While this invention is susceptible of an embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention. It is not intended to limit the invention to the specific illustrated embodiments.
Embodiments disclosed herein include an ESA antenna that employs programmable time delays in transmission lines to form timed arrays. That is, in some embodiments disclosed herein, programmable phase shifters and phased arrays are not employed, and antenna beam direction can be maintained independent of frequency. An antenna and/or array in accordance with disclosed embodiments can be both light and cost effective.
According to disclosed embodiments, a programmable time delay can be realized as and/or in a transmission line with a fixed physical length and with a programmable electrical length. That is, the transmission line can carry a radio frequency (RF) signal and can also time-delay the signal, as necessary. Accordingly, the transmission line can include the programmable time delay.
In some embodiments, the transmission lines disclosed herein do not require an active component, such as a low-noise amplifier, in the RF signal path to buffer a high insertion loss. However, in some embodiments, one or more active components can be located in the RF signal path.
An antenna in accordance with disclosed embodiments can transmit and/or receive signals. Accordingly, an antenna in accordance with disclosed embodiments can time-delay transmitted and/or received signals. Furthermore, an antenna in accordance with disclosed embodiments can process a single signal beam or multiple signal beams. When time-delaying multiple beams, the beams can be processed completely or partially independently.
An antenna in accordance with disclosed embodiments can be formed from one or more arrays and/or sub-arrays. For example, an array or a sub-array can be coupled together as would be known and desired by one of ordinary skill in the art to form an antenna. Furthermore, an antenna, an array, and/or a sub-array in accordance with disclosed embodiments can be any size or shape as would be known and desired by one of ordinary skill in the art and is not limited by the embodiments specifically disclosed herein. For example, an array or sub-array can include a linear array or an area array.
In some embodiments, an antenna array or sub-array can be implemented as a nested set of transmission lines and can include any number of nested levels as would be known and desired by one of ordinary skill in the art. For example, an array can include one, two, three, or N number of nested levels, and signals in the array or sub-array can be summed in a nested manner, that is, within each nested level.
In receiving embodiments, an antenna, array, and/or sub-array can receive a signal, for example, a wave front, traveling in free space. However, the first element in the antenna, array, or sub-array may receive the wave front before a second element in the antenna, array, or sub-array, for example, if the wave front is disposed at an angle relative to the antenna, array, and/or sub-array. To account for the delay in receiving the signal, the antenna, array, and/or sub-array disclosed herein can have a combined effect of producing a time delay that is equivalent to the delay of the wave front traveling in free space. For example, an antenna, array, and/or sub-array in accordance with disclosed embodiments can produce a range of time delays from 0 to Δt, where Δt is equivalent to the time it takes for the wave front to travel in free space the longest distance between receiving elements in the antenna, array, and/or sub-array. In some embodiments, the range of time delays that can be produced is continuous. However, in some embodiments, the range of time delays that can be produced is controlled digitally, which can result in discrete increments of time.
In accordance with the above,
As seen in
Although
The physical length of each of the transmission lines 130-1, 130-2, 130-3, 130-3, 130-4 can be fixed, but the electrical length of each of the transmission lines 130-1, 130-2, 130-3, 130-4 can be programmable and variable. Accordingly, the electrical length of each of the transmission lines 130-1, 130-2, 130-3, 130-4 can provide a range of delay times that spans the time it takes a signal to travel between elements in free space, for example, in air or in a vacuum. In some embodiments, the smallest delay time can include a variable time delay programmable to 0, but still include a fixed delay that is attributable to the physical path length of the respective transmission line. In some embodiments, the largest delay time can include the time it takes a signal to travel the longest distance in free space between antenna elements. That is, the largest delay time can include the time it takes a signal to travel in free space between the first antenna element 110-1 that receives the signal wave front and the antenna element 110-3, which is located the greatest distance from the first antenna element 110-1.
