A system and method for active power splitting is provided. Specifically, a circuit topology in accordance with a system, method and device for an active power splitter which allows the use of negative feedback and thus improving stability and linearity without substantially increasing the noise figure of the system is provided.
Generally, power splitters are passive devices. A power splitter may include an input signal and generally two or more output signals. However, using a conventional power splitter each output signal is about 3 dB lower in power than the input signal. Also, the noise characteristics of some power splitter devices are unsatisfactory for some high frequency applications.
Thus, a need exists for circuit topology which allows for neutral or increased power in each output signal as compared with the input signal. Also, a need exists for circuit topology which improves stability and linearity without substantially increasing the noise figure of the system.
In an exemplary embodiment, a method for active power splitting includes coupling a plurality of three terminal devices is disclosed. In this exemplary embodiment, the plurality of three terminal devices comprises at least one of: (1) a common emitter stage-common collector stage topology, and (2) a common source stage-common drain stage topology.
In an exemplary embodiment, an active power splitter system includes an active power splitter input; a first active power splitter output; a second active power splitter output; and a plurality of field effect transistors. In an exemplary embodiment, the plurality of field effect transistors includes a common source stage-common drain stage topology. In this exemplary embodiment, the common source stage is associated with the active power splitter input. In this exemplary embodiment, the common drain stage is associated with the first and second active power splitter outputs.
In an exemplary embodiment, an active power splitter system including an active power splitter input; a first active power splitter output; a second active power splitter output; and a plurality of three terminal devices. In this exemplary embodiment, the plurality of three terminal devices include one of: (1) a common emitter stage-common collector stage topology, wherein the common emitter stage is associated with the active power splitter input, and wherein the common collector stage is associated with the first and second active power splitter outputs, and (2) a common source stage-common drain stage topology, wherein the common source stage is associated with the active power splitter input, and wherein the common drain stage is associated with the first and second active power splitter outputs.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like reference numbers refer to similar elements throughout the drawing figures, and:
While exemplary embodiments are described herein in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that logical material, electrical, and mechanical changes may be made without departing from the spirit and scope of the invention. Thus, the following detailed description is presented for purposes of illustration only.
With reference to
Utilizing the system of
In an exemplary embodiment and with reference to
The differential input subcircuit 210 includes paired transistors 211, 212 with a common emitter node. This common emitter node is constant current biased, as is typical in a differential amplifier. In one exemplary embodiment, a virtual ground is created at a midpoint of (1) a constant current signal and (2) a 180 degree out of phase portion of that constant current signal. In one exemplary embodiment, an input signal is communicated to the base of paired transistors 211, 212 in the differential input subcircuit 210. In an exemplary embodiment, both the first and second differential output subcircuits 220, 230 comprise a pair of transistors with a common base node and each common base is connected to ground.
In an exemplary embodiment, both the first and second differential output subcircuits 220, 230 comprise a pair of three terminal devices (e.g. transistors 221, 222, and transistors 231, 232 respectively) with a common collector stage. For instance, in an exemplary embodiment, the first differential output subcircuit 220 comprises a pair of transistors, such as transistor 221 and transistor 222. In an exemplary embodiment, transistors 221 and 222 are BJTs. In another exemplary embodiment, transistors 221 and 222 are FETs. In this exemplary embodiment, the second differential output subcircuit 230 comprises a pair of transistors, such as transistor 231 and transistor 232. In an exemplary embodiment, transistors 231 and 232 are BJTs. In another exemplary embodiment, transistors 231 and 232 are FETs. In one exemplary embodiment, the common collectors are tied to at least one bias network. In one exemplary embodiment, each emitter of transistors 221, 222, 231, and 232, is connected to a current sink device 241, 243, 242, and 244 respectively.
In one exemplary embodiment, a current sink device may be provided by a circuit element where the current through it is independent of the voltage across it, generally referred to as an ideal current source or ideal current element in circuit theory. In one exemplary embodiment, transistors are used as current sources and/or current sinks in practice (source and sink can be used interchangeably). In one exemplary embodiment, the DC current does change with voltage but only slightly, thus the elements are non-ideal. For instance, the (non-ideal) current element may be a three terminal device such as a BJT, FET, HBT, pHEMT and/or or MOSFET with the base held at constant voltage. The current sink devices 241, 243, 242, and 244 act to establish fixed bias currents in output transistors 221, 222, 231, 232, respectively. In one exemplary embodiment, the emitters of transistors 221, 222, 231, and 232 are connected to the collectors of current sink devices 241, 243, 242, and 244, respectively. In one exemplary embodiment, the emitters of current sink devices 241, 243, 242, and 244 are tied to ground.
