The present invention relates to active matrix substrates and methods for manufacturing the active matrix substrates, and more particularly, to an active matrix substrate including a semiconductor layer made of an oxide semiconductor and a method for manufacturing the active matrix substrate.
In recent years, a thin film transistor (hereinafter also referred to as a “TFT”) including a semiconductor layer made of an oxide semiconductor (hereinafter also referred to as an “oxide semiconductor layer”) has been proposed, which is used as a switching element in each pixel, which is the smallest unit of an image, in an active matrix substrate, instead of a conventional thin film transistor including a semiconductor layer made of amorphous silicon.
For example, PATENT DOCUMENT 1 describes an active matrix-type image display device in which the active layer of a field effect transistor for driving a light control element is made of an amorphous oxide which has a predetermined electron carrier concentration.
PATENT DOCUMENT 2 describes a TFT including an In—M—Zn—O (M is at least one of Ga, Al, and Fe) thin film (e.g., a transparent oxide thin film, etc.) as a channel layer, in which the oxide semiconductor channel layer is covered with a protection film, whereby unstable operation due to a change in ambient atmosphere is prevented, and therefore, stable TFT operating characteristics are obtained.
PATENT DOCUMENT 3 describes a method for manufacturing an oxide semiconductor TFT in which a surface of the oxide semiconductor channel layer is oxidized with an oxidant to adjust the carrier density of the channel layer surface.
PATENT DOCUMENT 1: Japanese Patent Publication No. 2006-165528
PATENT DOCUMENT 2: Japanese Patent Publication No. 2007-73705
PATENT DOCUMENT 3: United States Patent Publication No. 2009/140243
As shown in
Incidentally, the protection insulating layer 115 is often formed, for example, by forming an inorganic insulating film by plasma-enhanced chemical vapor deposition (CVD) and patterning the inorganic insulating film. Therefore, in the case of the active matrix substrate 120, a channel region C of the oxide semiconductor layer 113 exposed through the source electrode 114a and the drain electrode 114b is likely to be damaged by plasma, resulting in a degradation in characteristics of the TFT 105. In order to reduce the degradation in TFT characteristics, attempts have been made, such as modification of the method of forming the inorganic insulating film by plasma-enhanced CVD, introduction of a surface treatment or an annealing treatment for the oxide semiconductor layer, etc. However, the effects of these attempts are insufficient or additional manufacturing steps are required. Therefore, there is room for improvement.
The present invention has been made in view of the above problems. It is an object of the present invention to reduce an increase in the number of manufacturing steps, reduce damage to the oxide semiconductor layer, and obtain more satisfactory TFT characteristics.
To achieve the object, in the present invention, a protection insulating layer made of a spin-on glass material is provided on the channel region of the oxide semiconductor layer.
An active matrix substrate includes a plurality of pixel electrodes arranged in a matrix, and a plurality of thin film transistors connected to the respective corresponding pixel electrodes. Each of the thin film transistors includes a gate electrode provided on an insulating substrate, a gate insulating layer covering the gate electrode, an oxide semiconductor layer provided on the gate insulating layer and having a channel region over the gate electrode, and a source electrode and a drain electrode provided on the oxide semiconductor layer, overlapping the gate electrode and facing each other with the channel region being interposed between the source and drain electrodes. A protection insulating layer made of a spin-on glass material is provided on the channel region of the oxide semiconductor layer.
With this configuration, the protection insulating layer made of a spin-on glass material is provided on the channel region of the oxide semiconductor layer. Specifically, a spin-on glass material is applied on the oxide semiconductor layer by spin coating or slit coating, and baking and patterning are performed on the applied film, to form the protection insulating layer. Therefore, the channel region of the oxide semiconductor layer is not exposed to plasma, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. When the protection insulating layer is formed, the applied film of the spin-on glass material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the spin-on glass material. Here, when patterning is performed on the metal film by dry etching in order to form the source and drain electrodes, a surface layer of the channel region of the oxide semiconductor layer is also etched, i.e., the channel region of the oxide semiconductor layer is damaged. However, when the applied film is baked, H2O occurs, and therefore, the oxide semiconductor layer is annealed in the presence of H2O, and therefore, the damage to the channel region of the oxide semiconductor layer is satisfactorily repaired. Thus, by forming the protection insulating layer by applying, baking, and patterning the spin-on glass material, the damage to the channel region of the oxide semiconductor layer is reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained.
In contrast to this, if the protection insulating layer is formed of a plasma-enhanced chemically deposited film (CVD film), the channel region of the oxide semiconductor layer is damaged by plasma, and when the damaged oxide semiconductor layer is repaired by an annealing treatment, a sufficient amount of O2 is not likely to be supplied to the oxide semiconductor layer due the CVD film provided on a surface of the oxide semiconductor layer, and therefore, the oxide semiconductor layer is not likely to be sufficiently repaired. If the hydrogen concentration of the CVD film increases, O2 is conversely extracted as H2O from the oxide semiconductor layer. Note that there has been a finding obtained by thermal desorption spectroscopy (TDS) on the CVD film and the film made of a spin-on glass (SOG) material that, in the CVD film, H2O does not occur even if the temperature increases to about 450° C., while, in the SOG film, H2O begins to occur at about 150° C. due to dehydration polymerization reaction of the spin-on glass material before the temperature reaches about 450° C.
The protection insulating layer may be provided to cover the source and drain electrodes.
With this configuration, the protection insulating layer is provided to cover the source and drain electrodes. Therefore, the thin film transistor is implemented so that the source and drain electrodes are covered by the protection insulating layer provided on the channel region of the oxide semiconductor layer.
Each pixel electrode may be provided on the protection insulating layer. With this configuration, each pixel electrode is provided on the protection insulating layer. Therefore, the insulating layer provided between each pixel electrode and the corresponding thin film transistor has a single-layer structure including the protection insulating layer. As a result, the manufacturing cost of the active matrix substrate is reduced.
An interlayer insulating layer may be provided on the protection insulating layer, and each pixel electrode may be provided on the interlayer insulating layer. With this configuration, an interlayer insulating layer is provided on the protection insulating layer, and each pixel electrode is provided on the interlayer insulating layer. Therefore, the insulating layer between each pixel electrode and the corresponding thin film transistor has a multilayer structure including the protection insulating layer and the interlayer insulating layer.
The protection insulating layer may be provided between the source and drain electrodes and the oxide semiconductor layer.
With this configuration, the protection insulating layer is provided between the source and drain electrodes and the oxide semiconductor layer. The thin film transistor is implemented as an etch stopper-type thin film transistor in which the protection insulating layer functions as a mask (etch stopper) for etching which is performed when the source and drain electrodes are formed. Therefore, a surface layer of the oxide semiconductor layer is less damaged during etching which is performed when the source and drain electrodes are formed, resulting in an improvement in TFT characteristics.
