1. Field of the Invention
The present invention relates to a display panel and driving module thereof. More particularly, the present invention relates to an active organic electroluminescence display panel module and driving module thereof.
2. Description of the Related Art
With the many innovations in the process of fabricating semiconductor devices and display devices, multimedia systems proliferate into every comers of the world. For display devices, flat panel displays have become one of the mainstream products due to its high quality display images, efficient spatial utilization, energy efficiency and radiation-free illumination. The so-called flat panel displays actually refers to a group of displays including liquid crystal display (LCD), organic electroluminescence display and plasma display panel (PDP). An organic electroluminescence display device comprises an array of self-emissive pixels. The advantages of an organic electroluminescence display are many, including no particular viewing angle limitation, a low fabricating cost, a high response speed (a hundred folds that of the liquid crystal display), a low power consumption and a large operating temperature range. Furthermore, the organic electroluminescence display can be driven by a Direct Current (DC) and miniaturized with other hardware equipment. Hence, organic electroluminescence display products have great development potential in the future. In particular, the organic electroluminescence display is suitable for displaying information in multimedia systems.
In general, an organic electroluminescence display can be classified as an active or a passive organic electroluminescence display according to the method of driving its internal light-emitting devices. Because the light-emitting efficiency and life span of passively driven devices will drop significantly with an increase in the size and resolution of the display device, most low-grade organic electroluminescence displays are passively driven while most high-grade organic electroluminescence displays are actively driven.
The light-emitting devices inside an organic electroluminescence are normally constructed using organic light-emitting diodes. In general, the voltage-current characteristic of an organic light-emitting diode is affected by temperature when the temperature is high.
Accordingly, at least one objective of the present invention is to provide an active organic electroluminescence display panel module and a driving module for an organic electroluminescence display such that the driving voltage of the light-emitting devices and the input signal of the grayscale can be adjusted according to the temperatures. Hence, power wastage is minimized and the quality of images on the display panel is improved.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention provides an active organic electroluminescence display panel module. The active organic electroluminescence display panel module comprising a substrate, a plurality of organic light-emitting devices, a light-emitting device driving unit and a temperature sensor unit are provided. The organic light-emitting devices and the light-emitting device driving unit are disposed on the substrate. The light-emitting device driving unit is electrically connected to the organic light-emitting devices for driving them. The temperature sensor unit is disposed on the substrate and electrically connected to the light-emitting device driving unit for sensing the temperature of the substrate.
The present invention also provides a driving module for an active organic electroluminescence display panel disposed on the periphery of the active organic electroluminescence display panel. The driving module comprises a panel-driving unit and a temperature sensor unit. The panel-driving unit is electrically connected to the organic electroluminescence display panel and the temperature sensor unit is electrically connected to the panel-driving unit. The temperature sensor unit is used for sensing the surrounding temperature.
The present invention further provides an active organic electroluminescence display panel module. The active organic electroluminescence display panel module mainly comprises a substrate, a plurality of organic light-emitting devices, a light-emitting device driving unit and a plurality of temperature sensor units. The substrate is divided into a plurality of pixel areas. The organic light-emitting devices and the light-emitting driving unit are disposed on the substrate. Furthermore, an organic light-emitting device is disposed within each pixel area. The light-emitting device driving unit is connected to the organic light-emitting devices for driving them. Each temperature sensor unit is disposed within a pixel area on the substrate. The temperature sensor units are connected to the light-emitting device driving unit for detecting the temperature inside each pixel area.
According to the embodiment of the present invention, the organic light-emitting device is an organic light-emitting diode and the substrate is fabricated using a material such as glass or plastic, for example.
According to the embodiment of the present invention, the light-emitting device driving unit further comprises a plurality of scan lines, a plurality of data lines and a plurality of thin film transistors. The scan lines and the data lines are disposed on the substrate and laid over each other alternately. The areas bounded by the scan lines and the data lines are the pixel areas of the active organic electroluminescence display panel. The organic light-emitting devices and the thin film transistors are disposed inside these pixel areas. In one embodiment, two thin film transistors are disposed inside each pixel area.
