ACTIVE PHASED ARRAY FOR PERFORMING DUAL-BAND AND DUAL POLARIZATION

Abstract
The disclosure relates to an active phased array antenna capable of realizing dual-band dual polarization. The active phased array antenna is divided into a transmission and reception domain, which has a rectangular shape and in which transmission antenna elements and reception antenna elements are enabled, and a reception domain, which has a rectangular shape and is disposed outside the transmission and reception domain and in which the transmission antenna elements are disabled and the transmission antenna elements are enabled so that one substrate is allowed to simultaneously perform transmission and reception functions, thereby reducing the size of the antenna, and simultaneously, improving xpolarization characteristics and tilt characteristics in a broad band.
Description
CROSS REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and benefits of Korean Patent Application No. 10-2022-0037744 under 35 U.S.C. § 119, filed on Mar. 28, 2022 in the Korean Intellectual Property Office (KIPO), the entire contents of which are incorporated herein by reference.


BACKGROUND
1. Technical Field

The document relates to an active phased array antenna mainly used for satellite communication, and more particularly, to a technique of integrating and mounting transmission antenna elements and reception antenna elements into one substrate, and arranging and operating antenna elements so that dual band and dual polarization are performed.


2. Description of the Related Art

Recently, an antenna technique, which shifts a phase by actively controlling the phase using antenna elements, has been developed, and with a trend of miniaturization of electronic communication devices, a need for miniaturization of antennas mounted on the electronic communication devices is also increasing. In particular, antennas for satellite communication used in aircraft, unmanned aerial vehicles, vehicles, ships, and the like are generally different in a transmission frequency band and a reception frequency band, and accordingly, a transmission antenna and a reception antenna must be individually configured, and thus, there is a problem in that an overall antenna volume or size is increased because the transmission antenna and the reception antenna are configured as individual substrates (e.g., printed circuit boards (PCBs)). Even when the transmission antenna and the reception antenna are disposed on one substrate or one radiation aperture, there are still problems to be improved in polarization characteristics and wide-range electric beam tilt characteristics by appropriately maintaining an interval.


Korean Patent Publication (Publication No. 10-1489577, “DUAL-BAND GPS ANTENNAS FOR CRPA ARRARY”) discloses a technique that increases radiation gain and minimizes pattern distortion by circularly arranging single antenna elements, each of which includes a first radiation patch configured to receive power from a power feeding patch through an electromagnetic field and a second radiation patch that is disposed to be spaced apart from the power feeding patch on a side opposite to a side in which the first radiation patch is disposed and configured to receive power from the power feeding patch, on the same substrate but has a limitation in performing wide-range tilt operations while minimizing interference between the antenna elements.


SUMMARY

The disclosure relates to a dual-band dual-polarization active phased array antenna, and is directed to minimizing a size of an array antenna and simultaneously improving polarization characteristics and beam tilt characteristics.


An aspect of the disclosure provides an active phased array antenna for performing dual band and dual polarization, and the active phased array antenna includes a substrate, an antenna array in which transmission antenna elements and reception antenna elements are alternatively arranged in a matrix on the substrate, and a transmission and reception circuit unit including a transmission circuit and a reception circuit and enabling at least one transmission antenna element and at least one reception antenna element by power feeding, wherein the antenna array is divided into a transmission and reception (TRx) domain, which has a rectangular shape and in which the Tx antenna elements and the Rx antenna elements are enabled, and an Rx domain, which has a rectangular shape and is disposed outside the TRx domain and in which the Tx antenna elements are disabled and the Rx antenna elements are enabled so that the size of the array antenna is minimized and simultaneously and polarization characteristics and beam tilt characteristics are improved.


According to the disclosure, a size of an array antenna can be minimized, and simultaneously dual-band and dual-polarization characteristics can be improved. In addition, wide-range beam tilt characteristics can be improved to have an azimuth angle of +/−70° and an elevation angle of +/−70°.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view for describing an arrangement structure of an active phased array antenna including an antenna array according to one embodiment.



FIG. 2 is a schematic view for describing an active phased array antenna including transmission and reception circuits according to one embodiment.



FIG. 3 is a schematic view for describing transmission and reception operation domains and an arrangement structure of the active phased array antenna of an 8×8 transmission/reception array according to one embodiment.