An interlayer insulating layer may be provided over the source and drain electrodes, covering the protection insulating layer.
With this configuration, an interlayer insulating layer is provided over the source and drain electrodes, covering the protection insulating layer. Therefore, the thin film transistor is implemented as an etch stopper-type thin film transistor in which the protection insulating layer covered by the interlayer insulating layer functions as an etch stopper.
The interlayer insulating layer may be formed of a photosensitive resin film.
With this configuration, the interlayer insulating layer is formed of a photosensitive resin film. Therefore, the interlayer insulating layer having a single-layer structure can be formed without using a photoresist, resulting in a reduction in the manufacturing cost of the active matrix substrate.
The interlayer insulating layer may be formed of a multilayer film in which a chemically deposited film and a photosensitive resin film are successively stacked.
With this configuration, the interlayer insulating layer is formed of a multilayer film in which a chemically deposited film and a photosensitive resin film are successively stacked. Therefore, the interlayer insulating layer having a multilayer structure can be formed without using a photoresist, resulting in a reduction in the manufacturing cost of the active matrix substrate.
A method for manufacturing an active matrix substrate according to the present invention is provided. The active matrix substrate includes a plurality of pixel electrodes arranged in a matrix, and a plurality of thin film transistors connected to the respective corresponding pixel electrodes. Each of the thin film transistors includes a gate electrode provided on an insulating substrate, a gate insulating layer covering the gate electrode, an oxide semiconductor layer provided on the gate insulating layer and having a channel region over the gate electrode, and a source electrode and a drain electrode provided on the oxide semiconductor layer, overlapping the gate electrode and facing each other with the channel region being interposed between the source and drain electrodes. The method includes a gate electrode forming step of forming the gate electrode on the insulating substrate, a semiconductor layer forming step of forming the gate insulating layer to cover the gate electrode formed in the gate electrode forming step, and thereafter, forming the oxide semiconductor layer on the gate insulating layer, a source/drain forming step of forming the source and drain electrodes on the oxide semiconductor layer formed in the semiconductor layer forming step, and a protection insulating layer forming step of applying a spin-on glass material to cover the source and drain electrodes formed in the source/drain forming step, and thereafter, baking the applied spin-on glass material and patterning the baked spin-on glass material, to form a protection insulating layer on the channel region of the oxide semiconductor layer.
With this method, after the oxide semiconductor layer is formed in the semiconductor layer forming step, the source and drain electrodes are formed in the source/drain forming step. Therefore, the active matrix substrate including the thin film transistor in which the relatively small oxide semiconductor layer is formed separately from the formation of the source and drain electrodes, is manufactured. In the protection insulating layer forming step, a spin-on glass material is applied by spin coating or slit coating to cover the source and drain electrodes formed on the oxide semiconductor layer, and baking and patterning are performed on the applied film, to form the protection insulating layer on the channel region of the oxide semiconductor layer. Therefore, the channel region of the oxide semiconductor layer is not exposed to plasma, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. When the protection insulating layer is formed in the protection insulating layer forming step, the applied film of the spin-on glass material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the spin-on glass material. Here, when patterning is performed on the metal film by dry etching in order to form the source and drain electrodes in the source/drain forming step, a surface layer of the channel region of the oxide semiconductor layer is also etched, i.e., the channel region of the oxide semiconductor layer is damaged. However, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor layer is annealed in the presence of H2O, and therefore, the damage to the channel region of the oxide semiconductor layer is satisfactorily repaired. Thus, by forming the protection insulating layer by applying, baking, and patterning the spin-on glass material, the damage to the channel region of the oxide semiconductor layer is reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained.
Another method for manufacturing an active matrix substrate according to the present invention is provided. The active matrix substrate includes a plurality of pixel electrodes arranged in a matrix, and a plurality of thin film transistors connected to the respective corresponding pixel electrodes. Each of the thin film transistors includes a gate electrode provided on an insulating substrate, a gate insulating layer covering the gate electrode, an oxide semiconductor layer provided on the gate insulating layer and having a channel region over the gate electrode, and a source electrode and a drain electrode provided on the oxide semiconductor layer, overlapping the gate electrode and facing each other with the channel region being interposed between the source and drain electrodes. The method includes a gate electrode forming step of forming the gate electrode on the insulating substrate, a semiconductor layer forming step of forming the gate insulating layer to cover the gate electrode formed in the gate electrode forming step, and thereafter, successively forming an oxide semiconductor film and a metal film on the gate insulating layer and patterning the metal film to form the source and drain electrodes, and patterning the oxide semiconductor film to form the oxide semiconductor layer, and a protection insulating layer forming step of applying a spin-on glass material to cover the source and drain electrodes formed in the semiconductor layer forming step, and thereafter, baking the applied spin-on glass material and patterning the baked spin-on glass material, to form a protection insulating layer on the channel region of the oxide semiconductor layer.
With this method, after the oxide semiconductor film and the metal film are successively formed in the semiconductor layer forming step, patterning is performed on the oxide semiconductor film which is located below the metal film to form the oxide semiconductor layer, and patterning is performed on the metal film which is located above the oxide semiconductor film to form the source and drain electrodes. Therefore, the active matrix substrate which includes the thin film transistor in which the relatively large oxide semiconductor layer is formed in conjunction with the formation of the source and drain electrodes, can be manufactured. In the protection insulating layer forming step, a spin-on glass material is applied on the oxide semiconductor layer by spin coating or slit coating to cover the source and drain electrodes, and baking and patterning are performed on the applied film, to form the protection insulating layer on the channel region of the oxide semiconductor layer. Therefore, the channel region of the oxide semiconductor layer is not exposed to plasma, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. When the protection insulating layer is formed in the protection insulating layer forming step, the applied film of the spin-on glass material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the spin-on glass material. Here, when patterning is performed on the metal film by dry etching in order to form the source and drain electrodes in the source/drain forming step, a surface layer of the channel region of the oxide semiconductor layer is also etched, i.e., the channel region of the oxide semiconductor layer is damaged. However, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor layer is annealed in the presence of H2O, and therefore, the damage to the channel region of the oxide semiconductor layer is satisfactorily repaired. Thus, by forming the protection insulating layer by applying, baking, and patterning the spin-on glass material, the damage to the channel region of the oxide semiconductor layer is reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained.