According to one embodiment of the present invention, the temperature sensor unit further comprises a temperature sensor device and a temperature correction circuit. The temperature sensor device is used for measuring the temperature of the substrate. The temperature sensor device is connected to the temperature correction circuit. In fact, the temperature correction circuit is disposed between the temperature sensor device and the light-emitting device driving unit for outputting a signal to the light-emitting device driving unit according to the temperature detected through the temperature sensor device.
According to one embodiment of the present invention, the active organic electroluminescence display panel module further comprises an image input interface connected to the light-emitting device driving unit. In another embodiment, the active organic electroluminescence display panel module further comprises a signal processing circuit connected to the temperature sensor unit and the light-emitting device driving unit for processing the signal before submitting to the light-emitting device driving unit. In particular, the signal processing circuit comprises a grayscale calibration unit. The grayscale calibration unit is connected to the temperature sensor unit and the light-emitting device driving unit for receiving the signal from the temperature sensor unit and outputting a grayscale calibrated signal to the light-emitting device driving unit according to the received signal.
According to one embodiment of the present invention, the panel-driving unit comprises a scan line driving device and a data line driving device. Both the scan line driving device and the data line driving device is connected to the organic electroluminescence display panel.
In the present invention, a temperature sensor device is disposed on the active organic electroluminescence display panel or the peripheral circuits of the active organic electroluminescence display to detect the change in temperature during device operation. The measured temperature is then fed back to the driving circuit so that the driving circuit can adjust the output voltage to the device according to the actual temperature. Ultimately, less power is wasted through the device.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The temperature sensor unit 220 is electrically connected to the light-emitting device driving unit 210 for sensing the operating temperature of the organic electroluminescence display panel module 200 and outputting a signal to the light-emitting device driving unit 210 according to the sensed temperature so that the light-emitting device driving unit 210 can adjust the voltage supplied to the device according to the current temperature. In one preferred embodiment, the temperature sensor unit 220 may comprises a temperature sensor device 222 and a temperature correction circuit 226. The temperature correction circuit 226 is electrically connected to the temperature sensor device 222. Furthermore, the organic electroluminescence display panel module 200 may include a signal processing circuit 224 between the temperature correction circuit 226 and the light-emitting device driving unit 210 and electrically connected to them.
After the temperature sensor device 222 has sensed the operating temperature of the organic electroluminescence display panel module 200, the temperature correction circuit 226 can output a signal to the signal processing circuit 224 according to the temperature sensed by the temperature sensor device 222. Thereafter, according to the output signal from the temperature correction circuit 226, the signal processing circuit 224 computes the driving voltage necessary for driving the device under this temperature. Then, the computed result is output to the light-emitting device driving unit 210 for providing a suitable voltage to drive the organic light-emitting device 204 and prevent the light-emitting device driving unit 210 from outputting too high a driving voltage leading to a waste of power consumption. In detail, when the temperature inside the organic electroluminescence display panel module 200 rises, the signal processing circuit 224 will output a signal to the light-emitting device driving unit 210 according to the temperature sensed by the temperature sensor device 222. Thus, at a constant driving current condition, the value of the voltage Vdd applied to the source/drain terminal of the driving thin film transistor 216b or the value of the voltage source Vss coupled to the organic light-emitting device 204 will drop. Consequently, overall power consumption of the device is reduced.
In addition, in one preferred embodiment, the organic electroluminescence display panel module of the present invention may include an image input interface 208 electrically connected to the light-emitting device driving unit 210. The image input interface 208 outputs image signal to the light-emitting device driving unit 210 so that the panel can display an image corresponding to the image signal as shown in
In another embodiment of the present invention, each pixel area 206 may enclose a temperature sensor device 222 (as shown in
However, in real conditions, the thin film transistor will have channel modulation that leads to a change in the saturation current of the thin film transistor 216. As shown in
To resolve the aforementioned problem, one must shift the difference between source/drain voltage and gate voltage VSG and make the drain current ID relation curve of the driving thin film transistor 216b becomes downward. In other words, if the original driving current of the organic light-emitting device 204 is to be maintained after the temperature has risen, then the difference between source/drain voltage and gate voltage VSG of the driving thin film transistor 216b must be reduced. One of the methods is to reduce the voltage value Vdd applied to the source/drain terminal of the driving thin film transistor 216b so that the current driving the organic light-emitting device 204 drops from iΔT to i. However, other methods can be used to reduce the driving current of the organic light-emitting device 204. In the following, another embodiment of the present invention is used to illustrate one other method.
shown in
In the aforementioned embodiment, the temperature sensor unit is disposed on the organic electroluminescence display panel. However, the present invention also allows the temperature sensor unit to be disposed in areas outside the organic electroluminescence display panel. The following embodiment is used to illustrate this.
