The present invention relates generally to well completion installation systems, and more particularly to an installation and verification system for multi-zone intelligent completion systems. However, identification of an exemplary field is for the purpose of simplifying the detailed description and should not be construed as a limitation. Various embodiments of the concepts presented herein may be applied to a wide range of applications and fields as appropriate.
Hydrocarbon fluids such as oil and natural gas are obtained from a subterranean geologic formation, referred to as a reservoir, by drilling a well that penetrates the hydrocarbon-bearing formation. Once a wellbore is drilled, various forms of well completion components may be installed in order to control and enhance the efficiency of producing the various fluids from the reservoir. For example, in some cases an Active Integrated Completion (AIC) system may be installed into the wellbore in order to facilitate fluid production, such as when a long, horizontal lateral well bore which intersects numerous production zones is preferred. Several types of AIC systems are known, as described by Schlumberger's U.S. patent application Ser. No. 12/331,602, the contents of which are herein incorporated by reference in their entirety. However, problems may occur during the installation of a complex completion system such as the AIC system that could result in an increase in costs and rig time. Accordingly, there exists a need for methods and systems suitable to optimize the installation of AIC type completion systems.
Embodiments of the claimed invention may comprise an installation system configured to facilitate installation of and communication with a lower completion section, which may comprise numerous AIC systems. The installation system may comprise a drill pipe which is configured to releasably attach to the lower completion section, an electrical wet connect connector configured to communicate with a corresponding electrical wet connect run on a logging cable, and a power conduit configured to establish a power and communication pathway between the electrical wet connect and components of the lower completion section. The connection of the electrical wet connect run on the logging cable and the electrical wet connect connector provides a surface communication pathway, along the logging cable, between a surface location and the components of the lower completion section. In some cases, an inductive coupler may be provided to establish communication between the lower completion system and an installation drill pipe. As a result, a communication pathway may be established between the lower completion section and a point on the surface. This communication pathway may allow communication to the lower completion's AIC systems prior to the running in of the upper completion, or the setting of the lower completion packer.
Embodiments of the claimed invention may also comprise a method of installing a lower completion which includes attaching a lower completion section to an installation system. The lower completion section and installation system are run in hole. The installation system may comprise a drill pipe which is configured to releasably attach to the lower completion section, an electrical wet connect connector configured to communicate with a corresponding electrical wet connect run on a logging cable, and a power conduit configured to establish a power and communication pathway between the electrical wet connect and components of the lower completion section. A logging cable with an electrical wet connect is run through the drill pipe, and the electrical wet connect on the logging cable is connected with or to the electrical wet connect connector on the installation system. Power is provided to the lower completion section through the pathway provided by the logging cable, the electrical wet connect, the electrical wet connect connector, and the power conduit. Communication is established between a surface location and the lower completion section, also through the surface communication pathway provided by the logging cable, the electrical wet connect and the electrically wet connect connector, and the power conduit. At least one diagnostic or functional test is performed on the lower completion section, making use of the pathway to transmit the test data to the surface.
Other or alternative features will become apparent from the following description, from the drawings, and from the claims.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying drawings illustrate only the various implementations described herein and are not meant to limit the scope of various technologies described herein. The drawings are as follows:
In the following description, numerous details are set forth to provide an understanding of some illustrative embodiments of the present invention. However, it will be understood by those skilled in the art that various embodiments of the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
In the specification and appended claims: the terms “connect”, “connection”, “connected”, “in connection with”, and “connecting” are used to mean “in direct connection with” or “in connection with via one or more elements”; and the term “set” is used to mean “one element” or “more than one element”. Further, the terms “couple”, “coupling”, “coupled”, “coupled together”, and “coupled with” are used to mean “directly coupled together” or “coupled together via one or more elements”. As used herein, the terms “up” and “down”, “upper” and “lower”, “upwardly” and downwardly”, “upstream” and “downstream”; “above” and “below”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the invention.
A lower completion section comprising at least one AIC system may be installed in a wellbore in order to provide an increased resolution inside of a reservoir, i.e., such as with an increased number of hydrocarbon producing zones covered in any given wellbore. In addition, the AIC system may allow for relatively increased efficiency and effectiveness in monitoring (e.g., pressure, temperature, flow rate, and water detection, among others) and control (e.g., electric, infinitely variable, among others). This monitoring and control may be achieved and communicated via an electric cable to the surface. The AIC system accomplishes this by isolating each zone with a packer element, and disposing a flow control valve within the isolated zone. Sensors and control lines (e.g. electric, fiber optic, or hydraulic) are also run throughout the AIC system, and communicate with the various elements in the zones. In some embodiments, the AIC system may not include flow control valves within the isolated zones. In these embodiments, sensors and control lines may still be present however, so that information relating to conditions within the isolated zones may still be collected and transmitted to the surface. In some embodiments, the lower completion may have upwards of fifteen such AIC systems, allowing for a greatly increased reservoir control over other conventional systems.