In the semiconductor layer forming step, a photosensitive resin film may be formed on the metal film, and thereafter, half exposure may be performed on the photosensitive resin film, to form a resist pattern having a relatively thin portion in which the channel region is to be formed and a relatively thick portion in which the source and drain electrodes are to be formed, and thereafter, the metal film exposed through the resist pattern and the oxide semiconductor film which is located below the metal film may be etched to form the oxide semiconductor layer, and thereafter, the metal film exposed by removing a relatively thin portion of the resist pattern by reducing a thickness of the resist pattern may be etched to form the source and drain electrodes.
With this method, in the semiconductor layer forming step, a single halftone or graytone photomask having transparent, opaque, and translucent portions which allows half exposure is used to form, on the metal film, a resist pattern having a relatively thin portion in which the channel region of the oxide semiconductor layer is to be formed and a relatively thick portion in which the source and drain electrodes are to be formed. The resist pattern is used to form the oxide semiconductor layer, and a resist pattern obtained by decreasing a thickness of that resist pattern is used to form the source and drain electrodes. As a result, the manufacturing cost of the active matrix substrate is reduced.
In the semiconductor layer forming step, after patterning is performed on the metal film to form the source and drain electrodes, the oxide semiconductor film exposed through the source and drain electrodes may be etched to form the oxide semiconductor layer.
With this method, in the semiconductor layer forming step, after patterning is performed on the metal film to form the source and drain electrodes, the oxide semiconductor film exposed through the source and drain electrodes is etched to form the oxide semiconductor layer. Therefore, the thin film transistor is implemented so that a relatively large oxide semiconductor layer is formed in conjunction with the formation of the source and drain electrodes.
In the semiconductor layer forming step, a resist pattern may be formed on the metal film to cover portions in which the source and drain electrodes are to be formed, and thereafter, the metal film exposed through the resist pattern may be etched to form the source and drain electrodes, and reflowing may be performed on the resist pattern to cover a portion in which the channel region is to be formed, and thereafter, the oxide semiconductor film may be etched to form the oxide semiconductor layer.
With this method, in the semiconductor layer forming step, a resist pattern covering portions in which the source and drain electrodes are to be formed is formed on the metal film using a single photomask, the source and drain electrodes are formed using the resist pattern, and the oxide semiconductor layer is formed using a resist pattern obtained by reflowing that resist pattern. As a result, the manufacturing cost of the active matrix substrate is reduced.
Another method for manufacturing an active matrix substrate according to the present invention is provided. The active matrix substrate includes a plurality of pixel electrodes arranged in a matrix, and a plurality of thin film transistors connected to the respective corresponding pixel electrodes. Each of the thin film transistors includes a gate electrode provided on an insulating substrate, a gate insulating layer covering the gate electrode, an oxide semiconductor layer provided on the gate insulating layer and having a channel region over the gate electrode, and a source electrode and a drain electrode provided on the oxide semiconductor layer, overlapping the gate electrode and facing each other with the channel region being interposed between the source and drain electrodes. The method includes a gate electrode forming step of forming the gate electrode on the insulating substrate, a semiconductor layer forming step of forming the gate insulating layer to cover the gate electrode formed in the gate electrode forming step, and thereafter, forming the oxide semiconductor layer on the gate insulating layer, a protection insulating layer forming step of applying a spin-on glass material to cover the oxide semiconductor layer formed in the semiconductor layer forming step, and thereafter, baking the applied spin-on glass material and patterning the baked spin-on glass material, to form a protection insulating layer on the channel region of the oxide semiconductor layer, and a source/drain forming step of forming the source and drain electrodes on the protection insulating layer formed in the protection insulating layer forming step.
With this method, the oxide semiconductor layer is formed in the semiconductor layer forming step, and thereafter, the protection insulating layer forming step is performed before the source and drain electrodes are formed in the source/drain forming step. Therefore, the active matrix substrate including the thin film transistor in which a relatively small oxide semiconductor layer is formed separately from the formation of the source and drain electrodes, is manufactured. In the protection insulating layer forming step, a spin-on material is applied by spin coating or slit coating to cover the oxide semiconductor layer, and baking and patterning are performed on the applied film, to form the protection insulating layer on the channel region of the oxide semiconductor layer. Therefore, the channel region of the oxide semiconductor layer is not exposed to plasma, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. Also, when patterning is performed on the metal film by dry etching in order to form the source and drain electrodes in the source/drain forming step, the protection insulating layer on the channel region of the oxide semiconductor layer functions as an etch stopper for the oxide semiconductor layer, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. Also, when the protection insulating layer is formed in the protection insulating layer forming step, the applied film of the spin-on glass material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the spin-on glass material. Therefore, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor layer is annealed in the presence of H2O. Therefore, even if the channel region of the oxide semiconductor layer is damaged, the damage to the channel region of the oxide semiconductor layer is satisfactorily repaired. Thus, by forming the protection insulating layer by applying, baking, and patterning the spin-on glass material, the damage to the channel region of the oxide semiconductor layer is reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained.
Another method for manufacturing an active matrix substrate according to the present invention is provided. The active matrix substrate includes a plurality of pixel electrodes arranged in a matrix, and a plurality of thin film transistors connected to the respective corresponding pixel electrodes. Each of the thin film transistors includes a gate electrode provided on an insulating substrate, a gate insulating layer covering the gate electrode, an oxide semiconductor layer provided on the gate insulating layer and having a channel region over the gate electrode, and a source electrode and a drain electrode provided on the oxide semiconductor layer, overlapping the gate electrode and facing each other with the channel region being interposed between the source and drain electrodes. The method includes a gate electrode forming step of forming the gate electrode on the insulating substrate, a protection insulating layer forming step of forming the gate insulating layer to cover the gate electrode formed in the gate electrode forming step, and thereafter, forming an oxide semiconductor film on the gate insulating layer, and thereafter, applying a spin-on glass material, and thereafter, baking the applied spin-on glass material and patterning the baked spin-on glass material, to form a protection insulating layer on a region in which the channel region of the oxide semiconductor layer is to be formed, and a semiconductor layer forming step of forming a metal film to cover the protection insulating layer formed in the protection insulating layer forming step, and thereafter, patterning the metal film, to form the source and drain electrodes, and thereafter, etching the oxide semiconductor film exposed through the source and drain electrodes to form the oxide semiconductor layer.
With this method, after the source and drain electrodes are formed in the semiconductor layer forming step, the oxide semiconductor layer is formed by utilizing the formation of the source and drain electrodes. Therefore, the active matrix substrate which includes the thin film transistor in which a relatively large oxide semiconductor layer is formed in conjunction with the formation of the source and drain electrodes, is manufactured.