As seen in
In accordance with the above, the transmission path between adjacent elements can be the length of the diagonal path, or d√2. Accordingly, the time that it takes a signal to travel between adjacent elements in free space can be Δt=(d√2)/c, where c is approximately 3×1010 cm/second, which is the speed of light in free space. Therefore, while the fixed length of the transmission path between antenna element 110-1 and antenna element 110-2 can be d√2, or the fixed length of transmission line 130-1 plus the fixed length of transmission line 130-2, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 130-1 and transmission line 130-2 can be 0≦Δt≦(d√2)/c. Similarly, while the fixed length of the transmission path between antenna element 110-2 and antenna element 110-3 can be d√2, or the fixed length of transmission line 130-2 plus the fixed length of transmission line 130-3, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 130-2 and transmission line 130-3 can be 0≦Δt≦(d√2)/c. While the fixed length of the transmission path between antenna element 110-3 and antenna element 110-4 can be d√2, or the fixed length of transmission line 130-3 plus the fixed length of transmission line 130-4, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 130-3 and transmission line 130-4 can be 0≦Δt≦(d√2)/c. While the fixed length of the transmission path between antenna element 110-4 and antenna element 110-1 can be d√2, or the fixed length of transmission line 130-4 and the fixed length of transmission line 130-1, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 130-4 and transmission line 130-1 can be 0≦Δt≦(d√2)/c.
The beam former 100 shown in
In
Similarly, level-one beam formers 100-5, 100-6, 100-7, 100-8 can be connected to a summing node 210-2 by respective transmission lines 220-5, 220-6, 220-7, 220-8. That is, transmission line 220-5 can connect the summing node 120-5 of level-one beam former 100-5 to the summing node 210-2, transmission line 220-6 can connect the summing node 120-6 of level-one beam former 100-6 to the summing node 210-2, transmission line 220-7 can connect the summing node 120-7 of level-one beam former 100-7 to the summing node 210-2, and transmission line 220-8 can connect the summing node 120-8 of level-one beam former 100-8 to the summing node 210-2.
Level-one beam formers 100-9, 100-10, 100-11, 100-12, can also be connected to a summing node 210-3 by respective transmission lines 220-9, 220-10, 220-11, 220-12. That is, transmission line 220-9 can connect the summing node 120-9 of level-one beam former 100-9 to the summing node 210-3, transmission line 220-10 can connect the summing node 120-10 of level-one beam former 100-10 to the summing node 210-3, transmission line 220-11 can connect the summing node 120-11 of level-one beam former 100-11 to the summing node 210-3, and transmission line 220-12 can connect the summing node 120-12 of level-one beam former 100-12 to the summing node 210-3.
Finally, level-one beam formers 100-13, 100-14, 100-15, 100-16 can be connected to a summing node 210-4 by respective transmission lines 220-13, 220-14, 220-15, 220-16. That is, transmission line 220-13 can connect the summing node 120-13 of level-one beam former 100-13 to the summing node 210-4, transmission line 220-14 can connect the summing node 120-14 of level-one beam former 100-14 to the summing node 210-4, transmission line 220-15 can connect the summing node 120-15 of level-one beam former 100-15 to the summing node 210-4, and transmission line 220-16 can connect the summing node 120-16 of level-one beam former 100-16 to the summing node 210-4.
The physical length of each of the transmission lines 220-1, 220-2, 220-3, 220-4, 220-5, 220-6, 220-7, 220-8, 220-9, 220-10, 220-11, 220-12, 220-13, 220-14, 220-15, 220-16 can be fixed, but the electrical length of each of the transmission lines 220-1, 220-2, 220-3, 220-4, 220-5, 220-6, 220-7, 220-8, 220-9, 220-10, 220-11, 220-12, 220-13, 220-14, 220-15, 220-16 can be programmable and variable. Accordingly, the electrical length of each of the transmission lines 220-1, 220-2, 220-3, 220-4, 220-5, 220-6, 220-7, 220-8, 220-9, 220-10, 220-11, 220-12, 220-13, 220-14, 220-15, 220-16 can provide a range of delay times that spans the time it takes a signal to travel between elements in free space, for example, in air or in a vacuum. In some embodiments, the smallest delay time can include a variable time delay programmable to 0, but still include a fixed delay that is attributable to the physical path length of the transmission line. In some embodiments, the largest delay time can include the time it takes a signal to travel the longest distance in free space between antenna elements. That is, the largest delay time can include the time it takes a signal to travel in free space between antenna element 110-1 in beam former 100-1 and antenna element 110-3 in beam former 100-3.
In
Similarly, the distance between level-one beam former 100-5 and level-one beam former 100-6 can be λ, the distance between level-one beam former 100-6 and level-one beam former 100-7 can be λ, the distance between level-one beam former 100-7 and level-one beam former 100-8 can be λ, and the distance between level-one beam former 100-8 and level-one beam former 100-1 can be λ. Accordingly, the distance between level-one beam former 100-5 and level-one beam former 100-7 can be λ√2, and the distance between level-one beam former 100-6 and level-one beam former 100-8 can be λ√2.
