The current invention concerns an active platform for the landing of an aircraft on an access facility, such as, by way of illustrative but non exclusive way, a sport craft.
It is known that the modern sport boats, capable to reach sometimes relevant lengths, in the order of tens of meters, are equipped with a platform that allows the landing of a aircraft, for example in case there is a need to transport to another place a person on board or welcome guests on board when the boat is at open sea.
The platform mounted aboard a boat presents specific structural and functional features, suitable to comply with the regulations in force regarding, for example, the safety for the aircraft pilot during landing: these regulations relate, in particular, to the overall dimensions and visibility of the classic symbol “H” printed on the upper part, and the circle surrounding it.
Currently, the landing platforms are generally mounted at the bridge of the boat, located in the middle part placed at the top, better known in nautical jargon with the term “fly”, which houses the command post.
The current construction concept of the platforms concerned provides that they are firmly fixed in the position identified above, constantly occupying the entire space allocated to them on the boat and always remaining visible outside the operating position useful to allow the proper and safe aircraft landing on them.
The platforms currently installed on boats allow an aircraft to land directly on them in an effective and in some ways convenient, even considering that the manoeuvre is tricky and complicated by the unstable nature of the support surface, such as water, on which the access facility is placed floating, up to the point to preferably require a skilled and experienced pilot.
However, the platforms of the known technique used for the landing of an aircraft on a boat and, more in general, on any access facility present the recognized drawback of being rather difficult and even dangerous to be accessed for the pilot and the possible crew if, during the landing phase, critical weather conditions persist or the access facility itself is subjected to bumps of adjacent masses, structures or bodies.
In case of boats, in particular, weather conditions of strong wind increases, as well known, the wave that breaks in even violent and, however, invasive against the side of the hull, thereby causing even marked and evident rolling and/or pitching fluctuations and, more generally, making the access facility rather unstable.
Under such conditions, these platforms keep with difficulty and for short infinitesimal moments the proper position for landing the aircraft, namely that one that provides the platform according to a nearly horizontal plane, thus virtually making the landing manoeuvre rather difficult and dangerous, if not impossible, also for a highly experienced pilot.
The present invention aims to remedy such a drawback of the prior art.
In particular, primary purpose of the invention is to provide an active platform for the landing of an aircraft, in this case a helicopter, on a access facility which is substantially stable or at least more stable than the equivalent platforms of the prior art even in presence of phenomena and/or critical external events, such as adverse weather conditions and/or adjacent structures colliding with the access facility itself.
Within such a purpose, it is a task of the present invention to devise an active platform for the landing of an aircraft on an access facility which allows the pilot of the aircraft to perform the landing manoeuvre (and of course the take-off) more easier and more safely than the current state of the art, especially when the facility is exposed to external atmospherics, such as bad weather, strong wind and/or an accidental bumps with other adjacent structures.
It is a last but not least purpose of the invention to give body to an active platform for the landing of an aircraft on access facility which can be effectively and conveniently mounted in any area of the access facility, in case the latter is divided into several sections of various composition, such as fro instance a boat.
Said purposes are achieved through an active platform for the landing of an aircraft on an access facility as the attached claim 1, as hereinafter referred for the sake of brevity.
Other constructive features of detail of the active platform of the invention are set forth in the dependent claims.
Advantageously, the active platform of the invention is able to keep the upper landing footboard constantly and firmly in a horizontal position, ideal so that the pilot lands on the access facility in an effective way and in maximum safety conditions both fro people on board and the structural integrity of the aircraft.
This is due to the compensation and levelling means which, together with the moving means with which are operatively connected, make the platform of the invention a mechanical self-levelling system and active, able to continuously adapt to the phenomena and/or external events that significantly and critically interfere with the access facility.
Still advantageously, when the access facility is a boat, the active platform of the invention is marked by a limited rolling and/or pitching fluctuation even in presence of bad weather conditions that increase the wave of the support surface on which the boat insists.
Such an aspect is crucial especially when an aircraft must land on the boat at open sea.
Equally advantageously, the active platform of the invention can be used by people in a completely safe and comfortable as sun deck or support of any item plane when it is not in the intended use and, therefore, for most of the day time.
In advantageous manner, furthermore, the active platform of the invention have no installation constraint and can be placed in any area of the access facility; in particular, when the access facility is represented by a boat, the active platform object of the present invention is installable both at prow and at stern or at command bridge (fly).