An exemplary embodiment of some aspects of an AIC system is shown in
In some embodiments, it may be possible to enhance a lower completion system with AIC systems by installing an inductive coupler or an upper completion to lower completion downhole electric, hydraulic, or fiber optic wet connect. Several types of inductive coupler systems are known, as described by Schlumberger's U.S. patent application Ser. No. 12/789,613, the contents of which are herein incorporated by reference in their entirety. The inductive coupler may allow for a split between an upper and lower completion, accordingly facilitating a more time efficient installation. In addition, the ability to split the completion may allow for effective future replacements of the upper completion. For example, the replacement of the upper completion could be required if a tubing leak has developed, or if a well operator needs to install or replace an electronic submersible pump (ESP), where the life expectancy typically is a lot less than the target life of any given well, among other situations. However, it should be noted that a lower completion with AIC systems can be installed without an inductive coupler or an upper completion to lower completion downhole electric, hydraulic, or fiber optic wet connect, e.g., by running tubing to surface and clamping an electric cable onto the tubing.
Use of an inductive coupler or an upper completion to lower completion downhole electric, hydraulic or fiber optic wet connect may allow for a lower completion section to be independently installed across a reservoir (i.e., not via an uninterrupted physical connection to a point at the surface of the well). One illustrative example of such a lower completion system may comprise one or more AIC systems (e.g., more than 15, in some cases, for example), an inductive coupler, and a production packer located near the top of the lower completion section. While the various AIC systems may be installed in the reservoir (e.g., such as in an open hole or in a perforated casing), the production packer may be installed inside of a cased section of the wellbore in order to ensure proper anchoring of the lower completion system.
Embodiments of an inductive coupler may create a magnetic field across two mating components without a direct physical connection. As a result, when applying electric power from the surface via an electric cable connected to an inductive coupler, communication (in the form of power and/or data) can be established with the sensors and valves installed below the inductive coupler. Connectivity between mating components for the inductive coupler may be applied through tubing. This type of connection allows for the transfer of power and data between the upper and lower completion sections, as well as to the surface (via an cable extending to the surface).
Embodiments of an upper completion to lower completion downhole electric wet connect may create a direct physical connection between two mating components, for instance, between an electric cable disposed on the upper completion and an electric cable disposed on the lower completion. As a result, when applying electric power from the surface via an electric cable connected to the upper completion portion, communication (in the form of power and/or data) can be established with the sensors and valves installed below the downhole electric wet connect, for instance, in the lower completion. This type of connection also allows for the transfer of power and data between the upper and lower completion sections, as well as to the surface (via a cable extending to the surface). An upper completion to lower completion downhole electric wet connect may also be used in conjunction with an upper completion to lower completion downhole hydraulic, or fiber optic wet connect.
Embodiments of an upper completion to lower completion downhole hydraulic wet connect may also create a direct physical connection between two mating components, for instance, between a hydraulic control line disposed on the upper completion and a hydraulic control line disposed on the lower completion. This connection allows a fluid communication path to be created between the upper completion, the lower completion, and the surface. As a result, a pressure differential (e.g. a pressure pulse) may be transmitted from the surface via the hydraulic control line to the lower completion elements installed below the downhole hydraulic wet connect, for instance, in the lower completion. This type of connection may be used to send a pressure signal to lower completion elements such as flow control valves. In response to such a signal, the flow control valve may perform an action, such as cycling or closing. An upper completion to lower completion downhole hydraulic wet connect may also be used in conjunction with an upper completion to lower completion downhole electric, or fiber optic wet connect.
Embodiments of an upper completion to lower completion downhole fiber optic wet connect may also create a direct physical connection between two mating components, for instance, between a fiber optic control line disposed on the upper completion and a fiber optic control line disposed on the lower completion. This connection allows a fiber optic communication path to be created between the upper completion, the lower completion, and the surface. As a result, a communication pathway may be formed from the surface via a fiber optic cable or control line connected to the upper completion portion, and communication in the form of data can be established with the sensors and valves installed below the downhole electric wet connect, for instance, in the lower completion. This type of connection may be used to create a distributed sensor along the fiber optic, or to send and receive data to/from discrete sensors disposed in the lower completion. This type of connection may also allow for data to be sent to lower completion elements such as flow control valves for purposes of instructing those elements to perform a task, such as cycle or close. An upper completion to lower completion downhole fiber optic wet connect may also be used in conjunction with an upper completion to lower completion downhole electric, or hydraulic wet connect.