In the protection insulating layer forming step, a spin-on material is applied by spin coating or slit coating to cover the oxide semiconductor film of which the oxide semiconductor layer is to be formed, and baking and patterning are performed on the applied film, to form the protection insulating layer on a region where the channel region of the oxide semiconductor layer is to be formed. Therefore, the channel region of the oxide semiconductor layer is not exposed to plasma, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. Also, when patterning is performed on the metal film by dry etching in order to form the source and drain electrodes in the semiconductor layer forming step, the protection insulating layer on the oxide semiconductor film functions as an etch stopper for the oxide semiconductor film, and therefore, the damage to the channel region of the oxide semiconductor layer is reduced. Also, when the protection insulating layer is formed in the protection insulating layer forming step, the applied film of the spin-on glass material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the spin-on glass material. Therefore, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor film of which the oxide semiconductor layer is to be formed is annealed in the presence of H2O. Therefore, even if the region where the channel region of the oxide semiconductor layer is to be formed is damaged, the damage to the region where the channel region of the oxide semiconductor layer is to be formed is satisfactorily repaired. Thus, by forming the protection insulating layer by applying, baking, and patterning the spin-on glass material, the damage to the channel region of the oxide semiconductor layer is reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained.
According to the present invention, the protection insulating layer made of a spin-on glass material is provided on the channel region of the oxide semiconductor layer. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained.
Embodiments of the present invention will be described in detail hereinafter with reference to the accompanying drawings. Note that the present invention is not intended to be limited to the embodiment described below.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The liquid crystal layer 40 is formed, for example, of a nematic liquid crystal material having electro-optic properties.
In the liquid crystal display panel 50 thus configured, in each pixel P, when a gate signal is sent from a gate driver (not shown) through the scan line 11a to the gate electrode 11aa, so that the TFT 5a is turned on, a source signal is sent from a source driver (not shown) through the signal line 16a to the source electrode 16aa, so that predetermined charge is written through the oxide semiconductor layer 13a and the drain electrode 16b to the pixel electrode 19a. In this case, a potential difference occurs between each pixel electrode 19a of the active matrix substrate 20a and the common electrode 23 of the counter substrate 30, and therefore, a predetermined voltage is applied to the liquid crystal layer 40 (i.e., the liquid crystal capacitor of each pixel) and the auxiliary capacitor connected in parallel to the liquid crystal capacitor. In the liquid crystal display panel 50, in each pixel P, the alignment of the liquid crystal layer 40 is changed, depending on the magnitude of the voltage applied to the liquid crystal layer 40, to adjust the light transmittance of the liquid crystal layer 40, whereby an image is displayed.
Next, an example method for manufacturing the liquid crystal display panel 50 of this embodiment will be described with reference to
Initially, for example, a copper film (thickness: about 200-500 nm), etc., is formed by sputtering on the entire insulating substrate 10a, such as a glass substrate, etc. Thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the copper film. As a result, as shown in
Next, for example, a silicon nitride film (thickness: about 200-500 nm) is formed by CVD on the entire substrate on which the scan line 11a, the gate electrode 11aa, the auxiliary capacitor line 11b, and the relay lines 11c and 11d have been formed, to form the gate insulating layer 12. Thereafter, for example, an oxide semiconductor film (thickness: about 30-300 nm) made of IGZO is formed by CVD, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the oxide semiconductor film. As a result, as shown in
Moreover, for example, a titanium film (thickness: about 30-100 nm) and a copper film (thickness: about 100-400 nm), etc., are successively formed by sputtering on the entire substrate on which the oxide semiconductor layer 13a has been formed. Thereafter, photolithography and wet etching are performed on the copper film, and dry etching and resist removal and cleaning are performed on the titanium film. As a result, as shown in
Next, on the entire substrate on which the signal line 16a, the source electrode 16aa, the drain electrode 16b, and the auxiliary capacitor main line 16c have been formed, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm
Thereafter, on the entire substrate on which the SOG film 17s has been formed, a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the interlayer insulating layer 18. Thereafter, dry etching is performed on the SOG film 17s exposed through the interlayer insulating layer 18. As a result, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 and the interlayer insulating layer 18 have been formed, a transparent conductive film such as an indium tin oxide (ITO) film, etc. (thickness: about 50-200 nm) is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20a can be manufactured.
Initially, for example, a black-colored photosensitive resin is applied on the entire insulating substrate 10b, such as a glass substrate, etc., by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film. As a result, a black matrix 21 having a thickness of about 1.0 μm is formed (see
Next, on the entire substrate on which the black matrix 21 has been formed, a red-, green-, or blue-colored photosensitive resin is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, whereby, as shown in
Moreover, a transparent conductive film, such as an ITO film, etc., is deposited by sputtering on the substrate on which the color layers 22 have been formed. As a result, as shown in
Finally, on the entire substrate on which the common electrode 23 has been formed, a photosensitive resin is applied by spin coating or split coating, and thereafter, exposure and development are performed on the applied film, whereby, as shown in
Thus, the counter substrate 30 can be manufactured.
Initially, a polyimide resin film is applied by a printing method on each of a surface of the active matrix substrate 20a manufactured in the active matrix substrate manufacturing process and a surface of the counter substrate 30 manufactured in the counter substrate manufacturing process, and thereafter, baking and rubbing are performed on the applied films, to form alignment films.
Next, for example, a frame-shaped sealing member made of an ultraviolet (UV) and thermal curing resin, etc., is printed on the surface of the counter substrate 30 on which the alignment film has been formed, and thereafter, a liquid crystal material is dropped into a region inside the sealing member.
Moreover, the counter substrate 30 on which the liquid crystal material has been dropped, and the active matrix substrate 20a on which the alignment film has been formed, are joined with each other under reduced pressure. Thereafter, the counter substrate 30 and the active matrix substrate 20a thus joined with each other are exposed to the atmosphere so that pressure is applied on the front and rear surfaces of the two-substrate structure.
Thereafter, the sealing member interposed between the counter substrate 30 and the active matrix substrate 20a joined with each other is irradiated with UV light and then heated, whereby the sealing member is cured.
Finally, the two-substrate structure in which the sealing member has been cured is cut by dicing to remove an unnecessary portion.
Thus, the liquid crystal display device 50 of this embodiment can be manufactured.