FIG. 4 is a schematic view for describing transmission and reception operation functions of the active phased array antenna of an 8×8 transmission/reception array according to one embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Hereinafter, the disclosure will be described in detail so that those skilled in the art can easily understand and reproduce the disclosure through the embodiments described with reference to the accompanying drawings. In the following description of the disclosure, when it is determined that detailed descriptions of related well-known functions or configurations unnecessarily obscure the gist of the embodiments of the disclosure, the detailed descriptions thereof will be omitted. Since terms used throughout the specification are defined in consideration of functions in the embodiments of the disclosure and may be sufficiently modified according to the intentions of the user or operator and customs, such terms should be defined on the basis of contents throughout the specification.


Further, the foregoing and additional aspects of the disclosure will be apparent through the following embodiments. While the configurations of the selectively described aspects or selectively described herein are shown in a single integrated configuration in the drawings, it is understood that they may be freely combined between each other as long as they are not technically inconsistent with common technical knowledge of those skilled in the art.


Therefore, the embodiments described herein and illustrated in the configuration of the disclosure are only the most preferred embodiments and are not representative of the full the technical spirit of the disclosure, and thus it should be understood that various equivalents and modifications may be substituted for them at the time of filing the present application.



FIG. 1 is a schematic view for describing an arrangement structure of an active phased array antenna 1000 including an antenna array 100 according to an embodiment. The antenna array 100 may be a partial configuration of the active phased array antenna. As shown in the drawing, the antenna array 100 may include transmission (Tx) antenna elements 10, reception (Rx) antenna elements 11, and a substrate 20. The Tx antenna elements 10 and the Rx antenna elements 11 are mounted on the substrate 20.


Each of the Tx antenna elements 10 may be configured as an aperture coupled patch antenna, and each of the Rx antenna elements 11 may be configured as an aperture coupled slot antenna.


An outer solid line of each of the Tx antenna elements 10 and the Rx antenna elements 11 indicates a via hole that forms a cavity of a radiation element, and the via holes may be disposed at an interval of λ/8 or less. The antenna array 100 may be manufactured in a multi-layer printed circuit board (PCB) structure.


The Tx antenna elements 10 and the Rx antenna elements 11 may be disposed on a same layer of the PCB, and may also be disposed on layers having different heights of the PCB, respectively.


A radiation ground plane of the Tx antenna element and a slot plane of the Rx antenna element may be formed of a copper film pattern on the same plane, or may be formed of a copper film pattern on planes of different heights grounded through the via holes, and a radiation patch of the Tx antenna element may be disposed at still another height.


The substrate 20 may have a rectangular shape, and the Tx antenna elements 10 and the Rx antenna elements 11 may be arranged in rows and columns in a rectangular shape on the substrate 20 and may be arranged in an n*n array. FIG. 1 illustrates a 15×15 array. The entire antenna array 100 may be arranged in a rectangular shape as a whole. FIG. 1 illustrates a dual-band arrangement structure by taking an embodiment in which the Rx antenna elements 11 arranged in an 8×8 array operate as an example.


The Tx antenna element 10 and the Rx antenna element 11 may include a radiation patch and a radiation slot, respectively, and radiate an electromagnetic wave. The Tx antenna element 10 and the Rx antenna element 11 may each be patterned by a copper foil on a dielectric film or a PCB, and may be excited by a resonance phenomenon caused by power feeding to perform a radiation function. The Tx antenna element 10 and the radiation patch thereof, which may have a rectangular shape, and the Rx antenna element 11 and the radiation slot thereof, which may have a cross shape, may each be disposed to be slanted at an angle of about 45° with respect to the rectangular substrate.


The TX antenna elements 10 of a Ka-band and the RX antenna elements 11 of a K-band may each have a size of about 5 mm×5 mm and may be arranged at a pitch interval of about 5 mm, but a design thereof may be appropriately changed.


The Tx antenna elements may be disposed at an interval of about 0.5 times a Tx signal wavelength λTX, and the Rx antenna elements may be disposed at an interval of about 0.5 times an Rx signal wavelength λRX.


In the antenna array 100, the Tx antenna elements 10 and the Rx antenna elements 11 are alternatively disposed on the substrate 20 in a matrix.


The term “alternation” may mean that the Tx antenna elements 10 are arranged to be interleaved between the Rx antenna elements 11 arranged in a matrix with a constant pitch interval, or the Rx antenna elements 11 are arranged to be interleaved between the Tx antenna elements 10 arranged in a matrix with a constant pitch interval.


The Tx antenna elements 10 and the Rx antenna elements 11 may each have the same shape and size. Accordingly, radiation characteristics of each of Tx antenna elements and Rx antenna elements may be uniform, and the active phased array antenna may maintain excellent polarization characteristics or tilt characteristics.