During such an installation, the lower completion section may be made up and spaced out according to the reservoir data. A packer setting tool may be installed on the production packer in order to facilitate installation within the well via a drill pipe delivery system. Once the lower completion section is at the proper depth, a ball may be dropped and pumped as needed to a seat inside of the packer setting tool, and hydraulic pressure may then be applied from the surface through the drill pipe. Once a predetermined pressure is achieved within the drill pipe, the packer setting tool may actuate the packer, thereby locking and sealing the packer against an internal surface of the casing.
Following retrieval of the drill pipe and packer setting tool, the upper completion section may be installed. In some embodiments, an illustrative example of an upper completion section may comprise the following: an inductive coupler (i.e., an upper member configured to mate with the lower member in the lower completion section) or an upper completion to lower completion downhole electric, hydraulic, or fiber optic wet connect, a surface controlled sub-surface safety valve (SCSSV), or an electronic submersible pump (ESP), and tubing, among other components not expressly identified. The tubing may provide proper space-out to extend to the surface and for the inductive coupler components to engage, facilitating communication between the surface and the lower completion section.
However, one potential drawback to this configuration and installation method is that during other installations of the lower completion section on drill pipe, there is no communication link between the surface and the sensors and valves in the various lower completion AIC systems. This may be considered a high technical risk, as potential damage to individual components or electric cables may occur, especially with respect to the components installed in the open hole sections of the reservoir. In some cases, several days may pass from the time the lower completion AIC components (e.g. flow control valves, sensors, etc) are checked on surface until the upper completion section is landed and full connectivity to the AIC systems is established. As many of these systems are installed with packers comprising swellable elastomers, these packers may have swollen to an extent that they are fully engaged with corresponding open hole wall sections in the reservoir. Accordingly, the extent of engagement may prohibit retrieval of the lower completion section to the surface, should this be needed.
As a result, illustrative embodiments of the completion installation claimed herein may be configured to provide for communication between the lower completion system and the surface prior to a point in time from which retrieval may be too difficult to readily perform. For example, at least some of the various embodiments may allow for communication between AIC systems of the lower completion section and the surface prior to setting the packers of the lower completion section.
An exemplary embodiment of some aspects of the present invention is shown in
In some embodiments, the electrical wet connect system (213, 210) may take the form of a tough logging condition (TLC) wet connect, such as the TLC Wet Connect provided by Schlumberger, which is further described in: U.S. Pat. No. 4,484,628; U.S. Pat. No. 5,871,052; U.S. Pat. No. 5,967,816; and U.S. Pat. No. 6,510,899, all the contents of which are herein incorporated by reference in their entirety. This form of wet connect technology may be used to allow communication and power to be supplied to the lower completion, via the logging cable. Typical tough logging conditions may comprise wells with high deviation or long horizontal sections where traditional logging activities with cable cannot be used.
In some embodiments, the electrical wet connect system (213, 210) may also include a hydraulic or fiber optic wet connect system. These systems may allow for the additional downhole connection of either hydraulic or fiber optic control lines, so as to allow fiber optic or hydraulic communication to be supplied to the lower completion, via the logging cable, or a control line cable disposed in a similar manner. In these embodiments, both an electric and hydraulic or fiber optic connection may be temporarily made between the surface, and the lower completion section 201 so as to establish a power and communication pathway between the surface and the lower completion section 201. In some embodiments, the wet connect system may not be an electrical wet connect system as shown and described, but may be a solely fiber optic, or hydraulic (or combination fiber optic and hydraulic) wet connect system. In these embodiments, connection may be made as described above between the surface and the lower completion via cable or control line which is pumped downhole. This non-electrical wet connect system would allow for the temporary hydraulic or fiber optic connection between the surface and the lower completion section, so as to establish a power and communication pathway between the surface and the lower completion section.