In an exemplary embodiment and with renewed reference to
In contrast to the topology associated with
In an exemplary embodiment and with renewed reference to
In one exemplary embodiment, a first current sink device 341 is coupled to a device capable of storing energy, such as a first inductor 351 and/or a second inductor 352. In this exemplary embodiment the source of transistor 321 is coupled to inductor 351. In turn, inductor 351 is then coupled to the drain of current sink device 341. In this exemplary embodiment, the source of transistor 322 is coupled to inductor 352. Inductor 352 is then coupled to the drain of current sink device 341. In this exemplary embodiment, a second current sink device 342 is coupled to a device capable of storing energy, such as a third inductor 353 and a fourth inductor 354. In this exemplary embodiment, the source of transistor 331 is coupled to inductor 354. Inductor 354 is then coupled to the drain of current sink device 342. In this exemplary embodiment, the source of transistor 332 is coupled to inductor 353. In turn, inductor 353 is then coupled to the drain of current sink device 342. Each source of the current sink devices 353, 354 may be connected to ground.
The current sink devices may inject noise into the system. Devices capable of storing energy, such as inductors 351, 352, 353, and 354, may be configured to reduce the noise injected by the current sink devices. Since the signals appearing at the sources of transistors 321 and 322 are substantially 180° out of phase, a virtual short appears at the drain of current sink device 341. The virtual short thus reduces any noise generated by the current sink device 341. Similarly since the signals appearing at the sources of transistors 331 and 332 are substantially 180° out of phase, a virtual short appears at the drain of current sink device 342. The virtual short thus reduces any noise generated by the current sink device 342. As long as the inductors 351, 352 are of equal value or similarly the inductors 353, 354 are of equal value, any suitable amount of inductance may be selected to reduce the noise injected by the current sink device. For instance, between 10 pH and 1 uH may be used as deemed by the circuit designer as appropriate for the frequency of application.
This system may be used to split or divide input signals by any integer N channels. Though only two channels have been depicted in the figures it should appreciated that the concept can be extended to N integer channels. In one exemplary embodiment an active power splitter layout and/or topology is configured to have substantially symmetric output channels. The system is configured to be symmetric where possible. Similarly, as this concept is extended to N integer channels it shall be appreciated that the N integer channels system is configured to be symmetric where possible.
The active power splitters described thus far, with reference to
In an exemplary embodiment, active power splitter 200 converts an input RF signal into two output signals. The output signal levels may be equal in amplitude, though this is not required. For a prior art passive power splitter, each output signal would be about 3 dB lower in power than the input signal. In contrast, an exemplary active splitter, such as active power splitter 200, 300, can provide gain and the relative power level between the input signal and the output signal is adjustable and can be selectively designed. In an exemplary embodiment, the output signal is configured to achieve a substantially neutral or positive power gain over the input signal. For example, the output signal may achieve a 3 dB signal power gain over the input signal. In an exemplary embodiment, the output signal may achieve a power gain in the 0 dB to 5 dB range. Moreover, the output signal may be configured to achieve any suitable power gain.
In another exemplary embodiment, active power splitter 200, 300 additionally provides matched impedances at the input and output ports. The matched impedances may be 50 ohms, 75 ohms, or other suitable impedances. Furthermore, in an exemplary embodiment, active splitter 200, 300 provides isolation between the output ports of the active power splitter. In one exemplary embodiment, active power splitter 200, 300 is manufactured as a monolithic microwave integrated circuit (MMIC). In one exemplary embodiment, active power splitter 200, 300 is manufactured as a radio frequency integrated circuit (RFIC) with a compact size that is independent of the operating frequency due to a lack of distributed components.
In accordance with an exemplary embodiment, active power splitter 200 may comprise active components manufactured on silicon germanium (SiGe) in a monolithic solution. Other materials may be used, such as GaAs, silicon, or other suitable materials now known or hereinafter devised. A monolithic SiGe embodiment using active components results in certain advantages over the distributed network in the prior art. In one exemplary embodiment, RF signals undergo a neutral or slight positive power gain, rather than power losses that occur in the passive prior art systems. Furthermore, some exemplary embodiments employ differential signaling to improve signal isolation, interference rejection, and noise immunity, plus confine electromagnetic fields, when the RF signal is in analog form.
