Mobile phones enable their users to conduct conversations in many different acoustic environments, some of which are relatively quiet while others are quite noisy. The user may be in a particularly hostile acoustic environment, that is, with high background or ambient noise levels, such as on a busy street or near an airport or train station. To improve intelligibility of the far-end user's speech to the near-end user who is in a hostile acoustic environment (i.e., an environment in which the ambient acoustic noise or unwanted sound surrounding the mobile phone is particularly high), an audio signal processing technique known as active noise cancellation (ANC) can be implemented in the mobile phone. With ANC, the background sound that is heard by the near-end user through the ear that is pressed against or that is carrying an earpiece speaker, is reduced by producing an anti-noise signal designed to cancel the background sound, and driving the earpiece speaker with this anti-noise signal. Such ambient noise reduction systems may be based on either one of two different principles, namely the “feedback” method, and the “feed-forward” method.
In the feedback method, a small microphone is placed inside a cavity that is formed between the user's ear and the inside of an earphone shell. This microphone is used to pickup the background sound that has leaked into that cavity. An output signal from the microphone is coupled back to the earpiece speaker via a negative feedback loop that may include analog amplifiers and digital filters. This forms a servo system in which the earpiece speaker is driven so as to attempt to create a null sound pressure level at the pickup microphone. In contrast, with the feed-forward method, the pickup microphone is placed on the exterior of the earpiece shell in order to directly detect the ambient noise. The detected signal is again amplified and may be inverted and otherwise filtered using analog and digital signal processing components, and then fed to the earpiece speaker. This is designed to create a combined acoustic output that contains not just the primary audio content signal (in this case the downlink speech of the far-end user) but also a noise reduction signal component. The latter is designed to essentially cancel the incoming ambient acoustic noise, at the outlet of the earpiece speaker. Both of these ANC techniques are intended to create an easy listening experience for the user of a portable audio device who is in a hostile acoustic noise environment.
In one embodiment of the invention, a portable audio device has an earpiece speaker with an input to receive an audio signal, and a first microphone to pickup sound emitted from the earpiece signal, and any ambient or background acoustic noise that is outside of the device but that may be heard by a user of the device. The device also includes ANC circuitry that is coupled to the input of the earpiece speaker, to control the ambient acoustic noise. An estimate of how much sound emitted from the earpiece speaker has been corrupted by ambient acoustic noise is computed, by computing a degraded audio reference signal, which is an estimate of the audio signal as it has been corrupted by the ambient acoustic noise. Control circuitry then determines whether this estimate indicates insufficient corruption by noise, in which case it will deactivate the ANC circuitry. This will help preserve battery life in the portable device, since in many instances the acoustic environment surrounding the user of a portable audio device is not hostile, i.e. it is relatively quiet such that running ANC provides no user benefits.
If, however, the estimate indicates sufficient corruption by noise (e.g., when the user is in a hostile acoustic environment), then a decision is made to not deactivate the ANC circuitry. In other words, the ANC circuitry is allowed to continue to operate if the estimate indicates that there is sufficient corruption by ambient acoustic noise.
In one embodiment, estimates of the ambient acoustic noise and the degraded audio reference signal are smoothed in accordance with subjective loudness weighting and then averaged, before computing a signal to noise ratio and then making the threshold decision as to whether to deactivate or activate the ANC. The subjective loudness weighting may be filtered so that only the frequencies where ANC is expected to be effective are taken into account (when determining the SNR). For example, in some cases, effective noise reduction by the ANC may be limited to the range 500-1500 Hz. Also, the decision whether to activate or deactivate the ANC may be taken only after having introduced hysteresis into the threshold SNR values, to prevent rapid switching of the decision near the threshold.