Once power and communication are established with the lower completion section 201, this communication may facilitate a full system (e.g. all the various AIC systems) or partial system (e.g. at least one AIC system component) functionality or diagnostic check, such as operating of the various flow control valve(s), recording of well data from the sensors, etc. Data from the AIC sensors is transmitted through the lower completion section 201, through the electrical wet connect system (213, 210), and through the logging cable 212 to the surface. Furthermore the flow control valves may be used at this point as circulation devices should there be a need for displacing the well fluids prior to setting the lower completion packer 202. The data transferred to the surface (not shown) may be interpreted in a conventional way, for instance through the use of a computer processor, to determine if the various lower completion section 201 components are functioning properly. In some embodiments, each component in the lower completion section 201 which is capable of being tested is tested to determine if the component is functioning properly. Non-limiting examples of an improperly functioning component include be a flow control device which fails to open or close, or a sensor which fails to transmit a signal.
In case of any fault in the system (e.g. an improperly functioning component), the lower completion section 201 may be retrieved to surface prior to setting the lower completion packer 202, which greatly simplifies the retrieval process and significantly reduce rig time and costs (as opposed to a work over or retrieval after the lower completion packer 202 has been set, or the upper completion section installed). To remove the lower completion sections 201, the electrical wet connect system (213, 210) is disconnected such that the electrical wet connect 210 is disconnected or decoupled from the electrical wet connect connector 210. The logging cable 212 and electrical wet connect 210 may then be retrieved and taken to the surface. The installation system 206 may then be removed, and taken to the surface together with the lower completion section 201, where the improperly functioning component may be repaired or replaced. Removal of the installation system 206 and the lower completion section 201 may be done in a conventional manner, as known to one of skill in the art.
If the functionality or diagnostic tests discovers no fault, and if it is determined that the lower completion 201 systems are appropriately functioning at depth, the electrical wet connect 213 may be disconnected from the electrical wet connect connector 210, and the logging cable 212 and electrical wet connect 213 may be retrieved to surface. The lower completion packer 203 may then be set.
In some embodiments, the lower completion packer 203 may be set in different ways. Packer setting tools come in many different sizes and configurations. With regard to an installation system, one consideration may be to use a hydraulic set retrievable packer. However, alternative packer designs requiring different setting methods may be used, as described above. The packer setting tool may be installed in a drill pipe delivery system. In some embodiments, a ball may be dropped inside of the drill pipe, engage a seat in the packer setting tool, and create a differential pressure when hydraulic pressure is applied in the drill pipe from the surface. In some embodiments, differential pressure may be achieved by closing all the lower completion flow control valves and pressuring up the interior of the drill pipe. The pressure may actuate a set of pistons in the packer setting tool, which in turn may act on the packer. Accordingly, the packer may engage a set of slips, thereby securing the packer to the casing and compressing a sealing element to create a substantially pressure tight seal against the casing.
In some embodiments, when a setting tool may be used to set the packer, the packer may be a Schlumberger Quantum Max packer. In some embodiments, when the packer may not require a setting tool, the packer may be a case of swell or reactive material packer, or a packer with a built in setting piston, such as with Schlumberger XHP packers.
After the setting of the lower completion packer 203, the installation system 206 may then be uncoupled from the lower completion section 201 and retrieved per standard procedure. After retrieval of the installation system 206, run in of the upper completion section can be performed.
Some embodiments of lower completion section installation method may be used for system verification prior to setting the lower completion section packer in wellbores that are vertical, deviated, horizontal, or multi-lateral. In some situations, alternative embodiments may comprise an electric wet connection or any other type of connection that is configured to transmit data and/or power in place of the described inductive coupler connection.