In contrast to the previously described
In an exemplary embodiment, active power splitter 200, 300 has a wide operating bandwidth such as (between 1-250 GHz) and can be configured for broadband enabled operation over multiple frequency bands. In other words, in an exemplary embodiment, active power splitter 200, 300 is applicable to all frequency bands, including X, K, Ku, Ka, and Q bands. In an exemplary embodiment, the active power splitter 200, 300 operates over specific frequency ranges, such as 2-20 GHz, 20-40 GHz, 30-45 GHz, or other suitable ranges.
In an exemplary embodiment, the active power splitter is manufactured as an RFIC or MMIC. In an exemplary embodiment, a noise figure for the active power splitter has a gain of less than 0.25 dB change for negative feedback inductance from 0 to 100 pH. In an exemplary embodiment, the current sink devices are three terminal devices. In this exemplary embodiment, at least one of the base and the gate of the three terminal current sink device is held at a constant voltage or current. In an exemplary embodiment, the virtual ground is created at the midpoint of an alternating current source split into two signals with 180 degree out of phase separation.
In addition, reference is made to a FET (field effect transistor) however, it should be appreciated and understood by one skilled in the art that various other transistors may appropriately be used in the present invention, for example, bipolar junction transistors (BJTs), MOSFETs, MESFETs, diode, HEMT (high electron mobility transistors), and/or heterojunction bipolar transistors (HBTs). Similarly, reference is made to a source, drain and gate of the FET, however, it should be appreciated and understood by one skilled in the art that various other reference may be made in place of source, drain and gate (such as emitter, collector, and base, or an input and an output). Additionally, physically a source may be operated as a drain and an associated drain may be operated as a source.
The following applications are related to this subject matter: U.S. application Ser. No. 12/759,123, entitled “ACTIVE BUTLER AND BLASS MATRICES,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12/759,043, entitled “ACTIVE HYBRIDS FOR ANTENNA SYSTEMS,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12,759,064, entitled “ACTIVE FEED FORWARD AMPLIFIER,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12/759,130, entitled “ACTIVE PHASED ARRAY ARCHITECTURE,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12/759,059, entitled “MULTI-BEAM ACTIVE PHASED ARRAY ARCHITECTURE,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12/758,996, entitled “PRESELECTOR AMPLIFIER,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12/759,112, entitled “HALF-DUPLEX PHASED ARRAY ANTENNA SYSTEM,” which is being filed contemporaneously herewith; U.S. application Ser. No. 12/759,113, entitled “DIGITAL AMPLITUDE CONTROL OF ACTIVE VECTOR GENERATOR,” which is being filed contemporaneously herewith; the contents of which are hereby incorporated by reference for any purpose in their entirety.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of any or all the claims. As used herein, the terms “includes,” “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, no element described herein is required for the practice of the invention unless expressly described as “essential” or “critical.”