These purposes and advantages, as well as others that will emerge below, will better result from the description that follows, relating to a preferred embodiment of the active platform of the invention, given as indicative and illustrative, but not limiting, way by reference to the attached drawing tables, where:
The active platform of the invention is shown in
It is mostly suitable to the landing of an aircraft, usually a helicopter, on a boat B such as a yacht or super yacht, visible in
As it can be seen, the active platform 1 comprises:
In accordance with the invention, the active platform 1 includes compensation and levelling means, on the whole indicated with 4, operatively connected with moving means, on the whole numbered with 5, so as to constantly keep the landing footboard 3 on a substantially horizontal plane when atmospheric agents, fluid masses and/or adjacent structures interfere with the access facility B.
In this case, the compensation and levelling means 4 act, due to the operation of the moving means 5, so as to keep the landing footboard 3, however, parallel to the waterline W of the boat B.
Moreover, since the access facility is a boat B, the atmospheric agents are, for example, wind or stricken rain, while the fluid masses are represented by the swell of the wave of a rough sea or lake.
The compensation and levelling means 4 and the moving means 5 are in this case coupled with the support basement 2 so as to be below the landing footboard 3.
Advantageously, the active platform 1 also comprises translation means, overall indicated with 6, interposed between the support basement 2 and the landing platform 3 in order to connect them together, as better shown by the
The translation means 6 are operatively connected with the landing footboard 3 in order to move it from/to a rest position, in which the landing footboard 3 re-enters with respect to the access facility B along a vertical axis Z orthogonal to the waterline W, remaining arranged under the open sky and accessible to the user, to/from an operating position in which the landing footboard 3 fully protrudes from the access facility B according such a vertical axis Z, becoming available for the landing of the aircraft.
More specifically, in the rest position, the landing footboard 3 re-enters completely, along the vertical axis Z, in the overall dimensions defined by the hull S of the boat B so that the landing footboard 3 itself can be used as a sun deck plane by the user, standing or lying down.
In a preferred but not exclusive way, the support basement 2 includes a base plate 7, which is attached to the reference surface P of the access facility B, and a central frame 8, placed above the base plate 7 with which is coupled through the compensation and levelling 4 and defining a lower plane parallel and spaced part from the base plate 7.
In this case, the support basement 2 also comprises a perimetric frame 9 surrounding the central frame 8 to which is coplanar.
The perimetric frame 9 is connected with the central frame 8 by the compensation and levelling means 4 and is provided with a cantilevered peripheral portion 9a.
In this case, by pure illustrative way, the peripheral seats 10 are six in number, distributed on the perimetric frame 9 substantially in accordance with the vertices of a hexagon.
Each of the trapezoidal segments 11 just mentioned (in the present example six in number too) include two oblique section bars 12, 13, laterally delimiting the peripheral seats 10, and a longitudinal bar 14, facing outwardly and connected with the section bars 12, 13 in order to form the major base of each trapezoidal segment 11.
In particular, a first oblique section bar 12 of each trapezoidal segment 11 contribute to define a given peripheral seat 10, while the second oblique section bar 13 of the same trapezoidal segment 11 contributes to define the adjacent peripheral seat 10.
In the operating position of the landing footboard 3, shown in
Preferably but not necessarily, the translation means 6 include:
By virtue of the preferred construction concept of the perimetric frame 9 yet described, the articulated arms 15 and the related linear actuation means 19 are six in number, always by way of indicative example. The stellar frame 18 presents a plurality of closed-profile peripheral compartments 20, uniformly distributed on it according to the vertices of a hexagon and according to radial lines K′ parallel to the radial direction K, as well as staggered each other by trapezoidal sectors 21.
Even the trapezoidal sectors 21 are six in number in the case at issue, equal to the number of the trapezoidal segments 11.
Each of the trapezoidal sectors 21 is provided with oblique section bars 22, 23 laterally delimiting the peripheral compartments 20.
More properly, a first oblique section bar 22 of each trapezoidal sector 21 contributes to define a given peripheral compartment 20, while the second oblique section bar of each trapezoidal sector 21 contributes to define the adjacent peripheral compartment 20.
In the rest position of the landing footboard 3, the peripheral compartments 20 and 21 and the trapezoidal sectors of the stellar frame 18 substantially face respectively the peripheral seats 10 and the trapezoidal segments 11 of perimetric frame 9, as it can be again derived from
In the rest position of the landing footboard 3, the second plate 25 is, therefore, contained in the first plate 24 so that each linear actuation member 19 is enclosed in these protection plates 24, 25, according to what
Preferably, any linear actuation member 19 is provided with an outer jacket 27, fixed to the bottom 28 of the first plate 20, and a power stem 29 connected with a support plate 30 contained in each of peripheral seats 10 and integral to the perimetric frame 9 through a pair of anchoring brackets 31 opposite and spaced apart each other.