In another embodiment, if the estimated ambient acoustic noise is deemed to be louder than a threshold, then ANC is activated (or is not deactivated), thereby allowing the ANC to continue reducing unwanted ambient sound. The threshold may be based on an actual (measured) or expected (computed) strength of an audio artifact that is induced by the ANC in sound emitted from the earpiece speaker. This artifact is caused by operation of the ANC circuitry, and is some times referred to as a “hiss” that can be heard by the user. If more hiss is being heard by the user than noise that needs to be canceled, then the ANC circuitry is deactivated. This reflects the situation where the ANC circuitry is not providing sufficient user benefit and thus may be shutdown to save power.
In accordance with another embodiment of the invention, a method for performing a call or playing an audio file or an audio stream using a portable audio device, may proceed as follows. ANC circuitry in the device is activated, to control ambient acoustic noise during the call or playback. An estimate of how much sound emitted from an earpiece speaker of the device has been corrupted by the ambient acoustic noise is computed. A determination is then made whether the estimate indicates insufficient corruption by noise, in which case the ANC circuitry is deactivated. On the other hand, if the estimate indicates sufficient corruption by noise, then the ANC circuitry is allowed to continue operation in an attempt to reduce the unwanted ambient sound. The estimate may be computed as signal to noise ratio (SNR), which may refer to a downlink speech signal or an audio signal produced when playing an audio file or an audio stream. As an alternative to computing the estimate of how much of the desired sound has been corrupted by noise, an estimate of the ambient acoustic noise may be computed and then compared to a threshold, to determine whether the noise would be deemed louder than a threshold (e.g., a hiss threshold); if so, then ANC is activated (or is not deactivated), thereby allowing the ANC to continue reducing unwanted ambient sound.
In one embodiment, the ANC circuitry may be deactivated by setting the tap coefficients of a digital anti-noise filter (whose output feeds the earpiece speaker) to zero, so that essentially no signal is output by the filter. In addition, the deactivation of the ANC circuitry may also include at the same time disabling an adaptive filter controller that normally updates those tap coefficients, so that the tap coefficients are no longer being updated.
In an alternative embodiment, the ANC circuitry may be deactivated by disabling the adaptive filter controller so that the tap coefficients of the anti-noise filter are no longer being updated (e.g., freezing the adaptive filter, so that although some signal is output by the anti-noise filter, the latter is not changing and the controller is not computing any updates to it).
In yet another embodiment of the method for performing a call or playing an audio file or audio stream using the portable audio device, the ANC circuitry is not activated during the call or playback, until a determination has been made that there is sufficient corruption, due to the presence of ambient acoustic noise, of the sound being emitted from the earpiece speaker. Thereafter, an estimate of how much sound emitted from the earpiece speaker (during the call or playback) is being corrupted is again computed, and if there is insufficient corruption by the ambient acoustic noise then the ANC circuitry is deactivated.
The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, as well as those disclosed in the Detailed Description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one.
Several embodiments of the invention with reference to the appended drawings are now explained. While numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known circuits, structures, and techniques have not been shown in detail so as not to obscure the understanding of this description.
During the call, the near-end user would hear some of the ambient acoustic noise that surrounds him, where the ambient acoustic noise may leak into the cavity that has been created between the user's ear and the shell or housing behind which the earpiece speaker 6 is located. In this monaural arrangement, the near-end user can hear the speech of the far-end user in his left ear, but in addition may also hear some of the ambient acoustic noise that has leaked into the cavity next to his left ear. The near-end user's right ear is completely exposed to the ambient noise.
As explained above, an active noise cancellation (ANC) mechanism operating within the audio device 2 can reduce the unwanted sound that travels into the left ear of the user and that would otherwise corrupt the primary audio content, which in this case is the speech of the far-end user. In some cases, however, ANC imparts little apparent improvement on speech intelligibility, particularly where the signal-to-noise ratio (SNR) at the user's ear is greater than a certain threshold (as discussed below). Moreover, ANC induces audible artifacts that can be heard by the user in relatively quiet environments. The various embodiments of the invention make decisions on activation and deactivation of ANC in a way that helps reduce the presence of such audible artifacts and conserves power, when it has been determined that the ANC would not be of substantial benefit to the user.
