The present invention generally relates to an appliance cooling system and a method for constructing therefore.
An aspect of the present invention is generally directed towards an appliance having an interior that includes a fresh food storage compartment and a freezer compartment separated by a mullion. The fresh food compartment has a direct cooling evaporator disposed in thermal communication with the fresh food storage compartment in order to provide cooling to the fresh food storage compartment. The freezer compartment includes a direct cooling evaporator disposed in thermal communication with the freezer compartment to provide cooling to the freezer compartment. The appliance further includes a forced air coil system disposed between the fresh food storage compartment and the freezer compartment. The forced air coil system is configured to selectively provide cooling to one or both of the fresh food storage compartment and the freezer compartment. The forced air coil system includes at least one turbo chilling evaporator and at least one moving evaporator fan which is operably and rotatably connected to the fresh food storage compartment and the freezer compartment.
Another aspect of the present invention is generally directed to an appliance cabinet having a food storage compartment, a freezer compartment, and a forced air coil system. The forced air coil system is in thermal communication and configured to provide cooling to the food storage compartment and the freezer compartment. Additionally, the forced air coil system is disposed within a cavity between the food storage compartment and the freezer compartment. The forced air coil system includes at least one turbo evaporator and at least one pivoting evaporator fan. The pivoting evaporator fan is operably and rotatably connected to be positioned in a first position which provides cooling to the food storage compartment and a second position which provides cooling to the freezer compartment.
Yet another aspect of the present invention is generally directed towards a method of providing cooling to a food storage compartment and a freezer compartment. An appliance cabinet includes a food storage compartment which receives cooling from the fresh food compartment evaporator and a freezer compartment which receives cooling from a freezer compartment evaporator and a forced air coil system disposed between the food storage compartment and the freezer compartment. Additionally, the forced air coil system is in air flow communication with both the food storage compartment and the freezer compartment. Moreover, the forced air coil system comprises a booster evaporator and an evaporator fan. Next, the evaporator fan is pivoted in a rotational motion to the first position in order to provide air flow to the fresh food storage compartment. Next the moisture is sublimated from the turbo evaporator and into the fresh food compartment in order to defrost the turbo evaporator. Next, the pivoting evaporator fan pivots in rotational motion to a second position which provides airflow to the freezer compartment. Finally, the evaporator fan can split its airflow between the at least one food storage compartment and the at least one freezer compartment.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings, certain embodiment(s) which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessarily to scale, but relative special relationships are shown and the drawings may be to scale especially where indicated. As such, in the description or as would be apparent to those skilled in the art. Certain features of the invention may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.
Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise.
The present invention is generally directed toward appliance systems and methods for increasing the efficiency (coefficient of performance) of the appliance. The appliance systems may be bottom mount freezer systems, top mount freezer systems, side by side refrigerator and freezer system, or French door style bottom mount freezer systems that may or may not employ a third compartment, typically a drawer that may operate as a refrigerator drawer or a freezer drawer.
The refrigerator 2 is adapted to receive and/or be capable of receiving a variety of shelves and modules at different positions defined by, in the embodiment shown in
Some of the modules in refrigerator 2, such as modules 50 and 62, may be powered modules or components and therefore require operating utilities. Thus, for example, module 50 may be a powered crisper or an instant thaw or chill module and may require utilities, such as cooled or heated fluids or electrical operating power and receive these utilities from the appliance. Other modules, such as module 62, may likewise require operational utilities while modules, such as a passive crisper module, would not. Door modules also, such as module 62, may, for example, include a water dispenser, vacuum bag sealer or other accessory conveniently accessible either from the outside of door 8 or from within the door and likewise may receive operating utilities from conduits, such as disclosed in application Ser. No. 12/469,915 filed May 21, 2009, now U.S. Pat. No. 8,453,476, entitled Refrigerator Module Mounting System; and Ser. No. 12/469,968 filed May 21, 2009, now U.S. Pat. No. 8,505,328, entitled Multiple Utility Ribbon Cable. The disclosures of these patent applications are incorporated herein by reference in their entirety. While not shown in the figures, the modules may also be used for quick cooling of beverages, quick freezing/chilling of other food stuffs or even making of ice, ice pieces (cubes), or frozen products.
The present invention includes the use of sequential dual evaporator systems that employ a switching mechanism. The switching mechanism allows the system to better match total thermal loads with the cooling capacities provided by the compressor. Generally speaking, the appliance gains efficiency by employing the switching mechanism, which allows selection of the evaporator circuit to be fed refrigerant with a liquid line valving system resulting in independent fresh food and freezer cooling cycles of several (>4) minutes duration or via a rapid suction port switching, typically on the order of a fraction of a second. The suction side switching mechanism can be switched at a fast pace, typically about 30 seconds or less or exactly 30 seconds or less, more typically about 0.5 seconds or less or exactly 0.5 seconds or less, and most typically about 10 milliseconds or less or exactly 10 milliseconds or less (or any time interval from about 30 seconds or less). As a result, the system rapidly switches between a freezer compartment operation mode and a refrigeration (fresh food) operation mode. The compressor 12 may be a variable capacity compressor, such as a linear compressor, in particular an oil-less linear compressor, which is an orientation flexible compressor (i.e., it operates in any orientation not just a standard upright position, but also a vertical position and an inverted position, for example). The compressor is typically a dual suction compressor or a single suction compressor with an external switching mechanism. When the compressor is a single suction compressor, it typically provides non-simultaneous dual suction from the coolant fluid conduits 20 from the refrigeration (fresh food) compartment and the freezer compartment.