In the rest position of the landing footboard 3, the power stem 29 protrudes axially from the outer jacket 27 up to the end-of-stoke, so that the longitudinal axis of the power stem 29 coincides with the radial direction K.
In the operating position of the landing footboard 3, the power stem 29 re-enters inside the outer jacket 27 up to the end-of-stroke, so that the longitudinal axis of the power stem 29 coincides with the oblique direction J.
According to the preferred embodiment of the invention described herein, the compensation and levelling means 4 include two pairs of main mechanical couplings of the fifth wheel/shaft type, shown in the
In particular, the first fifth wheel/shaft coupling (formed by a first rotation fifth wheel 32, a first counter-fifth wheel 34 directly facing and opposite thereto and a first articulation pin 35) is separated by means of the central frame 8 from the second fifth wheel/shaft coupling (formed by a second rotation fifth wheel 32, a second counter-fifth 34 facing and opposite to the latter and a second articulation pin 35).
The anchoring means 33 comprise a shaped plate 36 orthogonally projecting from the base plate 7 and a pair of reinforcing ribs 37 coupled with the side edges opposite each other of the shaped plate 36.
Such an acute oscillation angle a of the landing footboard 3 around the longitudinal axis X takes values typically between 0° and 5°.
In advantageous but not binding manner, the compensation and levelling means 4 also include in this case a pair of auxiliary mechanical couplings of the fifth wheel/shaft type, each of which consisting of a second rotation fifth wheel 38, fixed to the perimetric frame 9, and a second counter-fifth wheel 39, directly facing and opposite to the second fifth wheel 38.
The second counter-fifth wheel 39 is, moreover, revolvingly coupled at one side with the central frame 8 and at the other side with the second fifth wheel 38 through a second articulation pin 40, better visible in
In accordance with the above relating to the main fifth wheel/shaft couplings, even the auxiliary fifth wheel/shaft couplings are mutually opposed and separated from the central frame 8.
Moreover, as shown in
On the basis of the arrangement just described of the main fifth wheel/shaft couplings and the auxiliary fifth wheel/shaft couplings, they are uniformly spaced apart each other according to the vertices of a square.
Since the current description has been directed to an active platform 1 installed, by way of preferred but not limiting example, on a boat B as access facility, the longitudinal axis X and the transverse axis Y respectively represent rolling axis and the pitching axis of the boat B itself.
It is understood that in other embodiments of the invention, not shown, the main fifth wheel/shaft couplings of the compensation and levelling means, properly designed, may cause the landing platform to rotate around the transverse pitching axis of the boat; conversely, the auxiliary fifth wheel/shaft couplings will allow the landing platform to rotate around the longitudinal rolling axis of the boat itself.
As far as the moving means 5 are concerned,
More in detail, each of the second linear actuators 42 faces to and cooperates with one of the first linear actuators 41 so as to rotate the landing footboard 3 around the longitudinal axis X through the compensation and levelling means 4.
In turn, each of the second linear actuators 42 is provided with an outer cylinder 47, constrained to the support plates 45, 46 facing each other, and a thrust piston 48 constrained to the perimetric frame 9 so that the effect of the thrust piston 48 of the second linear actuators 42 balances the effect of the thrust piston 44 of the first linear actuators 41 facing and cooperating with the second linear actuators 42 at two sides of the central frame 8 symmetrically arranged with respect to the longitudinal axis X.
In particular,
In addition, the thrust piston 44 of the first linear actuators 41 and the outer cylinder 47 of the second linear actuators 42 are constrained to the support plates 45, 46 at the free appendix, not numbered, of the latter.
As it can be observed in
In
Form
In operating conditions, the thrust piston 44 and 48 of the first linear actuators 41 and the second linear actuators 42 slides along a linear axis M oblique to the plane a defined by the base plate 7 and parallel to the longitudinal axis X when projected onto such a plane a of the base plate 7.
By way of pure preferred example, the moving means 5 comprise a pair of third linear actuators 51 facing and cooperating each other, symmetrically arranged with respect to the longitudinal axis X and coupled at one side with the central frame 8 and at the other side with the base plate 7 according to the transverse axis Y in order to rotate the landing footboard 3 around such a transverse axis Y always through the compensation and levelling means 4.
More specifically, as
On the other hand, a second one of the third linear actuators 51 is provided with an outer cylinder 55, constrained to a pair of second brackets 56 facing and spaced apart each other, symmetrically arranged to the first brackets 54 with respect to the longitudinal axis X and protruding from the base plate 7 to which are fixed.