As described above, according to the active matrix substrate 20a of this embodiment and the method for manufacturing the active matrix substrate 20a, the oxide semiconductor layer 13a is formed in the semiconductor layer forming step, and thereafter, the source electrode 16aa and the drain electrode 16b are formed in the source/drain forming step. Therefore, the active matrix substrate 20a including the TFT 5a in which the oxide semiconductor layer 13a having a relatively small size is formed separately from the formation of the source electrode 16aa and the drain electrode 16b, can be manufactured. In the protection insulating layer forming step, an SOG material is applied by spin coating or slit coating to cover the source electrode 16aa and the drain electrode 16b formed on the oxide semiconductor layer 13a, and baking and patterning are performed on the applied film, to form the protection insulating layer 17 on the channel region C of the oxide semiconductor layer 13a. Therefore, the channel region C of the oxide semiconductor layer 13a is not exposed to plasma, and therefore, the damage to the channel region C of the oxide semiconductor layer 13a can be reduced. When the protection insulating layer 17 is formed in the protection insulating layer forming step, the applied film of the SOG material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the SOG material. Here, when patterning is performed on the metal film by dry etching in order to form the source electrode 16aa and the drain electrode 16b in the source/drain forming step, a surface layer of the channel region C of the oxide semiconductor layer 13a is also etched, i.e., the channel region C of the oxide semiconductor layer 13a is damaged. However, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor layer 13a is annealed in the presence of H2O, and therefore, the damage to the channel region C of the oxide semiconductor layer 13a can be satisfactorily repaired. Therefore, by forming the protection insulating layer 17 by applying, baking, and patterning the SOG material, the damage to the channel region C of the oxide semiconductor layer 13a can be reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13a can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the active matrix substrate 20a of this embodiment, the interlayer insulating layer 18 is formed of a photosensitive resin film. Therefore, the interlayer insulating layer 18 having a single-layer structure can be formed without a photoresist, resulting in a reduction in the manufacturing cost of the active matrix substrate 20a.
Also, according to the active matrix substrate 20a of this embodiment, satisfactory TFT characteristics and reliability can be obtained, and therefore, the active matrix substrate 20a can be applied to high-definition display devices, such as a liquid crystal television, etc. In particular, by utilizing the high mobility and reliability of the TFT employing IGZO, the size, resolution, and drive frequency can be improved, and therefore, various circuits, such as a gate driver, a source driver, etc., can be incorporated into the panel.
In the first embodiment, the active matrix substrate 20a has been illustrated which includes the TFT 5a including the relatively small oxide semiconductor layer 13a. In this embodiment, the active matrix substrate 20b which includes a TFT 5b including a relatively large oxide semiconductor layer 13b will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20b of this embodiment will be described with reference to
Initially, on the entire substrate on which the gate electrode 11aa and the auxiliary capacitor line 11b, etc., have been formed by performing the gate electrode forming step of the active matrix substrate manufacturing process of the first embodiment, for example, a silicon nitride film (thickness: about 200-500 nm) is formed by CVD to form the gate insulating layer 12. Thereafter, for example, an IGZO oxide semiconductor film 13 (thickness: about 30-300 nm) is continuously formed by CVD. Moreover, for example, a titanium film (thickness: about 30-100 nm) and a copper film (thickness: about 100-400 nm), etc., are successively formed by sputtering to form the metal film 16. Thereafter, photolithography and wet etching are performed on the copper film of the metal film 16, and dry etching and resist removal and cleaning are performed on the titanium film of the metal film 16, whereby, as shown in
Next, photolithography, wet etching, and resist removal and cleaning are performed on the oxide semiconductor film 13 exposed through the source electrode 16aa and the drain electrode 16b, whereby, as shown in
Moreover, on the entire substrate on which the source electrode 16aa, the drain electrode 16b, and the oxide semiconductor layer 13b have been formed, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm
Thereafter, on the entire substrate on which the SOG film 17s has been formed, a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the interlayer insulating layer 18. Moreover, dry etching is performed on the SOG film 17s exposed through the interlayer insulating layer 18. As a result, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 and the interlayer insulating layer 18 have been formed, a transparent conductive film such as an indium tin oxide (ITO) film, etc. (thickness: about 50-200 nm) is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20b can be manufactured.
As described above, according to the active matrix substrate 20b of this embodiment and the method for manufacturing the active matrix substrate 20b, in the semiconductor layer forming step, after the oxide semiconductor film 13 and the metal film 16 are successively formed, patterning is performed on the oxide semiconductor film 13 which is located below the metal film 16 to form the oxide semiconductor layer 13b, and patterning is performed on the metal film 16 which is located above the oxide semiconductor film 13 to form the source electrode 16aa and the drain electrode 16b. Therefore, the active matrix substrate 20b including the TFT 5b in which the relatively large oxide semiconductor layer 13b is formed in conjunction with the formation of the source electrode 16aa and the drain electrode 16b, can be manufactured. In the protection insulating layer forming step, an SOG material is applied by spin coating or slit coating to cover the source electrode 16aa and the drain electrode 16b formed on the oxide semiconductor layer 13b, and baking and patterning are performed on the applied film, to form the protection insulating layer 17 on the channel region C of the oxide semiconductor layer 13b. Therefore, the channel region C of the oxide semiconductor layer 13b is not exposed to plasma, and therefore, the damage to the channel region C of the oxide semiconductor layer 13b can be reduced. When the protection insulating layer 17 is formed in the protection insulating layer forming step, the applied film of the SOG material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the SOG material. Here, when patterning is performed on the metal film 16 by dry etching in order to form the source electrode 16aa and the drain electrode 16b in the source/drain forming step, a surface layer of the channel region C of the oxide semiconductor layer 13b is also etched, i.e., the channel region C of the oxide semiconductor layer 13b is damaged. However, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor layer 13b is annealed in the presence of H2O, and therefore, the damage to the channel region C of the oxide semiconductor layer 13b can be satisfactorily repaired. Thus, by forming the protection insulating layer 17 by applying, baking, and patterning the SOG material, the damage to the channel region C of the oxide semiconductor layer 13b can be reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13b can be reduced, and satisfactory TFT characteristics can be obtained.
In the second embodiment, the method of manufacturing the active matrix substrate 20b including the TFT 5b including the relatively large oxide semiconductor layer 13b using five photomasks has been illustrated. In this embodiment, a method of manufacturing the active matrix substrate 20b using four photomasks will be illustrated.