The distance between level-one beam former 100-9 and level-one beam former 100-10 can also be λ, the distance between level-one beam former 100-10 and level-one beam former 100-11 can be λ, the distance between level-one beam former 100-11 and level-one beam former 100-12 can be λ, and the distance between level-one beam former 100-12 and level-one beam former 100-9 can be λ. Accordingly, the distance between level-one beam former 100-9 and level-one beam former 100-11 can be λ√2, and the distance between level-one beam former 100-10 and level-one beam former 100-12 can be λ√2.
Finally, the distance between level-one beam former 100-13 and level-one beam former 100-14 can be λ, the distance between level-one beam former 100-14 and level-one beam former 100-15 can be λ, the distance between level-one beam former 100-15 and level-one beam former 100-16 can be λ, and the distance between level-one beam former 100-16 and level-one beam former 100-13 can be λ. Accordingly, the distance between level-one beam former 100-13 and level-one beam former 100-15 can be λ√2, and the distance between level-one beam former 100-14 and level-one beam former 100-16 can be λ√2.
In accordance with the above, the transmission path between related and adjacent level-one beam formers can be the length of the diagonal path, or λ√2. Accordingly, the time that it takes a signal to travel between adjacent elements in free space can be Δt=(λ√2)/c, where c is approximately 3×1010 cm/second, which is the speed of light in free space. Therefore, while the fixed length of the transmission path between level-one beam former 100-1 and level-one beam former 100-2 can be λ√2, or the fixed length of transmission line 220-1 plus the fixed length of transmission line 220-2, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-1 and transmission line 220-2 can be 0≦Δt≦(λ√2)/c. Similarly, while the fixed length of the transmission path between level-one beam former 100-2 and level-one beam former 100-3 can be λ√2, or the fixed length of transmission line 220-2 plus the fixed length of transmission line 220-3, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-2 and transmission line 220-3 can be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-3 and level-one beam former 100-4 can also be λ√2, or the fixed length of transmission line 220-3 plus the fixed length of transmission line 220-4, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-3 and transmission line 220-4 can also be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-4 and level-one beam former 100-1 can be λ√2, or the fixed length of transmission line 220-4 plus the fixed length of transmission line 220-1, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-4 and transmission line 220-1 can be 0≦Δt≦(λ√2)/c.
Similarly, while the fixed length of the transmission path between level-one beam former 100-5 and level-one beam former 100-6 can be λ√2, or the fixed length of transmission line 220-5 plus the fixed length of transmission line 220-6, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-5 and transmission line 220-6 can be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-6 and level-one beam former 100-7 can be λ√2, or the fixed length of transmission line 220-6 plus the fixed length of transmission line 220-7, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-6 and transmission line 220-7 can be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-7 and level-one beam former 100-8 can also be λ√2, or the fixed length of transmission line 220-7 plus the fixed length of transmission line 220-8, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-7 and transmission line 220-8 can also be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-8 and level-one beam former 100-5 can be λ√2, or the fixed length of transmission line 220-8 plus the fixed length of transmission line 220-5, the variable time that it can take a signal to travel variable electrical lengths of transmission line 220-8 and transmission line 220-5 can be 0≦Δt≦(λ√2)/c.
While the fixed length of the transmission path between level-one beam former 100-9 and level-one beam former 100-10 can be 102, or the fixed length of transmission line 220-9 plus the fixed length of transmission line 220-10, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-9 and transmission line 220-10 can be 0≦Δt≦(λ√2)/c. Similarly, while the fixed length of the transmission path between level-one beam former 100-10 and level-one beam former 100-11 can be λ√2, or the fixed length of transmission line 220-10 plus the fixed length of transmission line 220-11, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-10 and transmission line 220-11 can be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-11 and level-one beam former 100-12 can also be λ√2, or the fixed length of transmission line 220-11 plus the fixed length of transmission line 220-12, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-11 and transmission line 220-12 can also be 0≦Δt≦(λ√2)/. While the fixed length of the transmission path between level-one beam former 100-12 and level-one beam former 100-9 can be λ√2, or the fixed length of transmission line 220-12 plus the fixed length of transmission line 220-9, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-12 and transmission line 220-9 can be 0≦Δt≦(λ√2)/c.
