response manipulation agent comprises cyclopropene, cyclopropene conjugates, cyclopropene salts or cyclopropene encapsulating materials is mixed with other coating materials and then applied on the inner surface of the single MCP permeable layer or the formulation coating can be sandwiched between 2 or more film layers, the film layer or layers that form the outer surface of the package, at least one of those layers is impermeable to MCP so that when MCP is activated it can only migrate into the package.
In a preferred embodiment shown in
It is useful to characterize the inherent moisture transmission characteristics of an inner layer polymeric film or portion thereof. By “inherent” it is meant the properties of the film itself, in the absence of any perforations or other alterations. It is useful to characterize the composition of a film by characterizing the moisture transmission characteristics of a film that has that composition and that is 25.4 micrometers thick. It is contemplated that, if a film of interest were made and tested at a thickness that was different from 25.4 micrometers (e.g., from 8 to 76.2 micrometers), it would be easy for a person of ordinary skill to accurately calculate the moisture transmission characteristics of a film having the same composition and having thickness of 25.4 micrometers or 1 mil. The moisture transmission rate of a film having thickness 25.4 micrometers is labeled “FL-1” herein.
Preferred are film compositions for which the FL-1 for 1-MCP transmission at 23° C., in units of cm3/(m2-day), is 500 or higher; more preferred is 5,000 or higher; more preferred is 10,000 or higher; more preferred is 20,000 or higher; more preferred is 30,000 or higher. Preferred are films with FL-1 for 1-MCP transmission at 23° C., in units of cm3/(m2-day), of 250,000 or lower; more preferred is 150,000 or lower; more preferred is 100,000 or lower.
Preferred are films with FL-1 for water vapor at 37.8° C., in units of g/(m2-day), of 10 or higher; more preferred is 20 or higher. Preferred are films with FL-1 for water vapor at 37.8° C., in units of g/(m2-day), of 500 or lower; more preferred is 300 or lower; more preferred is 250 or lower.
In preferred embodiments, some or the entire interior and exterior surface of the enclosure of the present invention is polymeric. Preferably, the polymer is in the form of a polymeric film or coating. Preferred polymeric film or coating layers have an average thickness of 1 micrometer or more; more preferably 2 micrometer or more; more preferably 5 micrometer or more. Independently, some suitable polymeric film or coating layers have an average thickness of 50 micrometers or less; more preferably 40 micrometer or less; more preferably 30 micrometer or less; more preferably 25 micrometer or less.
Preferably, inner layer polymeric film is used that has perforations. Preferably, the holes have mean diameter of 40 micrometers to 900 micrometers. Preferably, the holes have mean diameter of 50 micrometers or more; more preferably 75 micrometers or more; even more preferably 100 micrometers or more; most preferably 150 micrometers or more. Independently, preferably, the holes have mean diameter 900 micrometers or less; more preferably 700 micrometers or less. If a hole is not circular, the diameter of the hole is considered herein to be the diameter of an imaginary circle that has the same area as the actual hole.
Preferably, the percentage of holes that fall within the above described specification is 10% or more (by volume of hole numbers); more preferably 20% or more; more preferably 30% or more. In an independent embodiment, preferably, the percentage of holes that fall within the above describe specification is 100% or less; more preferably 95% or less; more preferably 90% or less.
In preferred embodiments, the number of holes in the enclosure is 1 or more; more preferably 5 or more; more preferably 10 or more. In preferred embodiments, the number of holes in the enclosure is 200 or fewer; more preferably 150 or fewer; more preferably 100 or fewer.
Holes in polymeric film may be made by any method. Suitable methods include, for example, laser perforation, hot needles, flame, low-energy electrical discharge, and high-energy electrical discharge. One preferred method is laser perforation. Among embodiments in which laser perforation is used, it is preferred to design or select polymeric film that is well suited to laser perforation. That is, the polymeric film is designed or selected so that the laser easily makes holes that are round and have predictable size. Preferred laser is a carbon dioxide laser. For different polymeric film compositions, the appropriate wavelength of laser light may be chosen. For polymeric films that contain polypropylene and/or copolymers of polypropylene with one or more polar monomer, it is preferred to choose a carbon dioxide laser producing infrared light that includes infrared light of wavelength 9.25 micrometer.
Fruit and vegetables are transported in large trucks or containers which contain products in cardboard boxes or crates which generally contain 3 to 50 lb each. There is a need to develop a storage and control release package for individual box or pallet treatment. For definition a pallet is a column of individually boxed produce on a truck or container for shipment. A standard container has 20 pallets numbering 48 boxes per pallet, each weighing approximately 40 lbs or 960 boxes per container. There is an industry need to develop small storage and control release packages for individual box treatment. Therefore, in another package embodiment 300 shown in
In another embodiment 400 shown in
Referring now to
In
The lid stock film as described above may be used to construct a bioactive compound release pad which can placed at the bottom of the food package. The moisture released from the food can enter the pad, release 1-MCP gradually which in turn will be forced to get out from the pad and interact with packaged food thereby help in extending its shelf life. Similarly the film may be used to construct sticky labels which can be used to release 1-MCP in a controlled manner.