Specifically, an example method for manufacturing the active matrix substrate 20b of this embodiment will be described with reference to
Initially, as in the method for manufacturing the active matrix substrate 20b of the second embodiment, a silicon nitride film (12) and the oxide semiconductor film 13, and the metal film 16, are successively formed by CVD and sputtering, respectively, on the entire substrate on which the gate electrode 11aa and the auxiliary capacitor line 11b, etc., have been formed. A photosensitive resin film R is formed on the metal film 16. Thereafter, the photosensitive resin film R is exposed to light, for example, via a halftone or graytone photomask having transparent, opaque, and translucent portions, and thereafter, development is performed, to form a resist pattern Raa (see
Next, the thickness of the resist pattern Raa is decreased by ashing to remove the relatively thin portion of the resist pattern Raa, whereby a resist pattern Rab (see
Moreover, on the entire substrate on which the source electrode 16aa, the drain electrode 16b, and the oxide semiconductor layer 13b have been formed, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm Thereafter, on the entire substrate on which the SOG film 17s has been formed, a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the interlayer insulating layer 18. Thereafter, dry etching is performed on the SOG film 17s exposed through the interlayer insulating layer 18. As a result, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 and the interlayer insulating layer 18 have been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20b can be manufactured.
As described above, according to the active matrix substrate 20b of this embodiment and the method for manufacturing the active matrix substrate 20b, as in the above embodiments, the protection insulating layer 17 made of an SOG material is provided on the channel region C of the oxide semiconductor layer 13b. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13b can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the method for manufacturing the active matrix substrate 20b of this embodiment, in the semiconductor layer forming step, a single halftone or graytone photomask which allows half exposure is used to form, on the metal film 16, the resist pattern Raa which has a relatively thin portion in which the channel region C of the oxide semiconductor layer 13b is to be formed and a relatively thick portion in which the source electrode 16aa and the drain electrode 16b are to be formed. The resist pattern Raa is used to form the oxide semiconductor layer 13b. The resist pattern Rab which is obtained by decreasing the thickness of the resist pattern Raa is used to form the source electrode 16aa and the drain electrode 16b. As a result, the manufacturing cost of the active matrix substrate 20b can be reduced.
In the third embodiment, the method of manufacturing the active matrix substrate 20b using four photomasks in which half exposure is performed has been illustrated. In this embodiment, a method of manufacturing the active matrix substrate 20b using four photomasks, but without half exposure, will be illustrated.
Specifically, an example method for manufacturing the active matrix substrate 20b of this embodiment will be described with reference to
Initially, as in the method for manufacturing the active matrix substrate 20b of the second embodiment, a silicon nitride film (12) and the oxide semiconductor film 13, and the metal film 16, are successively formed by CVD and sputtering, respectively, on the entire substrate on which the gate electrode 11aa and the auxiliary capacitor line 11b, etc., have been formed. A resist pattern Rba (see
Next, reflowing is performed on the resist pattern Rba to form a resist pattern Rbb (see
Moreover, on the entire substrate on which the source electrode 16aa, the drain electrode 16b, and the oxide semiconductor layer 13b have been formed, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm
Thereafter, on the entire substrate on which the SOG film 17s has been formed, a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the interlayer insulating layer 18. Thereafter, dry etching is performed on the SOG film 17s exposed through the interlayer insulating layer 18. As a result, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 and the interlayer insulating layer 18 have been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20b can be manufactured. As described above, according to the active matrix substrate 20b of this embodiment and the method for manufacturing the active matrix substrate 20b, as in the above embodiments, the protection insulating layer 17 made of an SOG material is provided on the channel region C of the oxide semiconductor layer 13b. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13b can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the method for manufacturing the active matrix substrate 20b of this embodiment, in the semiconductor layer forming step, a single photomask is used to form, on the metal film 16, the resist pattern Rba which covers portions of the metal film 16 in which the source electrode 16aa and the drain electrode 16b are to be formed. The resist pattern Rba is used to form the source electrode 16aa and the drain electrode 16b.
Reflowing is performed on the resist pattern Rba to form the resist pattern Rbb, and the resist pattern Rbb is used to form the oxide semiconductor layer 13b. As a result, the manufacturing cost of the active matrix substrate 20b can be reduced.
In the above embodiments, the active matrix substrate including the interlayer insulating layer 18 having a single-layer structure has been illustrated. In this embodiment, an active matrix substrate 20e including an interlayer insulating layer 18 having a multilayer structure will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20e of this embodiment will be described with reference to
Initially, on the entire substrate on which the source electrode 16aa and the drain electrode 16b, etc., have been formed by performing the source/drain forming step of the active matrix substrate manufacturing process of the first embodiment, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm.
Next, on the entire substrate on which the SOG film 17s has been formed, a CVD film such as a silicon nitride film (thickness: about 100-700 nm), etc. is formed by CVD, and a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the second interlayer insulating layer 18b. Moreover, dry etching is performed on the CVD film exposed through the second interlayer insulating layer 18b and the SOG film 17s located below the CVD film, whereby, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 and the first and second interlayer insulating layers 18a and 18b have been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20e can be manufactured.
As described above, according to the active matrix substrate 20e of this embodiment and the method for manufacturing the active matrix substrate 20e, as in the above embodiments, the protection insulating layer 17 made of an SOG material is provided on the channel region C of the oxide semiconductor layer 13a. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13a can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the method for manufacturing the active matrix substrate 20e of this embodiment, the interlayer insulating layer 18 is formed of a multilayer film in which the CVD film and the photosensitive resin film are successively stacked. Therefore, the interlayer insulating layer 18 having a multilayer structure can be formed without using a photoresist. As a result, the manufacturing cost of the active matrix substrate 20e can be reduced.
In the above embodiments, the active matrix substrate in which the protection insulating layer 17 and the interlayer insulating layer 18 are provided between the TFT and the pixel electrode 19a has been illustrated. In this embodiment, an active matrix substrate 20f in which the interlayer insulating layer 18 is removed will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20f of this embodiment will be described with reference to
Initially, on the entire substrate on which the source electrode 16aa and the drain electrode 16b, etc., have been formed by performing the source/drain forming step of the active matrix substrate manufacturing process of the first embodiment, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm. Next, photolithography, dry etching, and resist removal and cleaning are performed on the SOG film 17s, whereby, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 has been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20f can be manufactured.
As described above, according to the active matrix substrate 20f of this embodiment and the method for manufacturing the active matrix substrate 20f, as in the above embodiments, the protection insulating layer 17 made of an SOG material is provided on the channel region C of the oxide semiconductor layer 13a. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13a can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the method for manufacturing the active matrix substrate 20f of this embodiment, the pixel electrode 19a is provided on the protection insulating layer 17, and therefore, the insulating layer between the pixel electrode 19a and the TFT 5a has a single-layer structure including the protection insulating layer 17. As a result, the manufacturing cost of the active matrix substrate 20f can be reduced.
In the first to fifth embodiments, the active matrix substrate in which the interlayer insulating layer 18 (the second interlayer insulating layer 18b) is formed of a photosensitive resin film has been illustrated. In this embodiment, the active matrix substrate 20g including an interlayer insulating layer 18c formed of a CVD film will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20g of this embodiment will be described with reference to
Initially, on the entire substrate on which the source electrode 16aa and the drain electrode 16b, etc., have been formed by performing the source/drain forming step of the active matrix substrate manufacturing process of the first embodiment, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm.