While the fixed length of the transmission path between level-one beam former 100-13 and level-one beam former 100-14 can be λ√2, or the fixed length of transmission line 220-13 plus the fixed length of transmission line 220-14, the variable time that it can take a signal to travel variable electrical lengths of transmission line 220-13 and transmission line 220-14 can be 0≦Δt≦(λ√2)/c. Similarly, while the fixed length of the transmission path between level-one beam former 100-14 and level-one beam former 100-15 can be λ√2, or the fixed length of transmission line 220-14 plus the fixed length of transmission line 220-15, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-14 and transmission line 220-15 can be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-15 and level-one beam former 100-16 can also be λ√2, or the fixed length of transmission line 220-15 plus the fixed length of transmission line 220-16, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 220-15 and transmission line 220-16 can also be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-one beam former 100-16 and level-one beam former 100-13 can be λ√2, or the fixed length of transmission line 220-16 plus the fixed length of transmission line 220-13, the variable time that it can take a signal to travel variable electrical lengths of transmission line 220-16 and transmission line 220-13 can be 0≦Δt≦(λ√2)/c.
As seen in
The physical length of each of the transmission lines 250-1, 250-2, 250-3, 250-4 can be fixed, but the electrical length of each of the transmission lines 250-1, 250-2, 250-3, 250-4 can be programmable and variable. Accordingly, the electrical length of each of the transmission lines 250-1, 250-2, 250-3, 250-4 can provide a range of delay times that spans the time it takes a signal to travel between elements in free space, for example in air or in a vacuum. In some embodiments, the smallest delay time can include a variable time delay programmable to 0, but still include a fixed delay that is attributable to the physical path length of the transmission line. In some embodiments, the largest delay time can include the time it takes a signal to travel the longest distance between antenna elements. That is, the largest delay time can include the time it takes a signal to travel in free space between a first antenna element 110-1 in beam former 110-1 of beam former 230-1 and an the antenna element 110-3 in beam former 100-11 of beam former 230-3, which is located the greatest distance from the first antenna element 110-1.
In
In accordance with the above, the transmission path between adjacent level-two beam formers can be the length of the diagonal path, or 2λ√2. Accordingly, the time that it takes a signal to travel between adjacent elements can be Δt=(2λ√2)/c, where c is approximately 3×1010 cm/second, which is the speed of light in free space. Therefore, while the fixed length of the transmission path between level-two beam former 230-1 and level-two beam former 230-2 can be 2λ√2, or the fixed length of transmission line 250-1 plus the fixed length of transmission line 250-2, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 250-1 and transmission line 250-2 can be 0≦Δt≦(λ√2)/c. Similarly, while the fixed length of the transmission path between level-two beam former 230-2 and level-two beam former 230-3 can be 2λ√2, or the fixed length of transmission line 250-2 plus the fixed length of transmission line 250-3, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 250-2 and transmission line 250-3 can be 0≦Δt≦(2λ√2)/c. While the fixed length of the transmission path between level-two beam former 230-3 and level-two beam former 230-4 can also be 2λ√2, or the fixed length of transmission line 250-3 plus the fixed length of transmission line 250-4, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 250-3 and transmission line 250-4 can be 0≦Δt≦(λ√2)/c. While the fixed length of the transmission path between level-two beam former 230-4 and level-two beam former 230-1 can be 2λ√2, or the fixed length of transmission line 250-4 plus the fixed length of transmission line 250-1, the variable time that it can take a signal to travel the variable electrical lengths of transmission line 250-4 and transmission line 250-1 can be 0≦Δt≦(λ√2)/c.
As seen in
As also seen in
As also seen in
In accordance with disclosed embodiments, the scaling between the levels of the nested transmission lines can provide an opportunity to route multiple levels within a single layer of transmission lines, thus forming a compact, planar array. For example, when the nested transmission lines are scaled in accordance with disclosed embodiments, multiple nest levels can be routed within a single layer of transmission lines without any of the transmission lines in the layer crossing another transmission line in the layer. In accordance with disclosed embodiments, additional layers can support additional transmission lines and summing nodes to form an arbitrarily large array or sub-array.