This application is a non-provisional of U.S. Provisional Application No. 61/237,967, entitled “ACTIVE BUTLER AND BLASS MATRICES,” which was filed on Aug. 28, 2009. This application is also a non-provisional of U.S. Provisional Application No. 61/259,375, entitled “ACTIVE HYBRIDS FOR ANTENNA SYSTEMS,” which was filed on Nov. 9, 2009. This application is a non-provisional of U.S. Provisional Application No. 61/234,513, entitled “ACTIVE FEED FORWARD AMPLIFIER,” which was filed on Aug. 17, 2009. This application is a non-provisional of U.S. Provisional Application No. 61/222,354, entitled “ACTIVE PHASED ARRAY ARCHITECTURE,” which was filed on Jul. 1, 2009. This application is a non-provisional of U.S. Provisional Application No. 61/168,913, entitled “ACTIVE COMPONENT PHASED ARRAY ANTENNA,” which was filed on Apr. 13, 2009. This application is also a non-provisional of U.S. Provisional Application No. 61/259,049, entitled “DYNAMIC REAL-TIME POLARIZATION FOR ANTENNAS,” which was filed on Nov. 6, 2009. This application is a non-provisional of U.S. Provisional Application No. 61/234,521, entitled “MULTI-BAND MULTI-BEAM PHASED ARRAY ARCHITECTURE,” which was filed on Aug. 17, 2009. This application is a non-provisional of U.S. Provisional Application No. 61/265,605, entitled “HALF-DUPLEX PHASED ARRAY ANTENNA SYSTEM,” which was filed on Dec. 1, 2009. This application is a non-provisional of U.S. Provisional Application No. 61/222,363, entitled “BIDIRECTIONAL ANTENNA POLARIZER,” which was filed on Jul. 1, 2009. All of the contents of the previously identified applications are hereby incorporated by reference for any purpose in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3119965 | Phillips | Jan 1964 | A |
4857777 | Altes | Aug 1989 | A |
4896374 | Waugh et al. | Jan 1990 | A |
4965602 | Kahrilas et al. | Oct 1990 | A |
4994773 | Chen et al. | Feb 1991 | A |
5045822 | Mohwinkel | Sep 1991 | A |
5270719 | Roth | Dec 1993 | A |
5942929 | Aparin | Aug 1999 | A |
5966049 | Yuen et al. | Oct 1999 | A |
6005515 | Allen et al. | Dec 1999 | A |
6061553 | Matsuoka et al. | May 2000 | A |
6232837 | Yoo et al. | May 2001 | B1 |
6326845 | Miyaji et al. | Dec 2001 | B1 |
7319345 | Farjad-rad et al. | Jan 2008 | B2 |
7355470 | Sorrells et al. | Apr 2008 | B2 |
7378902 | Sorrells et al. | May 2008 | B2 |
7400193 | Wyatt | Jul 2008 | B2 |
7408507 | Paek et al. | Aug 2008 | B1 |
7420423 | Lee et al. | Sep 2008 | B2 |
7421036 | Sorrells et al. | Sep 2008 | B2 |
7620129 | Sorrells et al. | Nov 2009 | B2 |
7672653 | Cowley et al. | Mar 2010 | B2 |
7728784 | Mohamadi | Jun 2010 | B2 |
7746764 | Rawlins et al. | Jun 2010 | B2 |
7750733 | Sorrells et al. | Jul 2010 | B2 |
7755430 | Imagawa | Jul 2010 | B2 |
7885682 | Sorrells et al. | Feb 2011 | B2 |
8013784 | Margomenos et al. | Sep 2011 | B2 |
20020113648 | Miyaji et al. | Aug 2002 | A1 |
20030016085 | Yamazaki | Jan 2003 | A1 |
20030162566 | Shapira et al. | Aug 2003 | A1 |
20040095190 | Klaren | May 2004 | A1 |
20040121750 | Nation | Jun 2004 | A1 |
20040229584 | Fischer et al. | Nov 2004 | A1 |
20050113052 | Rabinovich | May 2005 | A1 |
20050151698 | Mohamadi | Jul 2005 | A1 |
20060170499 | Rahman et al. | Aug 2006 | A1 |
20070248186 | Sorrells et al. | Oct 2007 | A1 |
20070275674 | Chein | Nov 2007 | A1 |
20070280384 | Hidaka | Dec 2007 | A1 |
20080129408 | Nagaishi | Jun 2008 | A1 |
20080129634 | Pera | Jun 2008 | A1 |
20080218424 | Blanton | Sep 2008 | A1 |
20090091384 | Sorrells et al. | Apr 2009 | A1 |
20100073085 | Sorrells et al. | Mar 2010 | A1 |
20100097138 | Sorrells et al. | Apr 2010 | A1 |
20100225389 | Teetzel | Sep 2010 | A1 |
20100321107 | Honcharenko | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0762660 | Mar 1997 | EP |
1193861 | Apr 2002 | EP |
2003168938 | Jun 2003 | JP |
WO9945609 | Aug 1999 | WO |
WO0003456 | Jan 2000 | WO |
WO0241442 | May 2002 | WO |
WO03036756 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100259312 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61237967 | Aug 2009 | US | |
61259375 | Nov 2009 | US | |
61234513 | Aug 2009 | US | |
61222354 | Jul 2009 | US | |
61168913 | Apr 2009 | US | |
61259049 | Nov 2009 | US | |
61234521 | Aug 2009 | US | |
61265605 | Dec 2009 | US | |
61222363 | Jul 2009 | US |