As discussed above and shown generally in
As shown in
As discussed above, the first compartment is typically the refrigeration or fresh food compartment. The second is typically the freezer compartment. While this is the typical configuration, the configuration could conceivably be two refrigeration compartments or two freezer compartments.
As shown in various figures, including
In the case of the top mount and bottom mount freezer, the mullion separating the compartments is typically a horizontal mullion. In the case of a side by side configuration, the mullion separating the two compartments is a vertical mullion.
The compressor 12 may be a standard reciprocating or rotary compressor, a variable capacity compressor, including but not limited to a linear compressor, or a multiple intake compressor system. When a standard reciprocating or rotary compressor with a single suction port is used the system further includes a compressor system 30 (not shown in figures). A compressor according to an aspect of the present invention may utilize a compressor system 40 that contains two coolant fluid intake streams such as one from the refrigerator compartment evaporator and one freezer compartment evaporator. When a linear compressor, which can be on oil less linear compressor, is utilized, the linear compressor has a variable capacity modulation, which is typically larger than a 3 to 1 modulation capacity typical with a variable capacity reciprocating compressor. The modulation low end is limited by lubrication and modulation scheme.
Thermal storage material may also be used to further enhance efficiencies of the appliance. Thermal storage material 46 (
One aspect of the present invention, shown in
The forced air coil system 100 uses input from the sensors 114 and a user set point in order to determine when to deliver the turbo chilling to the fresh food compartment 16, the freezer compartment 18, or both. The forced air coil system 100 is configured to provide shock freezer capability dehumidification or fast recovery for the fresh food compartment 16 and the freezer compartment 18. Significantly, by having the forced air coil system 100 outside of the freezer compartment 18 and the fresh food storage compartment 16, the turbo evaporator coil 102 can be defrosted without heating up either the food storage compartment 16 or the freezer compartment 18.
The refrigerator may also include a variable capacity compressor 12, a condenser 22, at least two valves and cooling conduits 20 that are configured to operably deliver coolant to and from the condenser 22. Further, the appliance may include a direct cooling evaporator 14 in the fresh food compartment 16, a direct cooling evaporator 14 in the freezer compartment 18 and at least one turbo evaporator 102. Additionally, a common refrigerant coolant conduit section 20 is the only coolant outlet from the compressor 12. Moreover, the condenser 22 can be the only condenser 22 that supplies coolant to the fresh food compartment direct cooling evaporator 14, the freezer compartment direct cooling evaporator 14, and the turbo chilling evaporator 102. The coolant leaves each of the evaporators 14 and merges into a shared coolant flow either within the compressor 12 or after the coolant passes through the evaporators 14, but before entering the compressor 12. In this case, the compressor 12 is the only compressor 12 that supplies coolant to the condenser 22. The compressor 12 may also be at least a triple suction compressor with a first port suction receiving coolant from the fresh food compartment direct cooling evaporator 14, a second port suction receiving coolant from the freezer compartment direct cooling evaporator 14 and a third port suction receiving coolant from the turbo chilling evaporator 102. Further, the variable capacity compressor 12 can be a linear compressor.
The forced air coil system 100 of the present invention helps maintain either the fresh food storage compartment, or the freezer compartment, or both at a steady temperature in order to optimize food preservation. Additionally, the forced air coil system 100 of the present invention is capable of providing shock freeze capability or ultra-fast recovery for better freezer storage life. Moreover, as discussed above, placing the forced air coil system 100 in the mullion of the appliance, allows the evaporator coil of the forced air coil system 100 to heat up without heating up the freezer compartment or the fresh food storage compartment of the appliance.
Those skilled in the art with recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
This application is a continuation application of U.S. patent application Ser. No. 13/834,048 entitled ACTIVE INSULATION HYBRID DUAL EVAPORATOR WITH ROTATING FAN, filed on Mar. 15, 2013, now U.S. Pat. No. 9,140,480, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2094321 | Haid | Sep 1937 | A |
3065553 | Olin | Nov 1962 | A |
4032254 | Bentz | Jun 1977 | A |
5435695 | Chiu | Jul 1995 | A |
5778973 | Shin | Jul 1998 | A |
6185951 | Lane et al. | Feb 2001 | B1 |
6837067 | Lee | Jan 2005 | B2 |
6929149 | Selfridge et al. | Aug 2005 | B2 |
7818974 | Kim et al. | Oct 2010 | B2 |
20010004076 | Kim | Jun 2001 | A1 |
20030140638 | Arshansky et al. | Jul 2003 | A1 |
20030234259 | Selfridge et al. | Dec 2003 | A1 |
20040033138 | Jung et al. | Feb 2004 | A1 |
20040244396 | Lane et al. | Dec 2004 | A1 |
20050263536 | Selfridge et al. | Dec 2005 | A1 |
20100037650 | Lee et al. | Feb 2010 | A1 |
20100043455 | Kuehl et al. | Feb 2010 | A1 |
20100100243 | Lee et al. | Apr 2010 | A1 |
20100126207 | Bae et al. | May 2010 | A1 |
20100205997 | Bae et al. | Aug 2010 | A1 |
20120031112 | Kulkarni | Feb 2012 | A1 |
20120144856 | Sherlock | Jun 2012 | A1 |
20120272670 | Choi et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
2006105406 | Apr 2006 | JP |
Entry |
---|
European Search Report, dated Oct. 8, 2015, Patent No. 2778575; pp. 6. |
Number | Date | Country | |
---|---|---|---|
20150362245 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13834048 | Mar 2013 | US |
Child | 14833242 | US |