The external ground plane of the Tx antenna element 10 and the cross-shaped slot plane of the Rx antenna element 11 may be formed of a copper film pattern on a same plane (or a same layer) of the PCB substrate, and the internal rectangular radiation patch of the Tx antenna element 10 may be formed of a copper film pattern on a different layer at different height of the PCB substrate.



FIG. 2 is a schematic view for describing an active phased array antenna including Tx and Rx circuits according to an embodiment. As shown in the drawing, an active phased array antenna 1000 may include an antenna array 100 and a Tx and Rx circuit unit 200.


The Tx and Rx circuit unit 200 may be configured as a PCB and may be provided by being stacked below the antenna array 100.


The Tx and Rx circuit unit 200 may include a Tx circuit 200-1 and an Rx circuit 200-2, and may enable at least one Tx antenna element and at least one Rx antenna element by power feeding. The term “enable” may mean a state in which a radiation function is performed and thus transmission or reception is possible. As shown in the drawing, the Tx and Rx circuit unit 200 may be configured as an analog circuit, and may also be configured as a digital circuit.


In the Tx circuit 200-1, a Tx-band power divider 201 may receive a Tx signal, divide and transmit the Tx signal to a Tx phase shifting unit 202 including Tx phase shifters 202-1 and Tx amplifiers 202-2, and the phase-shifted signal is transmitted through Tx band-pass filters (BPFs) 203 so that Tx sensitivity may be improved. An output signal of the Tx BPF 203 may be transmitted to the Tx antenna element 10, and may excite a radiation patch antenna and may be transmitted. The transmittable state may mean an enabled state.


The Rx circuit 200-2 may include Rx BPFs 204, which receive a signal from the RX antenna element 11 to improve Rx sensitivity, an Rx phase shifting unit 205 including Rx phase shifters 205-1 and Rx amplifiers 205-2, and an Rx-band power divider 206. The Rx-band power divider 206 may divide the received signal and output (Rx) the received signal. The receivable state may mean an enabled state.


A beam control interface module 2000 configured to provide a phase shift control signal, a magnitude control signal, and power to the phase shifting units 202 and 205 and a controller 3000 configured to provide a control signal to the beam control interface module 2000 may be electrically connected to the active phased array antenna 1000, and furthermore, a direct current (DC) power supply 4000 and a monitor 5000 may be further connected to the active phased array antenna 1000. The DC power supply 4000 may supply (dotted-line arrows) DC power to the phase shifting units 202 and 205.


The active phased array antenna 1000 and the beam control interface module 2000 may be provided on one substrate to constitute an array antenna assembly.


Since the beam control interface module 2000 and the controller 3000 control phase shifting of the phase shifters 202-1 and 205-1, a beam tilt operation may be actively realized, selective switching between horizontal polarization and vertical polarization and between circular polarization and linear polarization may be realized, and circular polarization may also be selectively switched between left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP).



FIG. 3 is a schematic view for describing Tx and Rx operation domains and an arrangement structure of the active phased array antenna of an 8×8 Tx/Rx array according to an embodiment. As shown in the drawing, the active phased array antenna 1000 may include the antenna array 100, and the antenna array 100 may be divided into a TRx domain (solid-line area), which has a rectangular shape and in which the Tx antenna elements 10 and the Rx antenna elements 11 are enabled, and an Rx domain (dotted-line area), which has a rectangular shape and is disposed outside the TRx domain and in which the Tx antenna elements are disabled and the Rx antenna elements are enabled. For convenience of description, the substrate 20 of FIG. 1 is omitted.


The TRx domain may be disposed inside the Rx domain. Thus, a rectangular size of the Rx domain may be larger than a rectangular size of the TRx domain. The TRx domain may be disposed inside the Rx domain. The term “inside” is not intended to mean a complete inside, and is typically a concept that includes a degree that may be usually regarded as being disposed inside.


All of the Tx antenna elements 10 may have the same shape and size, and all of the Rx antenna elements 11 may also have the same shape and size. Accordingly, excellent dual-band and dual-polarization characteristics may be achieved.


According to an embodiment, the Tx antenna elements 10 may transmit a high-frequency radio frequency (RF) signal, and the Rx antenna element 11 may receive a low-frequency RF signal. The radiation patch of the Tx antenna elements 10 may serve to transmit a high-frequency RF signal, and the radiation slot of the Rx antenna element 11 may serve to receive a low-frequency RF signal.


The high frequency may refer to a frequency range of about 26.5 to about 40 GHz (Ka band), and the low frequency may refer to a frequency range of about 17 to about 26.5 GHz (K band). The high frequency may be about √2 times the low frequency.