Turning now to
The references to s′(k), s′(k)+n′(k), and n′(k) are used here to represent a time sequence of discrete values, as the signal processing operations performed on any audio signals by the blocks depicted in this disclosure are in the discrete time domain. More generally, it is possible to implement some or all of the functional unit blocks in analog form (continuous time domain). However, it is believed that the digital domain is more flexible and more suitable for implementation in modern, consumer electronic audio devices, such as smart phones, digital media players, and desktop and notebook personal computers.
The signal and noise estimates are computed by noise measurement circuitry 23, which includes an error microphone 8 that is located and oriented in such a manner as to pickup both (a) sound emitted from the earpiece speaker 6 and (b) the ambient acoustic noise that has leaked into the cavity or region between the handset housing or shell (not shown) that is in front of the earpiece speaker 6 and the user's ear. The error microphone 8 may be embedded in the housing of a cellular handset in which the earpiece speaker 6 is also integrated, directed at the cavity formed by the user's ear and the front face earpiece region of the handset, i.e. located close to the earpiece speaker and far from the primary or talker microphone (not shown) that is used to pickup the near-end user's speech. This combination of the earpiece speaker 6 and the error microphone 8, along with the acoustic cavity formed against the user's ear, is referred to as the system or plant that is being controlled by the ANC circuitry 10; the frequency response of this system or plant is labeled F. A digital filter models the system or plant F, and is described as having a frequency response F′, an instance of which appears in the noise measurement circuitry 23 as a filter 13, is shown. A signal picked up by the microphone is fed to a differencing unit 18 whose other input receives a signal from the output of the filter 13. This allows the output of the differencing unit 18 to provide an estimate of the ambient acoustic noise, n′(k), while the output of another filter 17 (being a second instance of F′) provides an estimate of the primary or desired audio signal, s′(k) (here, the downlink speech signal).
The noise measurement circuitry 23 also includes an instance of F′, namely a filter 9, whose input receives the anti-noise signal (and not the audio signal). After passing through the filter 9, and becoming in effect an estimate of the anti-noise, the estimated anti-noise is fed to an input of a differencing unit 22; another input of the differencing unit 22 is coupled to the output of the error microphone (8). This arrangement produces the degraded reference s′(k)+n′(k), at the output of the differencing unit 22.
While
The SNR may be calculated in the primarily audible frequency range in which ANC is effective, e.g. at the low end between 300-500 Hz, up to at the high end 1.5-2 kHz. The signal and noise levels may be computed as signal energy within the ANC's effective frequency range and in a finite time interval or frame of the sequences s′(k) and n′(k). If the indication is that there is insufficient corruption by noise (or the SNR is greater than a predetermined threshold), then the ANC circuitry 10 is deactivated, consistent with the belief that ANC in this situation may not be of benefit to the near-end user.
The ANC decision control 11 may alternately determine that its computed estimate (of how much the desired sound has been corrupted by noise) indicates that there is sufficient corruption by noise (e.g., the SNR is smaller than the predetermined threshold). In that case, the ANC circuitry 10 should not be deactivated (consistent with the belief here that the ANC is expected to benefit the near-end user by increasing intelligibility of the far-end user's speech). In a further embodiment of the invention, this decision by the ANC decision control 11 means that the ANC circuitry 10 should be activated (assuming in that case the ANC circuitry 10 was not active at the time of the decision made by the decision control 11.
In yet another embodiment, the ANC decision control 11 makes its decision (regarding whether or not to deactivate the ANC circuitry 10) based only on a comparison between the estimated noise n′(k) and a threshold. In other words, if this estimate indicates that the ambient environment surrounding the user is currently sufficiently noisy (e.g., a computed quantity containing n′(k) is larger than a predetermined threshold value), then the ANC circuitry 10 should be signaled to be deactivated (or, in another instance, remain inactive).
