Not Applicable.
Not Applicable.
Not Applicable.
Not Applicable.
1. Field of the Invention (Technical Field)
The present invention relates to dampening of belt modes of stabilized mirrors.
2. Description of Related Art
Gimbal assemblies are commonly employed in optical systems, such as forward looking infrared (FLIR) and laser based targeting and imaging systems, to position and/or stabilize optics, including mirrors. Precise pointing and stabilization of the optical line of sight is important to ensure line of sight accuracy, modulation transfer function, and so forth. Known gimbal assemblies include mirrors and/or lens assemblies that are controlled by belt drive systems, wherein a belt couples a belt drive motor situated on a gyro platform with a rotatable mirror of the gimbal assembly.
Gimbal assemblies having belt drive systems are often used in applications where they are subjected to significant vibra-acoustic energy. Vibra-acoustic energy can disturb and/or degrade stabilization performance. In a gimbal assembly having a belt driven mirror, belt mode resonance causes amplification of mirror vibration that results in degradation of system performance. For example, mirror vibration can reduce the line of sight accuracy in a forward looking infrared radar/laser based optical system, further resulting in the degradation of targeting and/or imaging accuracy.
The vibra-acoustic energy causes the belt drive and mirror to vibrate at a frequency known as the belt modal frequency. For example, a belt modal frequency at around 400 hertz results in an approximate 52 decibel gain, which results in a substantial line of sight (LOS) disturbance of approximately 170 micro-radians root mean squared (RMS).
Most known systems use passive dampers to counter vibrations due to vibra-acoustic energy disturbance (e.g., vibra-acoustic disturbance torque). An exemplary passive damper can comprise a piece of tungsten steel mounted with rubber in shear, wherein the rubber has a high internal damping coefficient. Such passive dampers are also known in the art as inertial dampers or constrained layer dampers. However, passive dampers have several limitations. For example, passive dampers are limited in their ability to counter the effects of vibra-acoustic disturbance energy. Passive dampers typically provide only a 14 decibel improvement over undamped systems. Although passive dampers do provide some improvement, an undesirable amount of line of sight disturbance can still remain. In addition, passive dampers do not function efficiently, or at all, in cold environments. Notch filters may be employed to provide control loop stability but do nothing to attenuate LOS disturbance due to vibra-acoustics.
U.S. Pat. No. 6,137,254, entitled “Active Vibra-Acoustic Damper”, to Hughes, discloses one form of active damping, but lacks significant advantages of the present invention.
The present invention is of an active damping method for a stabilized mirror, and a corresponding active damper apparatus, comprising: providing a tachometer measuring speed of a motor driving the mirror; employing compensation electronics receiving input from said tachometer and the motor; and employing drive electronics providing output to the motor. In the preferred embodiment, the motor comprises a DC torque motor (e.g., a limited angle tachometer), the tachometer comprises a limited angle tachometer, the electronics comprise an AC coupled rate loop (preferably wherein the electronics provide nearly zero phase shift at the lower and upper crossover frequencies of the damper control loop), and the method/apparatus operates on a stabilized mirror in a gimbal. Preferably, the method/apparatus dampens a belt mode, more preferably a belt modes at a frequency between approximately 240 Hz to 700 Hz, most preferably at or about 400 Hz, and most preferably provides at least approximately 70% dampening of a drive belt mode and wherein the method/apparatus is substantially insensitive to belt frequency. The method/apparatus is substantially insensitive to changes in temperature and does not affect operation of the mirror at frequencies at or below approximately one-half of a belt mode frequency.
Objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more preferred embodiments of the invention and are not to be construed as limiting the invention. In the drawings:
Referring to
The active damper of the invention is an AC coupled rate loop (see
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3050670 | Anger et al. | Aug 1962 | A |
3836833 | Harris et al. | Sep 1974 | A |
4143311 | Lee | Mar 1979 | A |
4230294 | Pistiner | Oct 1980 | A |
4536689 | Davidson | Aug 1985 | A |
4881800 | Fuchs et al. | Nov 1989 | A |
5203220 | Lerman | Apr 1993 | A |
5307206 | Haessig, Jr. | Apr 1994 | A |
5643142 | Salerno et al. | Jul 1997 | A |
5714831 | Walker et al. | Feb 1998 | A |
5793541 | Cattan et al. | Aug 1998 | A |
6100535 | Mathies et al. | Aug 2000 | A |
6107770 | Jackson et al. | Aug 2000 | A |
6137254 | Hughes | Oct 2000 | A |
6472840 | Takahashi | Oct 2002 | B1 |
6483610 | Burns | Nov 2002 | B1 |
6597146 | Rehm et al. | Jul 2003 | B1 |
6686716 | Predina et al. | Feb 2004 | B1 |
20030024333 | Wyse | Feb 2003 | A1 |