Similarly, in one embodiment of the present invention, the driving module of the organic electroluminescence display panel may further comprises an image input interface 402 and a feedback unit 430 connected to the panel-driving unit 410. The image input interface 402 has a function identical to the aforementioned image input interface 208 and the feedback unit 430 has a function similar to the signal processing circuit 224 in the aforementioned embodiment. Furthermore, the feedback unit 430 may include a grayscale calibration unit 432. According to the change in temperature, the grayscale calibration unit 432 adjusts the grayscale of the input signal to ensure a correct grayscale image and improve the quality of the displayed image.
In the present invention, the temperature sensor unit is disposed on the organic electroluminescence display panel module or the driving module of the organic electroluminescence display panel module. The temperature sensor unit measures the operating temperature of the organic electroluminescence display panel and adjusts the driving voltage of the panel accordingly so as to reduce overall power consumption. For example, according to a set of experimental data of the present invention, an organic light-emitting device at a temperature 25° C. requires 5.3 V to achieve 1.25 mill amperes per centimeter square (mA/cm2) current density. The luminosity is about 100 nit. When the temperature rises to 50° C., the organic light-emitting device requires only 4.77 V to reach a current density of 1.25 mA/cm2. In other words, there is a drop in the driving voltage of the organic light-emitting device by 0.53 V. Using a 7-inch organic electroluminescence display panel having a 480×234 resolution as an example, excess power consumed is about 66.9 mW. That means, if the present invention is applied to a 7-inch organic electroluminescence display panel having a 480×234 resolution, then the driving voltage of the panel module can be lowered 0.53 V to save 66.9 mW of power when the temperature rises to 50° C. Therefore, the present provides an effective means of reducing overall power consumption of the panel.
In addition, when the driving current of the organic light-emitting device changes according to the temperature changes, the present invention, aside from lowering the driving voltage, also allows the voltage value of the input signal to be adjusted through the grayscale calibration unit according to the temperature changes sensed by the temperature sensor unit and returns to the original driving current value of the organic light-emitting device. Using the experimental data of the present invention as an example, 5.3 V of driving voltage and 0.1 microampere (μA) of current is required to drive the organic light-emitting device 204 so that a luminosity of about 1000 nits is produced. At this moment, the difference between source/drain voltage and gate voltage VSG of the driving thin film transistor 216b is 5 V, for example. However, when the temperature rises to 50° C., the organic light-emitting device 204 requires a driving voltage of only 4.77 V to reach a luminosity of 1000 nits. If VSG is still maintained at 5 V, then the driving voltage VD of the organic light-emitting device 204 will drop to 5 V and the driving current ID will rise from 0.1 microampere to 0.12 microampere, thereby leading to a grayscale error problem. Therefore, if the driving current of the organic light-emitting device 204 has to remain at the 0.1 microampere level, then the voltage VSG needs to be lowered to 4 V. According to the equation VSG=VS−VG=Vdd−Vdata, if the source/drain voltage VS of the driving thin film transistor 216b is maintained at 8 V and the signal voltage Vdata input to the data line 214 at 25° C. is 3 V, then, when temperature rises to 50° C., the grayscale calibration unit 225 is needed to adjust the signal voltage Vdata from 3 V to 4 V so that the voltage VSG drops to 4 V. At this time, the driving voltage of the organic light-emitting device also drops to 4.77 V and the driving current returns to 0.1 microampere. Thus, the present invention provides an effective means of improving image grayscale error problem due to temperature changes in the organic electroluminescence display panel.
In summary, the present invention not only reduces the power consumption of the organic electroluminescence display panel module, but also provides corrections to the grayscale of display image so that overall quality of the pictures is improved.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
93131538 | Oct 2004 | TW | national |