Still referring to
The filters 9, 13, 17 (having transfer function F′) may be implemented as digital adaptive filters whose tap coefficients are adapted by an adaptive filter controller 7 according to any suitable conventional algorithm, e.g. least mean squares algorithm. The adaptive filter controller 7 takes as input the audio signal (which is also input to a mixer 12) and the estimate for noise, n′(k), and using, for example, the least mean squares algorithm, conducts an iterative process that attempts to converge the tap coefficients so that very little or no content from the audio signal appears in the output of a differencing unit 21. In other words, the adaptive filter controller 16 adapts the tap coefficients (reflected in filters 9, 13, 17) so that its transfer function F′ will in essence match that of the system or plant F. In practice, there may be a short convergence time needed to obtain such a match (e.g., on the order of one or two seconds, for example), as the plant F changes when the user moves the handset on and off their ear. Therefore, any decision by the ANC decision control block 11 may be conditioned upon a signal from the adaptive filter controller 7 that the modeling of the plant F is up to date or that there is sufficient convergence in the adaptive filter algorithm.
The arrangement depicted in
Turning now to
The output sequences following the loudness weighting and averaging blocks 12, 14 are then used by the threshold decision block 15 to compute the signal to noise ratio by essentially comparing the smoothed noise estimate n″(k) to the smoothed signal estimate s″(k) based on a configurable threshold parameter x as shown in
The threshold for the SNR comparison may be determined using known information that has been published about the intelligibility of various types of speech being carried by typical communications systems.
Still referring to
In yet another embodiment depicted in
Turning now to
The feed forward arrangement of
It should be noted that although not explicitly depicted in
In contrast to the feed forward mechanism for ANC depicted in
Until now, this disclosure has been referring to the activation and deactivation of the ANC circuitry 10, or the anti-noise filter 16, in a general sense. There may be several different implementations to achieve such activation and deactivation. In one embodiment, the ANC may be deactivated by setting the tap coefficients of the anti-noise filter 16 to zero, so that no signal is output by these filters. This is essentially similar to opening a hard switch that may be inserted between the output of the filter 16 and the input to the mixer 12. In the feedforward embodiment of
In another embodiment, the ANC may be deactivated by only disabling the adaptive filter controller 19 (
To activate or reactivate the ANC the deactivation operations described above may be essentially reversed, by, e.g. unfreezing the adaptive filter controller 19 and allowing the tap coefficients of the anti-noise filter 16 to be set by the controller 19, or reverting to a predetermined default in the case of a non-adaptive anti-noise filter 22 (e.g., as may be used in the feedback version depicted in
Turning now to
In some cases, the speech of the near-end user may cause a relatively low SNR to be computed in block 26 possibly due to a side tone signal which may also be input to the mixer 12+43see
Assuming that the portable audio device is not sending uplink speech (or is in RX status as determined in block 27), then a decision may be made regarding whether there is sufficient corruption (block 28) or there is insufficient corruption (block 30) of the downlink speech signal (by the ambient noise). If there is sufficient corruption (block 28), then the ANC circuitry is activated (block 31). This leads to a reduction in the ambient noise that is being heard by the user, due to an anti-noise signal being driven through the earpiece speaker. The algorithm may then loop back to block 26 after some predetermined time interval, e.g., the next audio frame in s′(k) and n′(k), until the call or playback ends (block 34). At that point, the ANC circuitry can be deactivated (block 35).
In another scenario, after the initial activation of the ANC circuitry in block 31, during the call, the algorithm loops back to block 26 and computes a new estimate of the SNR (or of another suitable metric), during the call. This time, it may be that the ambient acoustic noise level has dropped sufficiently such that there is insufficient corruption of the downlink speech signal (block 30). In response, the ANC circuitry is deactivated (block 33). Accordingly, during a call, the ANC circuitry may be activated and then deactivated several times, depending upon the level of ambient acoustic noise, and how much the downlink speech signal is corrupted as a result.
In another embodiment, still referring to the algorithm of
In
In one embodiment, the ANC decision control 11 computes the strength of an audio artifact that has been caused or induced by operation of the ANC circuitry 10, and that may be heard by the user in the sound emitted from the earpiece speaker 6. This artifact is some times referred to as a hiss. A threshold level or loudness is used to represent the strength of the audio artifact, and this threshold level may be stored in the device 2 to be accessed by the ANC decision control 11 when comparing to the estimated ambient noise n′(k).