While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations there from. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2214064 | Niles | Sep 1940 | A |
2379800 | Hare | Jul 1945 | A |
2452920 | Gilbert | Nov 1948 | A |
2470303 | Greenough | May 1949 | A |
2782365 | Castel | Feb 1957 | A |
2797893 | McCune et al. | Jul 1957 | A |
2889880 | Hughes | Jun 1959 | A |
3011342 | Simm | Dec 1961 | A |
3199592 | Jacob | Aug 1965 | A |
3206537 | Steward | Sep 1965 | A |
3344860 | Voetter | Oct 1967 | A |
3363692 | Bishop | Jan 1968 | A |
3659259 | Chaney, Jr. et al. | Apr 1972 | A |
3913398 | Curtis | Oct 1975 | A |
4027286 | Marosko | May 1977 | A |
4133384 | Allen et al. | Jan 1979 | A |
4241787 | Price | Dec 1980 | A |
4415205 | Rehm et al. | Nov 1983 | A |
4484628 | Lanmon, II | Nov 1984 | A |
4559818 | Tsang et al. | Dec 1985 | A |
4573541 | Josse et al. | Mar 1986 | A |
4597290 | Bourdet et al. | Jul 1986 | A |
4733729 | Copeland | Mar 1988 | A |
4806928 | Veneruso | Feb 1989 | A |
4850430 | Copeland et al. | Jul 1989 | A |
4901069 | Veneruso | Feb 1990 | A |
4945995 | Tholance et al. | Aug 1990 | A |
4953636 | Mohn | Sep 1990 | A |
4969523 | Martin et al. | Nov 1990 | A |
5183110 | Logan et al. | Feb 1993 | A |
5269377 | Martin | Dec 1993 | A |
5278550 | Rhein-Knudsen et al. | Jan 1994 | A |
5301760 | Graham | Apr 1994 | A |
5311936 | McNair et al. | May 1994 | A |
5318121 | Brockman et al. | Jun 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5322127 | McNair et al. | Jun 1994 | A |
5325924 | Bangert et al. | Jul 1994 | A |
5330007 | Collins et al. | Jul 1994 | A |
5337808 | Graham | Aug 1994 | A |
5353876 | Curington et al. | Oct 1994 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5398754 | Dinhoble | Mar 1995 | A |
5411082 | Kennedy | May 1995 | A |
5427177 | Jordan, Jr. et al. | Jun 1995 | A |
5435392 | Kennedy | Jul 1995 | A |
5439051 | Kennedy et al. | Aug 1995 | A |
5454430 | Kennedy et al. | Oct 1995 | A |
5457988 | Delatorre | Oct 1995 | A |
5458199 | Collins et al. | Oct 1995 | A |
5458209 | Hayes et al. | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5472048 | Kennedy et al. | Dec 1995 | A |
5474131 | Jordan, Jr. et al. | Dec 1995 | A |
5477923 | Jordan, Jr. et al. | Dec 1995 | A |
5477925 | Trahan et al. | Dec 1995 | A |
5499680 | Walter et al. | Mar 1996 | A |
5520252 | McNair | May 1996 | A |
5521592 | Veneruso | May 1996 | A |
5533573 | Jordan, Jr. et al. | Jul 1996 | A |
5542472 | Pringle et al. | Aug 1996 | A |
5597042 | Tubel et al. | Jan 1997 | A |
5655602 | Collins | Aug 1997 | A |
5680901 | Gardes | Oct 1997 | A |
5697445 | Graham | Dec 1997 | A |
5706896 | Tubel et al. | Jan 1998 | A |
5730219 | Tubel et al. | Mar 1998 | A |
5823263 | Morris et al. | Oct 1998 | A |
5831156 | Mullins | Nov 1998 | A |
5871047 | Spath et al. | Feb 1999 | A |
5871052 | Benson et al. | Feb 1999 | A |
5875847 | Forsyth | Mar 1999 | A |
5915474 | Buytaert et al. | Jun 1999 | A |
5918669 | Morris et al. | Jul 1999 | A |
5941307 | Tubel | Aug 1999 | A |
5941308 | Malone et al. | Aug 1999 | A |
5944107 | Ohmer | Aug 1999 | A |
5944108 | Baugh et al. | Aug 1999 | A |
5944109 | Longbottom | Aug 1999 | A |
5945923 | Soulier | Aug 1999 | A |
5954134 | Longbottom | Sep 1999 | A |
5959547 | Tubel et al. | Sep 1999 | A |
