The invention relates to current sensors, and more specifically to a system and method for sensing current by allowing saturation of a core element and drawing the element out of saturation for current measurements.
Many different types and designs of current sensors have been developed and are commercially available. In certain current sensing circuits, a sensing coil is placed within a flux field of a conductor through which the current to be sensed flows. The flux, proportional to the flowing current, induces a current or a voltage in the sensing coil. A voltage across a burden resistor associated with the sensing coil can then be measured, and used as a basis for calculating the current in the conductor, the induced current being a function of the number of turns of the sensing coil. Such devices effectively define transformers in which the conductor (or conductors) forms the primary, and the sensing coil forms the secondary.
Other arrangements are available, such as ones based on Hall effect devices. In general, this type of sensor relies on the generation of a differential voltage in a semiconductor resistor that is proportional to a field produced by the current carrying conductor. Such devices often rely on a slotted ferrous toroid. An output of the Hall effect element is read as a voltage that represents the measured current through a scaling factor.
Still further arrangements are known for current sensing, including Rogowski coils and active cores. Rogowski coils operate in a manner similar to current transformers, but may be made flexible such that they can be wrapped around primary conductors without disturbing power flow. Active core arrangements rely on the control of flux in the sensing core, such as by driving it to saturation.
While such arrangements provide excellent options in many applications, they are not without drawbacks. For example, current transformers and Rogowski coils generally cannot operate to sense direct currents. Moreover, for higher currents, the cores of current transformers may saturate, rendering reliable sensing of current by conventional sensing circuits impossible. Hall effect sensors, on the other hand, may be susceptible to the effects of outside or foreign fields due to the gap in the sensing core where the semiconductive device is placed. Also, depending upon the current levels and components selected, such sensors may be more expensive than current transformers. Active core solutions generally require power to control flux, which may be considerable where saturation is desired.
Therefore, there is a need for improved current sensors and sensing circuits that are able to sense high currents, both alternating and direct currents, at reasonable costs, and in a reliable manner regardless of foreign magnetic fields that may be present in the vicinity of the sensing application.
The present invention provides a novel current sensing technique designed to respond to such needs. The technique makes use of a closed magnetic path in a core, such as a high permeability material. Accuracy is maintained in the presence of foreign magnetic and electromagnetic fields, such as those of adjacent conductors. The technique may be used to measure both alternating and direct currents, and higher currents (that tend to saturate the sensing circuit core). Moreover, with little change, hardware used in the technique can be adapted to selectively operate in one manner for sensing lower currents, and in a different manner (disclosed below) for higher currents. The techniques may be used in a wide range of applications, such as microprocessor and DSP based systems. Presently contemplated applications include variable speed motor drives and other power electronic and power delivery solutions.
Briefly, according to certain embodiments of the invention, a method for sensing current through a conductor is provided. The method comprises switching a control circuit to allow a primary current through the conductor to create a flux in a closed core of a sensing coil, including flux levels that saturate the core. The control circuit is then switched to alter the flux, and a value representative of current through the sensing coil is sensed while the flux is altered. If the core is saturated, the flux may be reduced (or more generally, altered) to a level that will draw the core out of saturation to a non-saturated region, such as to a linear range of a BH hysteresis loop of the core. The value is then transformed to create a measurement of the current through the conductor.
In another embodiment, a system for sensing current through a conductor is provided. The system comprises a sensing coil wound around a closed core configured to receive the conductor therethrough, and control circuitry coupled to the sensing coil and comprising at least one switch. The control circuitry is configured to place the switch in a first conductive state to allow primary current through the conductor to create a flux in the core, including flux levels that saturate the core. The conductive state of the switch is then changed to alter the flux, such as to draw the core out of saturation if it is saturated. The system further includes measurement circuitry coupled to the control circuitry and configured to generate a signal representative of current through the sensing coil.
In another embodiment, a method for sensing current through a conductor is provided. The method comprises determining a current level to be sensed and based upon the current level, implementing a first current sensing algorithm or a second current sensing algorithm wherein the second current sensing algorithm comprises switching a control circuit to allow a primary current through the conductor to create a flux in a closed core of a sensing coil, including levels that saturate the core, switching the control circuit to alter the flux, sensing a value representative of current through the sensing coil while the flux is altered, and transforming a value representative of the current through the sensing coil to a value representative of the current through the conductor.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The technique disclosed below allows for sensing currents in a transformer-type sensing arrangement that includes a closed magnetic core, which may be made of a high permeability material. The technique samples current in a secondary circuit normally when the core is not saturated (which may be in a linear region of the BH hysteresis loop of the core), and by driving the core to a non-saturated region of a BH hysteresis loop of the core when the core is saturated (which may again be in a linear region of the hysteresis loop). This in turn causes the secondary current to flow that is proportional to the primary current by a turns ratio of the transformer. A power source may be used to supply the secondary current since the core flux is driven in an opposite direction with regard to the flux induced by the primary current. In situations where the core saturates, the output signal is available only during the time when the core flux density is in a non-saturated range of the BH hysteresis loop of the core. During this time, the signal is sampled and used to determine current in the primary conductor or conductors.
In general, in presently contemplated embodiments, the system may be comprised of a current transformer, a switch or multiple switches, a sense mechanism, such as a current sense resistor, and a voltage source. The secondary of the transformer forms a series circuit with these components. The current sensing process is initiated by closing one or more switches (depending upon the circuit topology) such that the flux in the secondary opposes the flux in the primary conductor. After a brief transient period where the current ramps due to uncoupled inductance, the secondary current becomes proportional to the primary current by the turns ratio of the current transformer. In the case where a current resistor is utilized, a voltage is formed that is proportional to the primary current. A sample may be made at this time and applied to an analog-to-digital converter. The switch or switches may then be turned off and the core flux controlled by the primary current, which may again drive the core to saturation.