The Tx antenna elements may be disposed at an interval of about 0.5 times a high-frequency RF signal wavelength λTX, and the Rx antenna elements may be disposed at an interval of about 0.5 times a low-frequency RF signal wavelength λRX.


According to an embodiment, the Rx domain and the TRx domain may be disposed to be slanted at an angle of about 45° with respect to each other. Accordingly, inter-signal interference may be minimized, and polarization characteristics and tilt characteristics may be improved.



FIG. 4 is a schematic view for describing Tx and Rx operation functions of the active phased array antenna of an 8×8 Tx/Rx array according to an embodiment.


As shown in the drawing, in the active phased array antenna 1000, the Tx antenna elements 10 of an 8×8 array included in the TRx domain may be enabled, and the Tx antenna elements 10 included outside the TRx domain may be disabled.


In another example, for the Rx antenna elements 11, among the entire Rx antenna elements including the TRx domain and the Rx domain, the Rx antenna elements 11 of an 8×8 array located in odd columns O may be enabled and the Rx antenna elements 11 of a 7×7 array located in even columns E may be disabled.


The RX antenna elements 11 of a 7×7 array may be located in the even columns E as described above to allow all radiation elements to exhibit the same performance by ensuring that all enabled radiation elements have a same surrounding environment.


In the Rx domain, some Tx antenna elements and Rx antenna elements may be enabled.


Such an enabling operation may be realized by the Tx and Rx circuit unit 200 of FIG. 2. The Tx antenna elements in the Rx domain may be disabled. The Rx antenna elements in the Rx domain may be partially enabled and partially disabled, and specifically, the enabled Rx antenna elements may be arranged so as not to be adjacent to each other.


In FIG. 4, the enabled Tx antenna elements and Rx antenna elements are indicated by a dark color, and the disabled Tx antenna elements and Rx antenna elements are indicated by a relatively light color. The disabled Tx antenna elements and Rx antenna elements may be dummy antenna elements and may not be electrically connected to the Tx and Rx circuit unit 200 of FIG. 2.


According to an embodiment, the Tx antenna elements in the TRx domain are configured in a rectangular 8×8 array, and the Rx antenna elements in the Rx domain may be configured in a rectangular 8×8 array disposed to be slanted at an angle of about 45°.


The above description is an example of technical features of the disclosure, and those skilled in the art to which the disclosure pertains will be able to make various modifications and variations. Therefore, the embodiments of the disclosure described above may be implemented separately or in combination with each other.


Therefore, the embodiments disclosed in the disclosure are not intended to limit the technical spirit of the disclosure, but to describe the technical spirit of the disclosure, and the scope of the technical spirit of the disclosure is not limited by these embodiments. The protection scope of the disclosure should be interpreted by the following claims, and it should be interpreted that all technical spirits within the equivalent scope are included in the scope of the disclosure.

Claims
  • 1. An active phased array antenna for performing dual-band and dual polarization, the active phased array antenna comprising:a substrate;an antenna array in which transmission (Tx) antenna elements and reception (Rx) antenna elements are alternatively arranged in a matrix on the substrate; anda Tx and Rx circuit unit including a Tx circuit and an Rx circuit and enabling at least one Tx antenna element and at least one Rx antenna element by power feeding,wherein the antenna array is divided into a transmission and reception (TRx) domain, which has a rectangular shape and in which the Tx antenna elements and the Rx antenna elements are enabled, and an Rx domain, which has a rectangular shape and is disposed outside the TRx domain and in which the Tx antenna elements are disabled and the Rx antenna elements are enabled.
  • 2. The active phased array antenna of claim 1, wherein all of the Tx antenna elements have a same shape and size, andall of the Rx antenna elements have the same shape and size.
  • 3. The active phased array antenna of claim 1, wherein the Tx antenna element transmits a high-frequency radio frequency (RF) signal, andthe Rx antenna element receives a low-frequency RF signal.
  • 4. The active phased array antenna of claim 1, wherein the TRx domain is disposed inside the Rx domain.
  • 5. The active phased array antenna of claim 1, wherein the Rx domain and the TRx domain are disposed to be slanted at an angle of about 45° with respect to each other.
  • 6. The active phased array antenna of claim 3, wherein the Tx antenna elements are disposed at an interval of about 0.5 times a high-frequency RF signal wavelength (λTX), andthe Rx antenna elements are disposed at an interval of about 0.5 times a low-frequency RF signal wavelength (λTX).
  • 7. The active phased array antenna of claim 1, wherein, in the Rx domain, some of the transmission antenna elements and the Rx antenna elements are enabled.
Priority Claims (1)
Number Date Country Kind
10-2022-0037744 Mar 2022 KR national