Exemplary embodiments of the present disclosure pertain to the art of gas turbine engines.
The active clearance control system on typical gas turbine engines allows for fuel burn and high pressure turbine (HPT) efficiency improvements and prolonged engine hot-section life. The current process utilizes a modulating butterfly valve that regulates bypass airflow around the circumference of the high pressure turbine case in order to reduce the clearances between the blades of the rotating turbomachinery and the outer air seals mounted in the stationary case. Due to the slow nature of the thermal transients through which the clearances are controlled, relative to the acceleration capabilities of the engine, there is a need to introduce an additional control mode in order to improve clearance control during engine transients. Being able to protect the engine from turbine rubs during the transient would allow the target clearance during cruise to be brought tighter, bringing more fuel burn and efficiency benefit.
The potential clearance pinch during an engine acceleration is largely a result of the centripetal growth of the blades, a mechanical phenomenon from the rate of high spool rotor speed (N2) acceleration.
In one embodiment, a method of operating a gas turbine engine includes commanding an acceleration of the gas turbine engine and moving a variable pitch high pressure compressor vane toward an open position thereby reducing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal.
Additionally or alternatively, in this or other embodiments a portion of a turbofan bypass stream is directed to an outer circumference of a turbine case to control a thermal growth of a turbine case in which the blade outer airseal is located.
Additionally or alternatively, in this or other embodiments a rotational speed of a low pressure turbine is increased in response to the slowing of the acceleration rate of the high pressure turbine rotor, and a fuel flow to a combustor of the gas turbine engine is modulated to reduce an acceleration rate of the low pressure turbine.
Additionally or alternatively, in this or other embodiments modulating the fuel flow is reducing a rate of the fuel flow.
Additionally or alternatively, in this or other embodiments the reducing the acceleration rate of a high pressure turbine rotor prevents a rub condition between the blade outer airseal and the high pressure turbine rotor during the acceleration of the gas turbine engine.
In another embodiment, a gas turbine engine includes a turbine section having a high pressure turbine rotor having a plurality of rotor blades. A blade outer airseal is located radially outboard of the turbine rotor and defines a radial clearance gap between the plurality of rotor blades and the blade outer airseal. A compressor section includes a high pressure compressor rotor operably connected to the high pressure turbine via an outer shaft, and a high pressure compressor stator including a plurality of variable pitch stator vanes. An actuation system is operably connected to the plurality of variable pitch stator vanes configured to move the variable pitch stator vanes between a closed position and an open position. An engine control system is configured to command an acceleration of the gas turbine engine, and move a variable pitch high pressure compressor vane toward an open position thereby slowing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal.
Additionally or alternatively, in this or other embodiments a low pressure turbine is located downstream of the high pressure turbine, and a combustor is located upstream of the high pressure turbine. The engine control system is additionally configured to modulate a fuel flow to the combustor in response to the slowing of the acceleration rate of the high pressure turbine rotor, thereby reducing an acceleration rate of the low pressure turbine.
Additionally or alternatively, in this or other embodiments modulating the fuel flow is reducing a rate of the fuel flow.
Additionally or alternatively, in this or other embodiments the low pressure turbine is secured to an inner shaft separate from the outer shaft.
Additionally or alternatively, in this or other embodiments the blade outer airseal is disposed in a high pressure turbine case.
Additionally or alternatively, in this or other embodiments reducing the acceleration rate of a high pressure turbine rotor prevents a rub condition between the blade outer airseal and the high pressure turbine rotor during the acceleration of the gas turbine engine.
Additionally or alternatively, in this or other embodiments the plurality of variable pitch stator vanes are rotatable about a vane axis to move between the open position and the closed position.
In yet another embodiment, an active clearance control system of a gas turbine engine includes an engine control system configured to command an acceleration of the gas turbine engine and move a variable pitch high pressure compressor vane toward an open position thereby slowing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal located radially outboard of the high pressure turbine rotor.
Additionally or alternatively, in this or other embodiments the engine control system is additionally configured to modulate a fuel flow to a combustor of the gas turbine engine in response to the slowing of the acceleration rate of the high pressure turbine rotor, thereby reducing an acceleration rate of a low pressure turbine of the gas turbine engine.
