The present disclosure generally relates to personal audio listening devices, and in various embodiments, for example, to active noise cancelling earbud devices.
Audio listening devices can come in various forms, such as earbuds, earphones, or headphones. Many audio listening devices include active noise cancellation (ANC) features built in to improve the user's listening experience by reducing or eliminating (e.g., cancelling) external noises. For example, if a user is listening to music through an audio listening device, external noises (e.g., from cars in the street) may be bothersome. Thus, the ANC features of the audio listening device will attempt to cancel the external noise so that the user can more clearly hear the music.
The performance of an ANC system can depend on various factors, including the form factor of the listening device, the relative position of one or more microphones and speakers of the listening device with respect to the user's ear canal and/or ear drum, the fit of the listening device to the user's ear or head, and/or other factors. Earbuds, for example, are designed to fit in the outer concha of the ear in close proximity to, adjacent to and/or inside of a person's ear canal, and present different ANC design challenges compared to other personal listening devices. The size, shape and cost of earbuds may dictate the available configurations and the ANC performance. In view of the foregoing, there is a continued need in the art for improved ANC functionality in earbud devices.
The present disclosure is directed to various techniques for improving active noise cancelation performance in an audio listening device, such an earbud. In various embodiments, systems and methods for audio listening devices, comprise a speaker coupled to a first housing, a sound port having a first end and a second end, wherein the first end is coupled to the first housing, and the second end is configured to be inserted in an ear canal of a person such that sound waves emitted from the speaker propagates via a secondary path to the ear canal through the sound port, active noise cancellation (ANC) components configured to generate anti-noise signals through the micro-speakers to cancel external noise, and a first microphone disposed within the sound port at the second end of the sound port such that the first microphone is configured to detect the anti-noise signal that propagates through the sound port via the secondary path and the external noise that propagates via a primary path.
The scope of the present disclosure is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the disclosure will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly.
Embodiments of the present disclosure and their advantages are best understood by referring to the detailed description that follows. Unless otherwise noted, like reference numerals denote like elements throughout the attached drawings and the written description, and thus, descriptions thereof will not be repeated. In the drawings, the relative sizes of elements, layers, and regions may be exaggerated for clarity.
The present disclosure provides improves systems and methods for active noise cancellation (ANC) processing in an earbud listening device, or similar personal audio listening device.
Referring to
In various embodiments, the ANC system may include a feedforward path configured to generate an anti-noise signal from the received external noise signal x(n), received via the external microphone 104. The ANC path may include a feedforward adaptive filter and other processing components configured to adaptively estimate the primary path 110 (P(z)) to produce an anti-noise 105 signal ( );(n)) from the micro-speaker 102 for cancelling the external noise signal. The ANC system may include a feedback path configured to adapt an anti-noise signal to reduce an error sensed at the internal microphone 106.
An earbud 100 with ANC functionality usually includes a speaker, such as an integrated micro-speaker 102, an external microphone 104, and an internal microphone 106 in each of the left and right earbuds. In various embodiments, the earbud 100 may further include a wing 116 configured to fit in the user's ear to secure the earbud 100 in place when in use, and a communications port 118, which may include wireless and/or wireless communications components, configured to communicate audio signals, control signals and other data between the earbud 100 and a host device. When a user places one of the earbuds 100 inside the ear as shown in
The ANC processing system substantially reduces and/or cancels the external noise by generating anti-noise. The external microphone 104 (also known as a primary microphone, a reference microphone, or a feedforward microphone) may be employed to sense the external noise and apply signal processing to generate the anti-noise signal by the micro-speaker 102. The generated anti-noise signal is propagated in the secondary path 108 where it is combined with the external noise to cancel each other out. Thus, an ideal anti-noise signal has the same amplitude as the background noise and is 180-degrees out-of-phase.