Next, on the entire substrate on which the SOG film 17s has been formed, a CVD film such as a silicon nitride film (thickness: about 100-700 nm), etc. is formed by CVD.
Thereafter, photolithography, dry etching, resist removal and cleaning are performed on the CVD film to form the interlayer insulating layer 18c. Moreover, dry etching is performed on the SOG film 17s exposed through the interlayer insulating layer 18c, whereby, as shown in
Finally, on the entire substrate on which the protection insulating layer 17 and the interlayer insulating layer 18c have been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20g can be manufactured.
As described above, according to the active matrix substrate 20g of this embodiment and the method for manufacturing the active matrix substrate 20g, as in the above embodiments, the protection insulating layer 17 made of an SOG material is provided on the channel region C of the oxide semiconductor layer 13a. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13a can be reduced, and satisfactory TFT characteristics can be obtained.
In the above embodiments, the active matrix substrate in which the protection insulating layer 17 covers not only the channel region C of the oxide semiconductor layer but also the source electrode 16aa and the drain electrode 16b, has been illustrated. In this embodiment, the active matrix substrate 20h in which a protection insulating layer 17c is provided only on the oxide semiconductor layer 13a will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20h of this embodiment will be described with reference to
Initially, on the entire substrate on which the oxide semiconductor layer 13a has been formed by performing the source/drain forming step of the active matrix substrate manufacturing process of the first embodiment, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm Moreover, photolithography, dry etching, and resist removal and cleaning are performed on the SOG film 17s, whereby, as shown in
Next, on the entire substrate on which the protection insulating layer 17c has been formed, for example, a titanium film (thickness: about 30-100 nm) and a copper film (thickness: about 100-400 nm), etc., are successively formed by sputtering to form the metal film 16. Thereafter, photolithography and wet etching are performed on the copper film of the metal film 16, and dry etching and resist removal and cleaning are performed on the titanium film of the metal film 16, whereby, as shown in
Next, on the entire substrate on which the source electrode 16aa and the drain electrode 16b have been formed, a CVD film such as a silicon nitride film (thickness: about 100-700 nm), etc. is formed by CVD, and a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the second interlayer insulating layer 18b. Thereafter, dry etching is performed on the CVD film exposed through the second interlayer insulating layer 18b, whereby, as shown in
Finally, on the entire substrate on which the first and second interlayer insulating layers 18a and 18b have been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20h can be manufactured.
As described above, according to the active matrix substrate 20h of this embodiment and the method for manufacturing the active matrix substrate 20h, the oxide semiconductor layer 13a is formed in the semiconductor layer forming step, and thereafter, the protection insulating layer forming step is performed before the source electrode 16aa and the drain electrode 16b are formed in the source/drain forming step. Therefore, the active matrix substrate 20h including the TFT 5h in which the oxide semiconductor layer 13a having a relatively small size is formed separately from the formation of the source electrode 16aa and the drain electrode 16b, can be manufactured. In the protection insulating layer forming step, an SOG material is applied by spin coating or slit coating to cover the oxide semiconductor layer 13a, and baking and patterning are performed on the applied film, to form the protection insulating layer 17c on the channel region C of the oxide semiconductor layer 13a. Therefore, the channel region C of the oxide semiconductor layer 13a is not exposed to plasma, and therefore, the damage to the channel region C of the oxide semiconductor layer 13a can be reduced. Also, when patterning is performed on the metal film 16 by dry etching in order to form the source electrode 16aa and the drain electrode 16b in the source/drain forming step, the protection insulating layer 17c on the channel region C of the oxide semiconductor layer 13a functions as an etch stopper for the oxide semiconductor layer 13a, and therefore, the damage to the channel region C of the oxide semiconductor layer 13a can be reduced. Also, when the protection insulating layer 17c is formed in the protection insulating layer forming step, the applied film of the SOG material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the SOG material. Therefore, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor layer 13a is annealed in the presence of H2O. Therefore, even if the channel region C of the oxide semiconductor layer 13a is damaged, the damage to the channel region C of the oxide semiconductor layer 13a can be satisfactorily repaired. Thus, by forming the protection insulating layer 17c by applying, baking, and patterning the SOG material, the damage to the channel region C of the oxide semiconductor layer 13a can be reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13a can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the active matrix substrate 20h of this embodiment, the protection insulating layer 17c is provided between the source electrode 16aa and the drain electrode 16b, and the oxide semiconductor layer 13a. Therefore, the protection insulating layer 17c functions as an etch stopper when the source electrode 16aa and the drain electrode 16b are formed, and therefore, the damage to a surface layer of the oxide semiconductor layer 13a can be reduced during etching which is performed when the source electrode 16aa and the drain electrode 16b are formed, resulting in an improvement in TFT characteristics.
In the eighth embodiment, the active matrix substrate 20h in which the interlayer insulating layer 18 covering the TFT 5h in which the protection insulating layer 17c is provided between the source electrode 16aa and the drain electrode 16b, and the oxide semiconductor layer 13a, has a multilayer structure, has been illustrated. In this embodiment, an active matrix substrate 20i in which the interlayer insulating layer 18 has a single-layer structure will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20i of this embodiment will be described with reference to
Next, on the entire substrate on which the source electrode 16aa and the drain electrode 16b have been formed by performing the source/drain forming step of the active matrix substrate manufacturing process of the eighth embodiment, a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, whereby, as shown in
Moreover, on the entire substrate on which the interlayer insulating layer 18 has been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20i can be manufactured.
As described above, according to the active matrix substrate 20i of this embodiment and the method for manufacturing the active matrix substrate 20i, as in the eighth embodiment, the protection insulating layer 17c made of an SOG material is provided on the channel region C of the oxide semiconductor layer 13a. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13a can be reduced, and satisfactory TFT characteristics can be obtained.
Also, according to the active matrix substrate 20i of this embodiment, the interlayer insulating layer 18 is formed of a photosensitive resin film. Therefore, the interlayer insulating layer 18 having a single-layer structure can be formed without using a photoresist. As a result, the manufacturing cost of the active matrix substrate 20i can be reduced.
In the eighth and ninth embodiments, the active matrix substrate which includes the TFT 5h including the relatively small oxide semiconductor layer 13a has been illustrated. In this embodiment, the active matrix substrate 20j which includes a TFT 5j including a relatively large oxide semiconductor layer 13b will be illustrated.