The second one of the third linear actuators 51 is also equipped with a thrust piston 57 constrained to the central frame 8 so that the effect of the thrust piston 53 and the thrust piston 57 of the respective third linear actuators 51 are mutually balanced.
Advantageously, the active platform 1 comprises detection means, not represented and constituted for example by contact sensors, electrically connected with the control means and cooperating with the perimetric frame 9 in order to determine deviations of the landing footboard 3 from the horizontal position when atmospheric agents, fluid masses and/or adjacent structures interfere with the boat B.
As already said, the control means comprise a preferably hydraulic gearcase available to the user who operates the moving means 5 when the position of the perimetric frame 9 supporting the landing footboard 3, determined by the detection means, deviates from the ideal horizontal position taken as reference, reporting the landing footboard 3 in such a horizontal position suitable for a smooth and safe landing.
Operatively, the active platform 1 according to the invention is in the specific case mounted at prow P of the boat B where, when not in use for the landing and the temporary support of an aircraft, it advantageously becomes a sun deck and support plane accessible in complete safety by people.
In such a situation, indeed, the active platform 1 re-enters with respect to the hull S of the boat B even along the vertical axis Z.
When the aircraft should land on the boat B, the control means operate the driving of linear actuation members 19 of the translation means 6, which move the articulated arms 15 from the position of
In presence of critical or however unfavourable weather conditions, such as strong wind or storm, the hull S of the boat B is exposed to even violent action of the rough wave-motion that moves the landing footboard 3 from the horizontal ideal operating position, thus complicating up to make the landing manoeuvre by the pilot of the aircraft almost impossible.
The active platform 1 of the invention exerts its advantage in such conditions, since the detection means immediately and with infinitesimal precision signal the control means any single deviation of the landing footboard 3 from the horizontal position.
Through special computer program managed by the central processing and control unit of the control means, the moving means 5 and, conversely, the compensation and levelling means 4 bring with punctual and continuous adjustment the landing footboard 3 back in the horizontal position, ideal for the pilot manoeuvre of the aircraft, according to what
Such a
In particular, the first linear actuators 41 and the second linear actuators 42 cause the rotation of the landing footboard 3 around the longitudinal rolling axis X when the waves of the wave-motion hit from starboard (right) or larboard (left) the hull S of the boat B.
Operation of the first linear actuators 41 and the second linear actuators 42 is synchronized by the control means and, in any case, provides that, at each side of the central frame 8, the effects of thrust pistons 44 and 48, coupled in opposite way to the same constructive components, reciprocally balance.
If the waves of the wave-motion interfere with the hull S of the boat B thereby causing even or just a pitching oscillation around the transverse axis Y, the control means operate the third linear actuators 51 which, thanks to the auxiliary fifth wheel/shaft couplings of the compensation and levelling means 4, contribute to restore or restore by themselves the horizontal position of the landing footboard 3.
The presence of the compensation and levelling means 4 guarantees, therefore, that the landing footboard 3 constantly keeps the horizontal position, ideal so that the pilot of the aircraft can perform the landing manoeuvre on the boat B with a certain confidence and the maximum safety.
From the description just made, it is understood, therefore, that the active platform for the landing of an aircraft on an access facility, object of the present invention, reaches the purposes and achieves the advantages mentioned above.
In execution, changes will be made to the active platform of the invention resulting, for example, in a support basement having a different constructive concept from that one previously described and shown in the appended drawings.
The platform for the landing of an aircraft of the invention allows to exploit a generally little-used area of a boat, such as the prow.
However, the active platform of the invention can be mounted in free areas of a boat which differ from the prow and which, for surface extension, are fit for the purpose, for example at the central bridge or stern.
It is also stated precisely that the active platform for the landing of an aircraft object of the invention can be mounted on an access facility different than that one on which the above description has been based, for the sake of pure illustration: for example, indeed, in other applications, the platform of the invention can be mounted on fixed or mobile off-shore posts for plants of extraction of submarine oil, docks of ports and so on.
In further embodiments, not shown, the active platform claimed herewith could include compensation and levelling means of constructive type and operative mode different from those ones previously described, which does not affect the advantage brought by the present invention.
It is, finally, clear that many other variations may be made to the active platform in question, without departing from the principle of novelty intrinsic in the inventive idea expressed here, as it is clear that, in the practical implementation of the invention, materials, shapes and sizes of the illustrated details can be changed, as needed, and replaced with others technically equivalent.
Number | Date | Country | Kind |
---|---|---|---|
VI2010A000093 | Apr 2010 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT11/00097 | 3/31/2011 | WO | 00 | 12/12/2012 |