The internal microphone 106 (also known as an error microphone or a feedback microphone) may be positioned to sense and sum the external noise from the primary path and the anti-noise from the secondary path to determine an error signal corresponding to how much of the external noise was successfully cancelled by the anti-noise. The error signal may be processed (e.g., feedback) to further cancel any residual noises that are not initially cancelled by feedforward ANC scheme. An ideal noise cancellation is achieved when the noise signal from the primary path and the anti-noise signal from the secondary path have the same amplitude but is 180-degrees out-of-phase. However, achieving ideal noise cancellation is difficult. Thus, further signal processing may be applied based on the error signal to update the anti-noise signal to further improve the noise cancellation to achieve a more ideal noise cancellation by continuing to process the error signal until the error signal is zero or substantially non-existent.
ANC may be performed by a feedforward ANC system, a feedback ANC system, or a combination of the feedforward and feedback in a hybrid ANC system. Moreover, ANC may be performed digitally and/or in analog. Thus, if analog microphones are used in a digital ANC system, then the analog signals are converted to a digital signal through an analog-to-digital converter (ADC), and then reconverted back to analog with a digital-to-analog converter (DAC) before being sent to the analog micro-speaker.
Referring to
Disturbance from primary path d=P(f)x (1)
Anti-noise from secondary path y=W(f)S(f)x (2)
Error signal e=d−y=[P(f)−W(f)S(f)]x (3)
FF ANC performance e/d=[P(f)−W(f)S(f)]/P(f) (4)
Maximum achievable performance W(f)=P(f)/S(f) (6)
Based on the equations, error signal e(n)=0, when ANC filter W(f) is satisfied according to Equation (5), which means that there is no residual noise at the internal microphone location where this is sensed, thus achieving maximum noise cancelling. However, such ANC filter W(f) may be difficult to realize in practice for several reasons. Acoustically, the external noise x(n) leaks around the earbud 100 through the area where the ear tip 112 makes contact with the ear canal 202, and the noise is directed toward the ear drum 204 through the ear canal 202. At the same time, the external noise is diffracted back through the ear tip 112 of the earbud 100 to reach the internal microphone 106.
The internal microphone 106 that senses the disturbance from primary path 110, as shown by Equation (1), is not the same as the noise travelling toward the ear canal (e.g., the noise that we intend to cancel out). Thus, an ANC filter W(f) that satisfies Equation (5) will lead to good noise cancellation at the location of the internal microphone 106, but it does not necessarily lead to good noise cancellation at the location of the eardrum, which is what the user will experience. This discrepancy may be overcome by positioning the internal microphone 106 closer to the ear drum. For example, if the error microphone is positioned outside of the ear tip 112 closer to the ear drum, the error microphone may be able to sense a disturbance d(n) that is the same (or substantially the same) as the noise travelling toward the ear canal. In this manner, the user may be able to experience a better noise cancellation.
Referring to
Disturbance from primary path d=P(f)x (6)
Anti-noise from secondary path y=C(f)S(f)e (7)
Error signal e=d−y=P(f)x−C(f)S(f)e (8)
FB ANC performance e/d=1/[1+C(f)S(f)] (9)
For similar reasons as in the feedforward ANC system, the feedback ANC system may lead to good noise cancellation at the location of the internal microphone 106, but it does not necessarily lead to good noise cancellation at the location of the eardrum, which is what the user will experience.
Referring to
Hybrid ANC performance e/d=[P(f)−W(f)S(f)]/{P(f)[1+C(f)S(f)]} (10)
For similar reasons as previously discussed regarding the feedforward and the feedback ANC systems, the hybrid ANC system 600 may also lead to good noise cancellation at the location of the internal microphone 106, but it may not lead to good noise cancellation at the location of the eardrum, which is what the user will experience.
In various embodiments, the hybrid ANC system 600 may include additional digital and/or analog components depending on the implementation (e.g., a digital signal processor, one or more analog-to-digital converters, etc.). For example, the ANC filter 610 may be a digital filter for processing digital signals. Yet, the external microphone 104 and the internal microphone 106 may be analog microphones. Thus, the signal received by the external microphone 104 is first digitized by an ADC and then sent to digital filter 610 (W(f)) to process the noise and generate the anti-noise signal y(n). The generated anti-noise signal is next processed by a DAC convertor before it is sent to and outputted by the micro-speaker 102. The signal received by the internal microphone 106 is first digitized by the ADC and then sent to digital filter 612 (C(f)) to process the noise and generate the anti-noise signal. The generated anti-noise signal is next processed by the DAC before it is sent to the micro-speaker 102.