5960873 | Alexander et al. | Oct 1999 | A |
5967816 | Sampa et al. | Oct 1999 | A |
5971072 | Huber et al. | Oct 1999 | A |
5975204 | Tubel et al. | Nov 1999 | A |
5979559 | Kennedy | Nov 1999 | A |
5992519 | Ramakrishnan et al. | Nov 1999 | A |
6003606 | Moore et al. | Dec 1999 | A |
6006832 | Tubel et al. | Dec 1999 | A |
6035937 | Gano et al. | Mar 2000 | A |
6046685 | Tubel | Apr 2000 | A |
6061000 | Edwards | May 2000 | A |
6065209 | Gondouin | May 2000 | A |
6065543 | Gano et al. | May 2000 | A |
6073697 | Parlin et al. | Jun 2000 | A |
6076046 | Vasudevan et al. | Jun 2000 | A |
6079488 | Begg et al. | Jun 2000 | A |
6079494 | Longbottom et al. | Jun 2000 | A |
6119780 | Christmas | Sep 2000 | A |
6125937 | Longbottom et al. | Oct 2000 | A |
6173772 | Vaynshteyn | Jan 2001 | B1 |
6173788 | Lembcke et al. | Jan 2001 | B1 |
6176308 | Pearson | Jan 2001 | B1 |
6176312 | Tubel et al. | Jan 2001 | B1 |
6192980 | Tubel et al. | Feb 2001 | B1 |
6192988 | Tubel | Feb 2001 | B1 |
6196312 | Collins et al. | Mar 2001 | B1 |
6209648 | Ohmer et al. | Apr 2001 | B1 |
6244337 | Cumming et al. | Jun 2001 | B1 |
6302203 | Rayssiguier et al. | Oct 2001 | B1 |
6305469 | Coenen et al. | Oct 2001 | B1 |
6310559 | Laborde et al. | Oct 2001 | B1 |
6318469 | Patel | Nov 2001 | B1 |
6328111 | Bearden et al. | Dec 2001 | B1 |
6349770 | Brooks et al. | Feb 2002 | B1 |
6354378 | Patel | Mar 2002 | B1 |
6360820 | Laborde et al. | Mar 2002 | B1 |
6374913 | Robbins et al. | Apr 2002 | B1 |
6378610 | Rayssiguier et al. | Apr 2002 | B2 |
6415864 | Ramakrishnan et al. | Jul 2002 | B1 |
6419022 | Jernigan et al. | Jul 2002 | B1 |
6457522 | Bangash et al. | Oct 2002 | B1 |
6481494 | Dusterhoft et al. | Nov 2002 | B1 |
6510899 | Sheiretov et al. | Jan 2003 | B1 |
6513599 | Bixenman et al. | Feb 2003 | B1 |
6515592 | Babour et al. | Feb 2003 | B1 |
6533039 | Rivas et al. | Mar 2003 | B2 |
6547011 | Kilgore | Apr 2003 | B2 |
6568469 | Ohmer et al. | May 2003 | B2 |
6577244 | Clark et al. | Jun 2003 | B1 |
6588507 | Dusterhoft et al. | Jul 2003 | B2 |
6614229 | Clark et al. | Sep 2003 | B1 |
6614716 | Plona et al. | Sep 2003 | B2 |
6618677 | Brown | Sep 2003 | B1 |
6668922 | Ziauddin et al. | Dec 2003 | B2 |
6675892 | Kuchuk et al. | Jan 2004 | B2 |
6679324 | Den Boer et al. | Jan 2004 | B2 |
6695052 | Branstetter et al. | Feb 2004 | B2 |
6702015 | Fielder, III et al. | Mar 2004 | B2 |
6727827 | Edwards et al. | Apr 2004 | B1 |
6749022 | Fredd | Jun 2004 | B1 |
6751556 | Schroeder et al. | Jun 2004 | B2 |
6758271 | Smith | Jul 2004 | B1 |
6768700 | Veneruso et al. | Jul 2004 | B2 |
6776256 | Kostyuchenko et al. | Aug 2004 | B2 |
6787758 | Tubel et al. | Sep 2004 | B2 |
6789621 | Wetzel et al. | Sep 2004 | B2 |
6789937 | Haddad et al. | Sep 2004 | B2 |
6817410 | Wetzel et al. | Nov 2004 | B2 |
6828547 | Tubel et al. | Dec 2004 | B2 |
6837310 | Martin | Jan 2005 | B2 |
6842700 | Poe | Jan 2005 | B2 |
6845819 | Barrett et al. | Jan 2005 | B2 |
6848510 | Bixenman et al. | Feb 2005 | B2 |
6856255 | Chalitsios et al. | Feb 2005 | B2 |
6857475 | Johnson | Feb 2005 | B2 |
6863127 | Clark et al. | Mar 2005 | B2 |
6863129 | Ohmer et al. | Mar 2005 | B2 |
6864801 | Tabanou et al. | Mar 2005 | B2 |
6896074 | Cook et al. | May 2005 | B2 |
6903660 | Clark et al. | Jun 2005 | B2 |