In another embodiment, the ANC decision control 11 determines whether the audio artifact's strength is greater than the estimated level of the ambient acoustic noise n′(k). If the audio artifact is louder than the ambient noise, then the ANC circuitry 10 is deactivated.
In one embodiment, the artifact may present itself above the frequency range in which the ANC is expected to be effective. For instance, the ANC may be effective to reduce noise at a low end between 300-500 Hz, up to a high end of 1.5-2 kHz. The hiss in that case would likely appear above 2 kHz. Thus, if the magnitude of an′(k), which may be computed based on the output of filter 9 in
An algorithm for ANC decision making based on a comparison of the ambient noise to an expected or actual audio artifact is depicted in
It should be noted that while the algorithms in
In accordance with another embodiment of the invention, the decision to deactivate ANC may be made in part or entirely based on having detected that a mobile phone handset is not being held firmly against the user's ear. For example, in a conventional iPhone™ device, there is a proximity detector circuit or mechanism that can indicate when the device is being held against a user's ear (and when it is not). Such a proximity sensor or detector may use infrared transmission and detection incorporated in the mobile phone handset, to provide the indication that the handset is close to an object such as the user's ear. The ANC decision control circuitry in such an embodiment would be coupled to the proximity detector, as well as the ANC circuitry, and would deactivate the latter when the proximity detector indicates that the handset is not being held sufficiently close to the user's ear. The decision to deactivate ANC in this case may be based entirely on the output of the proximity detector, or it may be based on considering both the output of the proximity detector and one or more of the audio signal processing-based techniques described above in connection with, for instance,
As explained above, an embodiment of the invention may be a machine-readable medium (such as microelectronic memory) having stored thereon instructions, which program one or more data processing components (generically referred to here as a “processor”) to perform the digital audio processing operations described above including noise and signal strength measurement, filtering, mixing, adding, inversion, comparisons, and decision making. In other embodiments, some of these operations might be performed by specific hardware components that contain hardwired logic (e.g., dedicated digital filter blocks). Those operations might alternatively be performed by any combination of programmed data processing components and fixed hardwired circuit components.
While certain embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. For instance, the error microphone 8 may instead be located within the housing of a wired or wireless headset, which is connected to a smart phone handset. The description is thus to be regarded as illustrative instead of limiting.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/794,588, filed Jun. 4, 2010, entitled “Active Noise Cancellation Decisions in a Portable Audio Device, which is currently pending. An embodiment of the invention is related to activation and deactivation of an active noise cancellation (ANC) process or circuit in a portable audio device such as a mobile phone. Other embodiments are also described.
