1. Field of the Invention
The present invention relates to an active matrix liquid crystal display, an electronic device, and a driving method thereof, and in particular to an active matrix liquid crystal display, an electronic device, and a driving method capable of reducing the flicker when a low frequency driving scheme is applied to a display when displaying a static image.
2. Description of the Related Art
When an active matrix liquid crystal display is displaying a static image, it is preferable for the static image not to be refreshed as many times as a dynamic image, in order to save power. Given this concern, a low frequency driving scheme is usually applied to the liquid crystal display to refresh a static image. For example, the liquid crystal display is driven at 10 Hz when a static image is displayed. In other words, in every 6 frames, the liquid crystal display is only driven during a frame and not driven during the rest 5 frames. Therefore, some driving ICs stop functioning for the duration of 5 frames, which lowers power consumption.
However, under a low frequency driving scheme, every time the pixel cell is refreshed, a visible flicker is generated, detracting from the image quality. The flicker is more obvious in low to middle gray levels, and especially in dark gray levels.
In view of this problem, the purpose of the present invention is to provide a new low frequency driving scheme which can reduce the flicker.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention provides an active matrix liquid crystal display, including a plurality of pixel cells, each of which is formed by a pair of electrodes sandwiching a liquid crystal layer. When the active matrix liquid crystal display is displaying a static image, the pixel cell is refreshed through a first period, a second period, and a third period in sequence. In the first period, the pixel cell is charged by at least a non-target voltage. In the second period, the pixel cell is charged by a target voltage. In the third period, the pixel cell is not charged until the next first period.
In the active matrix liquid crystal display, the first period lasts for at least one frame, the second period lasts for a frame, and the third period lasts for a plurality of frames.
In the active matrix liquid crystal display, the non-target voltage is determined according to the target voltage, and each target voltage corresponds to a distinct non-target voltage.
In the active matrix liquid crystal display, the target voltages in any two adjacent second periods have opposite polarities.
In the active matrix liquid crystal display, the target voltage is a gray level voltage which is applied to the pixel cell to output a gray level to be displayed.
The invention also provides a driving method for an active matrix liquid crystal display including a plurality of pixel cells, each of which is formed by a pair of electrodes sandwiching a liquid crystal layer. The driving method includes charging the pixel cell with at least a non-target voltage in a first period; charging the pixel cell with a target voltage in a second period following the first period; and stopping the charging of the pixel cell in a third period following the second period, wherein the first to third periods are repeated to continuously refresh a static image.
In the driving method, the first period lasts for at least one frame, the second period lasts for a frame, and the third period lasts for a plurality of frames.
In the driving method, the non-target voltage is determined according to the target voltage, and each target voltage corresponds to a distinct non-target voltage.
In the driving method, the target voltages in any two adjacent second periods have opposite polarities.
In the driving method, the target voltage is a gray level voltage which is applied on the pixel cell to output a desired level to be displayed.
According to the active matrix liquid crystal display, electronic device or driving method, when the active matrix liquid crystal display is displaying a static image by a low frequency driving scheme, visible flicker is reduced and the image quality is improved.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
To introduce the invention, a conventional low frequency driving scheme is described in advance for reference.
Next, the light intensity of the pixel cell during the refresh period under the low frequency driving scheme shown in
However, the light intensity curves under the positive pixel voltage and the negative voltage are not symmetric, because the response characteristic of liquid crystal molecules to the LC applied voltage VLC is not linear. Especially, the low-to-high pulse of the LC applied voltage VLC changes the light intensity faster than the high-to-low pulse of the LC applied voltage VLC. Thus, an average curve of the light intensity curves under the positive pixel voltage and the negative pixel voltage has a ripple as shown in
An embodiment of the invention that can effectively improve the aforementioned problem is described below. The invention changes the number of charging of the pixel voltage during the refresh period.
According to the embodiment, when the liquid crystal display is displaying a static image by low frequency driving scheme of the invention, visible flicker is reduced and the image quality is improved. The low frequency driving scheme of the invention is especially applicable to low-middle gray leveled static images. Because the flicker is more serious in low to middle gray levels, the improvement is more obvious.
The above embodiment discloses a two-time charge scheme, but the number of charging of the pixel voltage during each refresh period is not limited to 2. There can be more than one frame for charging non-target voltages before the frame for charging a target voltage. Moreover, the low frequency driving scheme of the invention is performed only when the polarity of the charge voltage is inverted. The inversion type of the liquid crystal display is not limited to column inversion, and the low frequency driving scheme of the invention is also applicable to dot inversion, row inversion, frame inversion etc.
In the driving scheme of the invention, a pixel cell is charged at least two times during one refresh period. The target voltage is the gray level voltage which is applied to the pixel cell to output a gray level to be displayed. The non-target voltage is different from the gray level voltage. The low frequency driving scheme of the invention may be considered a kind of overdrive scheme, but there are several specific differences between them.
First and foremost, the overdrive scheme is used to shorten the response time of the liquid crystal molecules, so the amplitude of the overdrive voltage is always greater than the target voltage. However, in the driving scheme of the invention, as described in the previous paragraph, the amplitude of the non-target voltage may be greater or smaller than the target voltage. As shown in
Moreover, since the purpose of the overdrive scheme is to shorten the response time of the liquid crystal molecules, the overcharge period and the normal charge period are generally shorter than 1 frame. However, the driving scheme of the invention uses at least one frame for charging non-target voltage and one frame for charging target voltage. Thus, the driving scheme of the invention has a longer charge period than the overdrive scheme.
Last but not least, the low frequency driving scheme of the invention is only applied when the liquid crystal display is displaying a static image. When a static image is displayed, the input data for each pixel is not changed so a gray level is refreshed to the same gray level. Because the gray level is not changed, the orientation of the liquid crystal molecules is also not changed. Thus, under the overdrive scheme, it is not necessary to shorten the response time of the liquid crystal molecules, so the overcharge voltage is equal to the target voltage when the gray level is not changed. On the other hand, in the low frequency driving scheme of the invention, the non-target voltage is always different from the target voltage even though the gray level is not changed.
Given the above points, the driving scheme of the invention is substantially different from an overdrive scheme.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.