As shown in
Next, an example method for manufacturing the active matrix substrate 20j of this embodiment will be described with reference to
Initially, on the entire substrate on which the gate electrode 11aa and the auxiliary capacitor line 11b, etc., have been formed by performing the gate electrode forming step of the active matrix substrate manufacturing process of the first embodiment, for example, a silicon nitride film (thickness: about 200-500 nm) is formed as the gate insulating layer 12 by CVD. Thereafter, for example, an IGZO oxide semiconductor film 13 (thickness: about 30-300 nm) is continuously formed by CVD. Moreover, a spin-on glass (SOG) material containing, for example, silanol (Si(OH)4), alkoxysilane, or organic siloxane resin, etc., as a major component, is applied by spin coating or slit coating, and thereafter, is baked at 350° C., to form an SOG film 17s having a thickness of about 500-3000 nm. Thereafter, photolithography, dry etching, and resist removal and cleaning are performed on the SOG film 17s, whereby, as shown in
Next, on the entire substrate on which the protection insulating layer 17c has been formed, for example, a titanium film (thickness: about 30-100 nm) and a copper film (thickness: about 100-400 nm), etc., are successively formed by sputtering to form the metal film 16. Thereafter, photolithography and wet etching are performed on the copper film of the metal film 16, and dry etching and resist removal and cleaning are performed on the titanium film of the metal film 16, whereby, as shown in
Next, on the entire substrate on which the source electrode 16aa, the drain electrode 16b, and the oxide semiconductor layer 13b have been formed, a CVD film such as a silicon nitride film (thickness: about 100-700 nm), etc. is formed by CVD, and thereafter, a photosensitive organic insulating film having a thickness of about 1.0-3.0 μm is applied by spin coating or slit coating, and thereafter, exposure and development are performed on the applied film, to form the second interlayer insulating layer 18b. Thereafter, dry etching is performed on the CVD film exposed through the second interlayer insulating layer 18b, whereby, as shown in
Finally, on the entire substrate on which the first and second interlayer insulating layers 18a and 18b have been formed, a transparent conductive film such as an ITO film (thickness: about 50-200 nm), etc. is formed by sputtering, and thereafter, photolithography, wet etching, and resist removal and cleaning are performed on the transparent conductive film. As a result, as shown in
Thus, the active matrix substrate 20j can be manufactured.
As described above, according to the active matrix substrate 20j of this embodiment and the method for manufacturing the active matrix substrate 20j, after the source electrode 16aa and the drain electrode 16b are formed in the semiconductor layer forming step, the oxide semiconductor layer 13b is formed by utilizing the formation of the source electrode 16aa and the drain electrode 16b. Therefore, the active matrix substrate 20j which includes the TFT 5j in which the relatively large oxide semiconductor layer 13b is formed in conjunction with the formation of the source electrode 16aa and the drain electrode 16b, can be manufactured. In the protection insulating layer forming step, an SOG material is applied by spin coating or slit coating to cover the oxide semiconductor film 13 of which the oxide semiconductor layer 13b is to be formed, and baking and patterning are performed on the applied film, to form the protection insulating layer 17c on a region of the oxide semiconductor layer 13b in which the channel region C is to be formed. Therefore, the channel region C of the oxide semiconductor layer 13b is not exposed to plasma, and therefore, the damage to the channel region C of the oxide semiconductor layer 13b can be reduced. Also, when patterning is performed on the metal film 16 by dry etching in order to form the source electrode 16aa and the drain electrode 16b in the semiconductor layer forming step, the protection insulating layer 17c on the oxide semiconductor film 13 functions as an etch stopper for the oxide semiconductor film 13, and therefore, the damage to the channel region C of the oxide semiconductor layer 13b can be reduced. Also, when the protection insulating layer 17c is formed in the protection insulating layer forming step, the applied film of the SOG material is baked. During the baking, H2O occurs due to dehydration polymerization reaction of the SOG material. Therefore, when the applied film is baked in the protection insulating layer forming step, H2O occurs, and therefore, the oxide semiconductor film 13 forming the oxide semiconductor layer 13b is annealed in the presence of H2O. Therefore, even if a region where the channel region C of the oxide semiconductor film 13 is to be formed is damaged, the damage to the region where the channel region C of the oxide semiconductor film 13 is to be formed can be satisfactorily repaired. Thus, by forming the protection insulating layer 17c by applying, baking, and patterning the SOG material, the damage to the channel region C of the oxide semiconductor layer 13b can be reduced and repaired. As a result, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer 13b can be reduced, and satisfactory TFT characteristics can be obtained.
While, in the above embodiments, the multilayer structure of copper (Cu) and titanium (Ti) has been illustrated as an interconnect layer, the metal of the lower layer may be, in addition to titanium, molybdenum (Mo), molybdenum nitride (MoN), titanium nitride (TiN), tungsten (W), niobium (Nb), tantalum (Ta), molybdenum titanium (MoTi), or molybdenum tungsten (MoW), etc. While, in the above embodiments, IGZO (In—Ga—Zn—O) has been illustrated as the oxide semiconductor, the oxide semiconductor may be In—Si—Zn—O, In—Al—Zn—O, Sn—Si—Zn—O, Sn—Al—Zn—O, Sn—Ga—Zn—O, Ga—Si—Zn—O, Ga—Al—Zn—O, In—Cu—Zn—O, Sn—Cu—Zn—O, Zn—O, or In—O, etc.
While, in the above embodiments, the non-photosensitive SOG film has been illustrated, a photosensitive SOG film may be employed.
While, in the above embodiments, the active matrix substrate in which the electrode of the TFT connected to the pixel electrode is a drain electrode has been illustrated, the present invention can be applied to an active matrix substrate in which an electrode of the TFT connected to the pixel electrode is called a source electrode. While, in the above embodiments, the active matrix substrate having the Cs on
Common structure has been illustrated, the present invention can be applied to an active matrix substrate having the Cs on Gate structure.
While, in the above embodiments, the liquid crystal display panel including the active matrix substrate has been illustrated as a display panel, the present invention can be applied to other display panels, such as an organic electroluminescence (EL) display panel, an inorganic EL display panel, an electrophoretic display panel, etc.
As described above, according to the present invention, an increase in the number of manufacturing steps can be reduced, the damage to the oxide semiconductor layer can be reduced, and satisfactory TFT characteristics can be obtained. Therefore, the present invention is useful for an active matrix substrate for use in a large-size liquid crystal television which can display a high-definition image at a high frame rate, etc.
Number | Date | Country | Kind |
---|---|---|---|
2010-005199 | Jan 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/000104 | 1/12/2011 | WO | 00 | 9/21/2012 |