It is to be understood that the beam former 200 shown in
It is also to be understood that the dashed lines of level-one beam formers 100-1, 100-2, 100-3, 100-4, 100-5, 100-6, 100-7, 100-8, 100-9, 100-10, 100-11, 100-12, 100-13, 100-14, 100-15, 100-16 and of level-two beam formers 230-1, 230-2, 230-3, 230-4 shown in
The transmission lines in accordance with disclosed embodiments, for example, those shown in
The time delay of each of the fixed paths 310-1, 310-2, 310-3 can be TL. However, each switching stage 320-1, 320-2, 320-3 can include two distinct paths, each of which has a distinct time delay. For example, stage 320-1 can include path 322-1 and path 324-1. Path 322-1 can have a time delay of TP, and path 324-1 can have a time delay of TP+Δt, or a range of programmable delays from 0 to Δt. Similarly, stage 320-2 can include path 322-2 and path 324-2. Path 322-2 can have a time delay of TP, and path 324-2 can have a time delay of TP+2Δt, or a range of programmable delays from 0 to 2Δt. Stage 320-3 can include path 322-3 and 324-3. Path 322-3 can have a time delay of TP, and path 324-3 can have a time delay of TP+4Δt, or a range of programmable delays from 0 to 4Δt.
In the first switching stage 320-1, the switch 330-1 can be flipped to route a signal traversing the transmission line 300 through either the path 322-1 or the path 324-1. Similarly, in the second switching stage 320-2, the switch 330-2 can be flipped to route a signal traversing the transmission line 300 through either the path 322-2 or the path 324-2. In the third switching stage 320-3, the switch 330-3 can be flipped to route a signal traversing the transmission line 300 through either the path 322-3 or the path 324-3. Thus, the total time delay for the transmission line 300 can depend on the switches 330-1, 330-2, 330-2 and the paths 322-1 or 324-1, 322-2 or 324-2, 322-3 or 324-3 along which the signal traversing the transmission line 300 travels. That is, the total time delay T for the transmission line 300 can be T=3TP+3TL+(0:7Δt). In some embodiments, the variable time delay can be executed in discrete time increments of Δt.
It is to be understood that embodiments of transmission lines in accordance with disclosed embodiments are not limited to those shown in
As seen in
For example, the transmission line 400 can include an LCD dielectric 410 and a biasing device, for example, a 3-bit digital-to-analog converter (“DAC”) 420, to bias the LCD dielectric 410. Although the DAC 420 shown in
The transmission line 400 can have a minimum time delay of Tmin. However, depending on the selected setting of the DAC 420, the DAC 420 can vary the dielectric constant of the LCD dielectric 410 and cause an additional delay in the transmission line 400 of Δt, 2Δt, and/or 4Δt. Accordingly, the total time delay T for the transmission line 400 can be T=Tmin+(0:7Δt). In some embodiments, the variable time delay can be continuous and/or analog and infinitely variable, but in some embodiments, the time delay can be executed in steps of Δt.
In some embodiments, a transmission line as disclosed herein can be implemented as a stripline, waveguide, or any other buried-structure device as would be known and desired by one of ordinary skill in the art.
In accordance with disclosed embodiments, an ESA antenna can employ programmable time delays to form timed arrays. In some embodiments, a timed array can include transmission lines as shown and described herein, for example, a transmission line 300 with switches at different stages as shown in
Any and all of the array antennas, timed arrays, sub-arrays and/or transmission lines shown and described herein can be implemented with the system 500 shown in
Additionally or alternatively, control of any and all of the array antennas, timed arrays, sub-arrays and/or transmission lines shown and described herein can be implemented with an integrated circuit (“IC”). For example, one or more integrated circuits can be embedded in or on an antenna or array layer that is separate from a layer that includes the antenna elements and beam formers shown and described herein. In some embodiments, an IC can execute steps to vary the electrical length of a transmission line, for example, by controlling voltages to cause a time delay.
Although time delays have been shown and described herein, it is to be understood that the principles of the embodiments disclosed herein can also be applied to programmable and variable impedance. For example, when transmission lines include a programmable time delay, impedance mismatching may occur. Accordingly, embodiments disclosed herein can include a variable and programmable impedance within the transmission line, and the impedances of transmission lines within a beam former can be matched accordingly.
Although a few embodiments have been described in detail above, other modifications are possible. For example, the logic flows described above do not require the particular order described, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems. Other embodiments may be within the scope of the invention.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific system or method described herein is intended or should be inferred. It is, of course, intended to cover all such modifications as fall within the sprit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 13842251 | Mar 2013 | US |
Child | 15139026 | US |