6911418 | Frenier | Jun 2005 | B2 |
6913083 | Smith | Jul 2005 | B2 |
6920395 | Brown | Jul 2005 | B2 |
6942033 | Brooks et al. | Sep 2005 | B2 |
6950034 | Pacault et al. | Sep 2005 | B2 |
6975243 | Clark et al. | Dec 2005 | B2 |
6978833 | Salamitou et al. | Dec 2005 | B2 |
6980940 | Gurpinar et al. | Dec 2005 | B1 |
6983796 | Bayne et al. | Jan 2006 | B2 |
6989764 | Thomeer et al. | Jan 2006 | B2 |
7000696 | Harkins | Feb 2006 | B2 |
7000697 | Goode et al. | Feb 2006 | B2 |
7004252 | Vise, Jr. | Feb 2006 | B2 |
7007756 | Lerche et al. | Mar 2006 | B2 |
7040402 | Vercaemer | May 2006 | B2 |
7040415 | Boyle et al. | May 2006 | B2 |
7055604 | Jee et al. | Jun 2006 | B2 |
7063143 | Tilton et al. | Jun 2006 | B2 |
7079952 | Thomas et al. | Jul 2006 | B2 |
7083452 | Eriksson et al. | Aug 2006 | B2 |
7093661 | Olsen | Aug 2006 | B2 |
7712524 | Patel | May 2010 | B2 |
7735555 | Patel | Jun 2010 | B2 |
7775275 | Patel | Aug 2010 | B2 |
7866414 | Patel | Jan 2011 | B2 |
7878249 | Lovell | Feb 2011 | B2 |
7896070 | Lovell | Mar 2011 | B2 |
7896079 | Dyer | Mar 2011 | B2 |
7900705 | Patel | Mar 2011 | B2 |
20010013410 | Beck et al. | Aug 2001 | A1 |
20020007948 | Bayne et al. | Jan 2002 | A1 |
20020050361 | Shaw et al. | May 2002 | A1 |
20020096333 | Johnson et al. | Jul 2002 | A1 |
20020112857 | Ohmer et al. | Aug 2002 | A1 |
20030137302 | Clark et al. | Jul 2003 | A1 |
20030137429 | Clark et al. | Jul 2003 | A1 |
20030141872 | Clark et al. | Jul 2003 | A1 |
20030150622 | Patel et al. | Aug 2003 | A1 |
20030221829 | Patel et al. | Dec 2003 | A1 |
20040010374 | Raghuraman et al. | Jan 2004 | A1 |
20040094303 | Brockman et al. | May 2004 | A1 |
20040164838 | Hall et al. | Aug 2004 | A1 |
20040173350 | Wetzel et al. | Sep 2004 | A1 |
20040173352 | Mullen et al. | Sep 2004 | A1 |
20040194950 | Restarick et al. | Oct 2004 | A1 |
20040238168 | Echols | Dec 2004 | A1 |
20050072564 | Grigsby et al. | Apr 2005 | A1 |
20050074210 | Grigsby et al. | Apr 2005 | A1 |
20050083064 | Homan et al. | Apr 2005 | A1 |
20050087368 | Boyle et al. | Apr 2005 | A1 |
20050092488 | Rodet et al. | May 2005 | A1 |
20050092501 | Chavers et al. | May 2005 | A1 |
20050115741 | Terry et al. | Jun 2005 | A1 |
20050149264 | Tarvin et al. | Jul 2005 | A1 |
20050168349 | Huang et al. | Aug 2005 | A1 |
20050178554 | Hromas et al. | Aug 2005 | A1 |
20050194150 | Ringgenberg | Sep 2005 | A1 |
20050199401 | Patel et al. | Sep 2005 | A1 |
20050236161 | Gay et al. | Oct 2005 | A1 |
20050274513 | Schultz et al. | Dec 2005 | A1 |
20050279510 | Patel et al. | Dec 2005 | A1 |
20060000604 | Jenkins et al. | Jan 2006 | A1 |
20060000618 | Cho et al. | Jan 2006 | A1 |
20060006656 | Smedstad | Jan 2006 | A1 |
20060016593 | Gambier | Jan 2006 | A1 |
20060042795 | Richards | Mar 2006 | A1 |
20060060352 | Vidrine et al. | Mar 2006 | A1 |
20060065444 | Hall et al. | Mar 2006 | A1 |
20060077757 | Cox et al. | Apr 2006 | A1 |
20060086498 | Wetzel et al. | Apr 2006 | A1 |
20060090892 | Wetzel et al. | May 2006 | A1 |
20060090893 | Sheffield | May 2006 | A1 |
20060124297 | Ohmer | Jun 2006 | A1 |
20060124318 | Sheffield | Jun 2006 | A1 |
20060162934 | Shepler | Jul 2006 | A1 |
20060196660 | Patel | Sep 2006 | A1 |
20060225926 | Madhavan et al. | Oct 2006 | A1 |
20060254767 | Pabon et al. | Nov 2006 | A1 |
