1. Technical Field of the Invention
The present invention relates to an active noise control system for reducing undesirable noise by producing noise canceling waves which are shifted 180 degrees in phase with respect to the noise. More particularly, the invention relates to an active noise control system suitable for reducing undesirable road noise of a frequency of 100 Hz or lower, which is generated inside the cabin of a vehicle caused by shocks or vibrations during the drive of the vehicle.
2. Description of Related Art
Known active noise control system for reducing road noise of a vehicle involves deriving a signal indicative of noise by a noise detector such as a microphone, and converting and amplifying the input signal for producing noise canceling waves from an electrical acoustic converter such as a speaker.
To solve such problem, the speaker must have high performance to be able to produce large canceling waves corresponding to noise of low frequency having a large amplitude. This is, however, not practical in noise control applications in a vehicle, due to high cost and the physical size restrictions on the speaker.
The present invention has been devised to solve the problems pointed out above in the prior art, and therefore it is an object of the invention to provide an active noise control system for effectively reducing noise of a low frequency without producing an abnormal or distortional noise from a speaker.
To achieve the object, an active noise control system for reducing an undesirable noise according to one embodiment of the invention includes:
The limiting amplifier may be divided into a limiter and an amplifier. The system may also be constructed of digital circuits.
These and other objects and characteristics of the present invention will become further clear from the following description with reference to the accompanying drawings.
Thus a loop is formed from the noise detector 101 to the speaker 104 via the cabin 106. The noise Vn′ at the position of the noise detector 101 can be expressed as Vn′=Vn/(1−F(s)), where F(s) is an open-loop transfer function and Vn is the noise detected in a state without the active noise control system.
The signal generator 102 adjusts the open-loop transfer function F(s) within the range of frequency including the low frequency of the noise to be reduced.
The transfer function of the signal generator 102 is shown in
To the output of the op-amp 501 is also connected a wind comparator 504. The wind comparator 504 connects the output of the op-amp 501 to the positive side of a power source when the absolute value of the output of the op-amp 501 is within a range above a predetermined threshold. If the absolute value of the output of the op-amp 501 is below the predetermined threshold, the wind comparator 504 opens the circuit.
To the output of the wind comparator 504 is connected a time constant determining circuit 505 composed of a capacitor and a resistor. The time constant determining circuit 505 is connected to a constant current source 506 for generating an electric current proportional to the output voltage of the time constant determining circuit 505. The current generated by the constant current source 506 is supplied to the external current terminal 503 of the trans-conductance amplifier 502.
A resistor 507 is provided across the input terminal of the limiting amplifier 103 and the inverting input of the op-amp 501. Across the output of the op-amp 501 and its inverting input is also provided a resistor 508.
The limiting amplifier 103 operates as follows. When the output voltage of the time constant determining circuit 505 is zero, the constant current source 506 generates no electric current. The conductance of the trans-conductance amplifier 502 at this time is also zero, and therefore the limiting amplifier 103 has a constant gain which is determined by R2/R1.
If the output of the op-amp 501 exceeds the threshold of the wind comparator 504, it connects the time constant determining circuit 505 to the positive side of the power source, whereby the time constant determining circuit 505 generates an output voltage. This accordingly increases the conductance of the trans-conductance amplifier 502 through the current provided from the constant current source 506, causing the resistor to be equivalently connected across the output and the inverting input of the op-amp 501. As a result, the gain of the limiting amplifier 103 decreases from the above-mentioned R2/R1. In the event of continuous large inputs, the gain is automatically adjusted so that the amplitude of the output signal from the op-amp 501 slightly exceeds the threshold value of the wind comparator 504.
Thus, should large signals be input, the limiting amplifier 103 reduces its gain, so that it will not output a signal having a correspondingly large amplitude, whereby abnormal noise from the speaker is prevented. Also, while restricting the amplitude of the output signal, the limiting amplifier 103 automatically adjusts its gain to be maximum, whereby the noise control effect is maximally achieved while preventing abnormal noises from the speaker. It should be noted that the circuit arrangement for the limiting amplifier 103 is not limited to the example shown in
The system shown in
The digital filter of the active noise control signal generator 405 generates signals for producing noise canceling waves based on the A/D converted signals representative of noise detected by the microphone 101. The limiting amplifier calculates an optimal constant gain for outputting D/A converted, amplified signals when the output value from the digital filter is below a specified threshold value. If the output value from the digital filter exceeds the threshold, the limiting amplifier varies the gain to be optimal in accordance with output value from the digital filter, converts the digital signal into an analog signal, and amplifies and outputs same to the speaker 104.
According to the invention, as described above, by providing the limiting amplifier, a large noise signal at low frequencies is processed so as not to cause distortion in the speaker for producing noise canceling waves. In doing so, the limiting amplifier adjusts the gain to be maximum in accordance with the level of the noise signal, whereby an optimal noise reducing effect is achieved.
Although the present invention has been fully described in connection with the preferred embodiment thereof, it is to be noted that various changes and modifications apparent to those skilled in the art are to be understood as included within the scope of the present invention as defined by the appended claims unless they depart therefrom.
Number | Date | Country | Kind |
---|---|---|---|
2000-152314 | May 2000 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4455675 | Bose et al. | Jun 1984 | A |
4953217 | Twiney et al. | Aug 1990 | A |
5469510 | Blind et al. | Nov 1995 | A |
5577126 | Klippel | Nov 1996 | A |
Number | Date | Country | |
---|---|---|---|
20010046301 A1 | Nov 2001 | US |