Referring to the example hybrid ANC system illustrated in
ADCs and DACs generally have some built-in latency (e.g., the ADC and the DAC may have a combined latency of about 16 us). To achieve good noise cancellation, the noise from both the primary and secondary paths should be of same amplitude and 180 degrees out-of-phase. However, the introduction of latency may limit the noise cancelling bandwidth, particularly in the higher frequencies (e.g., 1-2 kHz), whereas the latency has a lesser impact for the lower frequencies (e.g., <1 kHz).
In some instances, higher frequency noises may even be amplified, thus producing a hissing sound instead of cancelling the noise as shown in
Referring to
More specifically, the earbud 800 includes a first housing 810, a second housing 812, and a third housing 816. The first housing 810 is formed with a mount 808 for mounting the micro-speaker 102, a sound chamber, and a sound port 806. The micro-speaker 102 emits the sound and the sound waves propagate towards an output 814 of the earbud. The second housing 812 may include an acoustic chamber 820 for the micro-speaker back-cavity. In some embodiments, the third housing 816 is coupled with the opposite side of the second housing 812 to house an external microphone 802. In some embodiments, the external microphone 802 can be directly integrated in the second housing 812.
In some embodiments, the sound chamber 810 includes a sound port 806. In this manner, the sound wave that is emitted by the micro-speaker 102 travel through the sound chamber 810, and then travels through the sound port 806, and out of the earbud 800 through the output 814. The sound port 806 may be a substantially cylindrical channel having an opening on either ends of the channel like a pipe. The internal microphone 804 may be disposed within the sound port 806 and as close as possible to the output 814 at an outer edge of the sound port 806. Accordingly, the placement of the internal microphone 804 is different from conventional designs where the microphone is positioned substantially closer and/or adjacent to the micro-speaker. By disposing the internal microphone 804 near the output 814 of the sound port 806, the internal microphone 804 is able to sense the primary noise path more closely corresponding to the noise that is entering the ear canal of the user. Moreover, the distance between the internal microphone 804 and the user's eardrum is closer than the distance found in a conventional earbud design. For this additional reason, the error signal e(n) determined by the internal microphone 804 according to this embodiment correlates more closely to the error that may be heard by the user's eardrum.
In some embodiments, by positioning the internal microphone 804 closer to the output 814, the distance between the external microphone 802 and the internal microphone 804 is increased. Thus, it takes a longer amount of time for the external noise to reach the location of the internal microphone 804 via the primary path. The longer time allows more time for the ANC circuitry and for the ANC filter W(f) to process the anti-noise signal therefore being more causal than the conventional design.
In some embodiments, the sound port 806 may have other structural features to mount or position the internal microphone 804 depending on factors such as the available inner diameter or space of the sound port 806, the physical size of the internal microphone 804, and the angle of the position of the internal microphone 804. For example, as illustrated in
Referring to
In some embodiments, additional signal processing may be executed to map the path P(f) to the virtual path Ptip(f) at the output of the earbud (e.g., at the ear tip 1506), and map the micro-speaker S(f) at the virtual microphone at tip location as shown in
Embodiments described herein are example only. One skilled in the art may recognize various alternative embodiments from those specifically disclosed. Those alternative embodiments are also intended to be within the scope of this disclosure. As such, the embodiments are limited only by the following claims and their equivalents.
This application is a continuation of U.S. Non-Provisional application Ser. No. 17/063,656, filed Oct. 5, 2020, which claims the benefit of and priority to U.S. Provisional Application No. 62/911,150, filed Oct. 4, 2019, which is incorporated by reference as if set forth herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
8611553 | Bakalos | Dec 2013 | B2 |
20080112569 | Asada | May 2008 | A1 |
20090080670 | Solbeck | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20230317049 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
62911150 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17063656 | Oct 2020 | US |
Child | 18129249 | US |