Number | Name | Date | Kind |
---|---|---|---|
4811404 | Vilmur et al. | Mar 1989 | A |
5251263 | Andrea et al. | Oct 1993 | A |
6201866 | Ariyama et al. | Mar 2001 | B1 |
6278786 | McIntosh | Aug 2001 | B1 |
6704428 | Wurtz | Mar 2004 | B1 |
7035796 | Zhang et al. | Apr 2006 | B1 |
7203308 | Kubota | Apr 2007 | B2 |
7885417 | Christoph | Feb 2011 | B2 |
8416959 | Lott et al. | Apr 2013 | B2 |
8515089 | Nicholson | Aug 2013 | B2 |
20010036281 | Astorino et al. | Nov 2001 | A1 |
20040258253 | Wurtz | Dec 2004 | A1 |
20070076897 | Philipp | Apr 2007 | A1 |
20070298845 | Knoedgen | Dec 2007 | A1 |
20080162072 | Copley et al. | Jul 2008 | A1 |
20090034748 | Sibbald | Feb 2009 | A1 |
20090046867 | Clemow | Feb 2009 | A1 |
20090086988 | Ou et al. | Apr 2009 | A1 |
20090147969 | Kinouchi et al. | Jun 2009 | A1 |
20100022283 | Terlizzi | Jan 2010 | A1 |
20100061564 | Clemow et al. | Mar 2010 | A1 |
20100226505 | Kimura | Sep 2010 | A1 |
20100260345 | Shridhar et al. | Oct 2010 | A1 |
20100296668 | Lee et al. | Nov 2010 | A1 |
20100322430 | Isberg | Dec 2010 | A1 |
20120140943 | Hendrix et al. | Jun 2012 | A1 |
20120316872 | Stoltz et al. | Dec 2012 | A1 |
20140146976 | Rundle | May 2014 | A1 |
Number | Date | Country |
---|---|---|
4200811 | Jul 1993 | DE |
2234881 | Feb 1991 | GB |
2441835 | Mar 2008 | GB |
2455827 | Jun 2009 | GB |
H05011772 | Jan 1922 | JP |
05-011772 | Jan 1993 | JP |
H06318085 | Nov 1994 | JP |
H07240989 | Sep 1995 | JP |
H09037380 | Feb 1997 | JP |
2009141698 | Jun 2009 | JP |
2010019876 | Jan 2010 | JP |
595238 | Jun 2004 | TW |
I279775 | Apr 2007 | TW |
WO-2010022456 | Mar 2010 | WO |
Entry |
---|
PCT International Search Report and Written Opinion (dated Jun. 13, 2012), International Application No. PCT/US2011/038617, International Filing Date—May 31, 2011, (17 pages). |
Non-Final Office Action (dated Aug. 6, 2012), U.S. Appl. No. 12/794,588, filed Jun. 4, 2010, First Named Inventor: Guy C. Nicholson, 14 pages. |
CN First Office Action (dated Oct. 23, 2013), Application No. 201180021665.5, Date Filed—Oct. 30, 2012, (13 pages). |
JP Office Action (dated Jan. 8, 2014), Application No. 2013-508096, Date Filed—May 31, 2011, (7 pages). |
“Series G: Transmission Systems and Media, Digital Systems and Networks”, Voice enhancement devices, Amendment 1: Revised Appendix II—Objective measures for the characterization of the basic functioning of noise reduction algorithms, Nov. 2009, ITU-T Telecommunication Standardization Sector of ITU, G.160, (18 pages). |
O'Shaughnessy, Douglas, “Speech Communications Human and Machine”, Second Edition, The Institute of Electrical and Electronics Engineers, Inc., New York, USA, copyright 2000, ISBN 0-7803-3449-3, (pp. vii-xv, and 323-336). |
Non-Final Office Action (dated Dec. 4, 2012), U.S. Appl. No. 12/794,588, filed Jun. 4, 2010, First Named Inventor: Guy C. Nicholson, (10 pages). |
PCT International Preliminary Report on Patentability and Written Opinion (dated Dec. 13, 2012), International Application No. PCT/US2011/038617, International Filing Date—May 31, 2011, (11 pages). |
European Search Report (dated Aug. 5, 2013), European Application No. 11724113.3, International Filing Date—May 31, 2011, 5 pages. |
PCT Invitation to Pay Additional Fees, (dated Feb. 24, 2012), International Application No. PCT/US2011/038617, International Filing Date—May 31, 2011, (7 pages). |
Apple Inc., CN Application No. 201180021665.5 Office Action and Search Report dated Sep. 30, 2014. |
Final Office Action (dated Nov. 10, 2014), U.S. Appl. No. 13/895,659, filed May 16, 2013, First Named Inventor: Guy C. Nicholson, 15 pages. |
Apple Inc., TW Application No. 100119665, Office Action and Search Reported dated Sep. 19, 2014. |
Non-Final Office Action (dated Jul. 1, 2014), U.S. Appl. No. 13/895,659, filed May 16, 2013, First Named Inventor: Guy C. Nicholson, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20120140917 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12794588 | Jun 2010 | US |
Child | 13369011 | US |