20060283606 | Partouche et al. | Dec 2006 | A1 |
20070012436 | Freyer | Jan 2007 | A1 |
20070027245 | Vaidya et al. | Feb 2007 | A1 |
20070044964 | Grigar et al. | Mar 2007 | A1 |
20070059166 | Sheth et al. | Mar 2007 | A1 |
20070062710 | Pelletier et al. | Mar 2007 | A1 |
20070074872 | Du et al. | Apr 2007 | A1 |
20070107907 | Smedstad et al. | May 2007 | A1 |
20070110593 | Sheth et al. | May 2007 | A1 |
20070116560 | Eslinger | May 2007 | A1 |
20070142547 | Vaidya et al. | Jun 2007 | A1 |
20070144738 | Sugiyama et al. | Jun 2007 | A1 |
20070144746 | Jonas | Jun 2007 | A1 |
20070151724 | Ohmer et al. | Jul 2007 | A1 |
20070159351 | Madhavan et al. | Jul 2007 | A1 |
20070162235 | Zhan et al. | Jul 2007 | A1 |
20070165487 | Nutt et al. | Jul 2007 | A1 |
20070199696 | Walford | Aug 2007 | A1 |
20070213963 | Jalali et al. | Sep 2007 | A1 |
20070216415 | Clark et al. | Sep 2007 | A1 |
20070227727 | Patel et al. | Oct 2007 | A1 |
20070235185 | Patel et al. | Oct 2007 | A1 |
20070271077 | Kosmala et al. | Nov 2007 | A1 |
20070295504 | Patel | Dec 2007 | A1 |
20080236841 | Howlett et al. | Oct 2008 | A1 |
20090066535 | Patel | Mar 2009 | A1 |
20090151950 | Patel | Jun 2009 | A1 |
20100101786 | Lovell | Apr 2010 | A1 |
20100181067 | Chen | Jul 2010 | A1 |
20110011580 | Clark | Jan 2011 | A1 |
20110079400 | Algeroy | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
795679 | Sep 1997 | EP |
823534 | Feb 1998 | EP |
1158138 | Nov 2001 | EP |
0786578 | Dec 2005 | EP |
2274864 | Aug 1994 | GB |
2304764 | Mar 1997 | GB |
2333545 | Jul 1999 | GB |
2337780 | Dec 1999 | GB |
2345137 | Jun 2000 | GB |
2360532 | Sep 2001 | GB |
2364724 | Feb 2002 | GB |
2376488 | Dec 2002 | GB |
2381281 | Apr 2003 | GB |
2392461 | Mar 2004 | GB |
2395315 | May 2004 | GB |
2395965 | Jun 2004 | GB |
2401385 | Nov 2004 | GB |
2401430 | Nov 2004 | GB |
2401889 | Nov 2004 | GB |
2404676 | Feb 2005 | GB |
2407334 | Apr 2005 | GB |
2408327 | May 2005 | GB |
2409692 | Jul 2005 | GB |
2416871 | Feb 2006 | GB |
2419619 | May 2006 | GB |
2419903 | May 2006 | GB |
2428787 | Feb 2007 | GB |
2146759 | Mar 2000 | RU |
2171363 | Jul 2001 | RU |
199623953 | Aug 1996 | WO |
9850680 | Nov 1998 | WO |
9850680 | Nov 1998 | WO |
9858151 | Dec 1998 | WO |
9913195 | Mar 1999 | WO |
0029713 | May 2000 | WO |
0171155 | Sep 2001 | WO |
200198632 | Dec 2001 | WO |
03023185 | Mar 2003 | WO |
2004076815 | Sep 2004 | WO |
2004094961 | Nov 2004 | WO |
2005035943 | Apr 2005 | WO |
2005064116 | Jul 2005 | WO |
2006010875 | Feb 2006 | WO |
Entry |
---|
Brown, G.A., SPE 62952. “Using Fibre-Optic Distributed Temperature Measurements to Provide Real-Time Reservoir Surveillance Data on Wytch Farm Field Horizontal Extended-Reach Wells” Society of Petroleum Engineers Inc. 2000, pp. 1-11. |
Saputelli, L. et al. “Real-Time Decision-making for Value Creation while Drilling” SPE/IADC Middle East Drilling Technology Conference & Exhibition, Oct. 2003. |
Lanier et al. “Brunei Field Trial of a Fibre Optic Distributed Temperature Sensor (DTS) System in 1,DOOm Open Hole Horizontal Oil Producer” SPE 84324; SPE Annual Technical Conference and Exhibition, Oct. 5-8, 2003. |
Number | Date | Country | |
---|---|---|---|
20110079400 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61249524 | Oct 2009 | US |