Turning now to the drawings, and referring first to
Control circuitry 18 is coupled to the sensing circuit 12 and includes at least one switch. As described below, currently contemplated embodiments may be based upon a monopolar control circuit configured to operate on a positive half cycle of an alternating current to be sensed. In another embodiment, the control circuitry comprises a bipolar circuit configured to operate on a positive half cycle or a negative half cycle of an alternating current. It should be noted, however, that the circuits allow for sensing direct currents through the primary conductor. Moreover, it should be borne in mind that the particular circuits described herein are intended to be exemplary only, and various sensing circuit arrangements may be utilized that operate in the manners described below.
The control circuitry is configured to place the switch or switches of the circuitry in a first conductive state to allow a primary current in the conductor to create a flux that saturates the sensing circuit. The control circuitry is further configured to change the state of the switch or switches to alter the flux in the sensing circuit to within a non-saturated range of the BH hysteresis loop of the core, so that the current in the sensing circuit can be measured.
A signal representative of a current flowing through the sensing circuit is present at the output of the control circuitry when the sensing circuit switches from a saturated state to a non-saturated state, or when the core is not saturated (i.e., already in a non-saturated range of the hysteresis loop of the core). In operation, when a measurement is to be made, a sample taken of the output of the control circuitry, and the sample is applied to the analog-to-digital converter 20. Any suitable sampling rate may be employed for this purpose, and in a presently contemplated embodiment, converter 20 samples at a nominal rate of 1 kHz. The sampled signal is proportional to the current in the primary conductor, such that the digitized value used by the measurement circuit 22 to calculate the current flowing through the primary conductor. Depending upon the application, the measurement circuit 22 may comprise a dedicated processor, with associated memory for storing programming and data, or may be defined as firmware or software in a processor designed to perform other functions, such as monitoring and/or control.
As described above, and as best shown in
In general, the present technique may be employed with cores of various types and materials, including cores with various forms of BH hysteresis loops. In a presently contemplated embodiment, the core 28 is formed of an amorphous metal or a crystalline metal, such as steel. Such materials are available, for example, from Metglas, Inc. of Conway, S.C. Moreover, in this embodiment, the core comprises a square loop core. Such materials may be permitted to saturate, as described below, and may allow for use of a considerably smaller core than those used in conventional current sensors for the same current levels.
The performance of various cores, including such square loop cores may be illustrated by comparison of the relationships 32, 34 and 36 shown in
In the present context, where currents are sufficiently strong, the core may reach and remain in a saturated condition by relatively high fields generated by the current through the primary conductor. The core may then be pulled out of saturation and into a non-saturated region by control of the flux when measurements are to be made, allowing for sampling of output signals from the sensing coil that accurately reflect the current through the primary conductor (related by the transformer turns ratio). Once the sample is taken, the core may be permitted to return to saturation. It should be noted that in applications where the core will be saturated by the primary conductor current, no energy is required from the control circuitry to reach the saturation state. Circuits that operate by powered saturation of a core are described, for example, in U.S. Pat. No. 6,184,673 issued to the present inventor, Blakely, on Feb. 6, 2001, which is hereby incorporated into the present disclosure by reference.
In operation, either direct or alternating current is applied to the conductor 16, which, if producing a sufficiently strong field, may saturate the core of the coil assembly 14. The diode arrangement allows the core to fly back without excessive voltage occurring on the switching device. When measurements are to be made, the switching device 66 is closed to compete a conductive path to ground. If the core is saturated, the flux is sufficiently reduced to draw the core out of saturation, permitting sampling of a valid measurement, such as within a non-saturated range of the hysteresis loop of the core. Once the sample has been taken, the switching device 66 may be permitted to open, removing reverse flux and allowing the core to return to its unperturbed state (which may, again, be saturation).
Analog-to-digital converter 20 is coupled to the monopolar circuit 60 and is configured to sense an analog signal representative of the voltage upstream of the burden resistor. The analog signal is then converted to a digital value, and applied to the measurement circuitry 22. Based upon the turns ratio of the transformer (i.e., the number of turns of the sensing coil assembly) and the value of the burden resistor, then, the current through the primary conductor may be calculated. It should be noted that the calculation may include compensation for the magnetic characteristics of the core, and that such compensation is considerably simplified by the use of a square loop core (i.e., the absolute value of the current error term is quite small or constant).
As described above, the control circuitry may also be implemented using a bipolar circuit.
In operation, the core of the sensing coil assembly 14 may remain unsaturated, or may saturate periodically or for extended periods, depending upon the components selected and the current to be sensed. For measurements, the conductive states of the switching devices are controlled. In particular, switching devices 86 and 92 are switched together, and switching devices 88 and 90 are switched together, permitting samples to be taken during both positive and negative lobes of the primary conductor current waveform. It should be noted that if the core of the sensing coil assembly is saturated by high currents during either lobe of the waveform, the circuit will pull the core out of saturation, permitting the desired measurements. The samples voltages are converted to digital values and used as the basis for current measurement calculations as discussed above.
It has been found that the above described techniques are particularly well suited for measuring higher currents with smaller closed core structures than could be done in prior art arrangements, and including the ability to measure both changing polarity currents (AC) and direct currents (DC). For example, it is contemplated that techniques may be used to measure currents on the order of from 10-50 A to 2 kA and beyond.
It should also be noted that the general topology of the circuitry described above with reference to
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.