Microwave absorbent materials commonly known as susceptors can be added to the packaging film to help in releasing any residual 1-MCP from the encapsulation matrix post application. Such susceptors for reference may include one or combination of the ferrites, metal oxides, salt hydrates, and titanium nitride or commercially available metallized film susceptor. The major purpose of this process would be to use microwave energy to generate enough heat and pressure that would ensure complete release of MCP from the encapsulation matrix so that the container contents including encapsulated packaging materials can be trashed as non-hazardous waste. The temperatures required to release 1-MCP completely from encapsulated matrix generally would be in the range of 100° C. or higher, more preferably, 110° C. or higher, more preferably 115° C. or higher. More preferably the package temperatures would be 250° C. or lower, more preferably 220° C. or lower, more preferably 200° C. or lower. The pressure required to release 1-MCP completely from encapsulated matrix generally, would be in the range of 5 millibars or higher, more preferably, 10 millibars or higher, more preferably 15 millibars or higher. More preferably the required pressure would be 400 millibars or lower, more preferably 300 millibars or lower, more preferably 100 millibars or lower. Although the temperature and pressure ranges are shown by example, other techniques or alterations can be made by a person of ordinary skill and art to aid in the release of 1-MCP from the encapsulating matrix.
Industry standard method ASTM F1249 for measuring water transmission through films of the invention is used. 1-MCP transmission rates for the films are measured using quasi-isostatic method as described by Lee et al. (Lee, D. S., Yam, K. L., Piergiovanni, L. “Permeation of gas and vapor,” Food Packaging Science and Technology, CRC Press, New York, N.Y., 2008, pp 100-101.). Periodically the samples are collected and quantification of 1-MCP is done using gas chromatography (GC) based on the method described by Mir et al., (Nazir A. Mir, Erin Curell, Najma Khan, Melissa Whitaker, and Randolph M. Beaudry. “Harvest maturity, storage temperature and 1-MCP application frequency alter firmness retention and chlorophyll fluorescence of “Redchief Delicious” apples,” Journal of American society of horticultural science, 2001, 126(5): 618-624)
A two layer film is constructed from polyvinyl alcohol (PVA) comprising about 88% (wt) —OH content) as the outer layer, and an inner layer of spunbonded polyethylene (made from ASPUN™ 6800 series Fiber Grade Resin made by The Dow Chemical Company) is laminated to the outer layer. This 2 layer film structure is then made into a vertical-form-fill-seal (VFFS) package as shown and described for
Tomatoes at near ripe stage are washed, air dried and sliced using Nemco easy tomato slicer (Model 55600-1). Each slice was roughly 3/16″ thick. The invention pad containing within 0.5% encapsulated 1-MCP and polyacrylate superabsorbent material is placed on 1 Lb foam tray and over wrapped with a stretchable polyvinyl chloride (PVC) film and held at 10° C. for shelf life evaluations. Similarly another pound of tomato slices are placed on a foam tray that had no pad and over wrapped with a stretchable polyvinyl chloride (PVC) film and held at 10° C. for shelf life evaluations. The shelf life is 10 days for package that had invention pad, whereas the control package without the pad has shelf life of only 5 days. The control package has visible juice which is measured as 100 mL on day 5 of holding at 10° C., in contrast, no visible juice is observed in the package with the invention pad.
Tomatoes at near ripe stage are washed, air dried and sliced using Nemco easy tomato slicer (Model 55600-1). Each slice is roughly 3/16″ thick. The invention pad containing a mixture of 0.1% encapsulated 1-MCP and 0.1% thymol and polyacrylate superabsorbent material is placed on 1 Lb foam tray and over wrapped with a stretchable polyvinyl chloride (PVC) film and held at 15° C. for shelf life evaluations. Similarly another pound of tomato slices are placed on a foam tray that had no pad and over wrapped with a stretchable polyvinyl chloride (PVC) film and held at 15° C. for shelf life evaluation and mold development. The shelf life is 4 days for package that had invention pad, whereas the control package without the pad has shelf life of only 2 days. The control package has visible mold on day 4 of holding at 15° C., in contrast, no visible mold observed in the package with the invention pad even 3 days past its shelf life, which is day 7 of holding at 15° C.
This application is a divisional application of U.S. patent application Ser. No. 13/969,393, filed Aug. 16, 2013, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/819,633, filed May 5, 2013, each of which is incorporated herein by reference. This application is also related to U.S. patent application Ser. No. 13/922,122 filed Jun. 19, 2013, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61819633 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13969393 | Aug 2013 | US |
Child | 15389133 | US |