Additionally or alternatively, in this or other embodiments modulating the fuel flow is reducing a rate of the fuel flow.
Additionally or alternatively, in this or other embodiments the reducing the acceleration rate of a high pressure turbine rotor prevents a rub condition between the blade outer airseal and the high pressure turbine rotor during the acceleration of the gas turbine engine.
Additionally or alternatively, in this or other embodiments the plurality of variable pitch stator vanes are rotatable about a vane axis to move between the open position and the closed position.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. An engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The engine static structure 36 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines including direct drive turbofans.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet (10,688 meters). The flight condition of 0.8 Mach and 35,000 ft (10,688 meters), with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second (350.5 m/sec).
Referring to
Referring now to
In the present disclosure, additional engine 20 effectors, in addition to the current bypass air flow modulating, to manage high pressure turbine rotors 60 acceleration rates for the purpose of active clearance control. More specifically, referring to
Decreasing the rotational speed of the high pressure turbine rotor 60 reduces the clearance “pinch” or rate of reduction of the clearance gap 64 at the blade tip 70 and the blade outer airseal 66. Such reduces the occurrence of a rub condition between the blade tip 70 and the blade outer airseal 66.
To compensate for the reduction in rotational acceleration of the high pressure turbine rotor 60, also referred to N2, the rotational acceleration of the inner shaft 40 driven by the low pressure turbine 46, also referred to as N1, is increased.
Consequently, a fuel flow rate to the combustor section 26 is modulated via biasing one of the limits that the on-board constrained model-based multivariable control respects. Reduction of the fuel flow rate reduces the N1 acceleration rate. Such fuel flow modulation abates the N1 acceleration rate in order to preserve a nominal response and reduce a turbine clearance rub risk in the Low-Pressure Turbine (LPT) 46 from the analogous problem of centrifugal blade growth.
Referring to
The clearance gap 64 to which the engine 20 control to set to achieve is determined based on the smallest cruise, steady-state clearance gap 64 that would not permit a rub given an aggressive command engine acceleration. With the use of this new control mode, the clearance pinch during that acceleration is less in magnitude. This directly allows the entire steady-state target to be lower by the amount by which the pinch was reduced. Said differently, there is a current sub-optimal steady-state clearance that is held for a majority of a typical commercial mission as a precaution for a potential sharp increase in engine power while at cruise that may not occur.
Having implemented this control functionality, the benefit that is accrued is over the duration of the cruise segment of a typical mission being that clearances can be run more closely to optimal levels. As mentioned, the tighter the clearances can be held, the benefits can be felt in fuel burn and hot section refurbishment interval.
The term “about” is intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” can include a range of ±8% or 5%, or 2% of a given value.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4257222 | Schwarz | Mar 1981 | A |
4795307 | Liebl | Jan 1989 | A |
5165844 | Khalid | Nov 1992 | A |
5165845 | Khalid | Nov 1992 | A |
6155038 | Irwin et al. | Dec 2000 | A |
6164902 | Irwin et al. | Dec 2000 | A |
6758044 | Mannarino | Jul 2004 | B2 |
7597537 | Bucaro | Oct 2009 | B2 |
8011883 | Schwarz et al. | Sep 2011 | B2 |
8126628 | Hershey et al. | Feb 2012 | B2 |
9097133 | Dong et al. | Aug 2015 | B2 |
9260974 | Hasting et al. | Feb 2016 | B2 |
9758252 | Adibhatla et al. | Sep 2017 | B2 |
20010001845 | Khalid et al. | May 2001 | A1 |
20070084211 | Bowman | Apr 2007 | A1 |
20090096174 | Spangler | Apr 2009 | A1 |
20150378364 | Karpman et al. | Dec 2015 | A1 |
20180112550 | Dierksmeier et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2057574 | Apr 1981 | GB |
Entry |
---|
European Search Report for European Application No. 20169684.6, dated Jul. 29, 2020, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200332726 A1 | Oct 2020 | US |