The present application claims priority from U.S. Patent Application No. 60/551,145, filed Mar. 8, 2004, the entire disclosure of which is incorporated herein by reference.
Using a magnetic resonance imaging (“MRI”) system, a substantially uniform main magnetic field is usually generated within an examination region. The main magnetic field polarizes the nuclear spin system of a subject (or a portion thereof) being imaged within the examination region. Magnetic resonance is excited in dipoles which align with the main magnetic field by transmitting radio frequency excitation signals into the examination region. Conventionally, radio frequency pulses that are transmitted via a radio frequency (“RF”) coil assembly move the dipoles out of alignment with the main magnetic field, and cause a macroscopic magnetic moment vector to precess around an axis parallel to the main magnetic field. Then, a corresponding radio frequency magnetic signal is generated. The RF magnetic resonance signal is received by the RF coil assembly, and from the received RF signals, an image representation can be reconstructed for display, and/or data obtained for other purposes.
Intrinsic signal-to-noise ratio (“SNR”) of the MRI system can be proportional to the static magnetic field. The MRI technology development is moving towards higher static magnetic fields (e.g., 7 T, 8 T, or 9.4 T). However, an increase in the static magnetic field can increase the resonance frequency. Such higher resonance frequency can result in a more significant coil loss that otherwise could be neglected in a low field (e.g., 1.5 T or below). This coil loss may includes a radiation loss and a conductor loss. Thus, the efficiency of conventional passive radio frequency (“RF”) coils is reduced, likely significantly, when the resonance frequency increases. Such reduction in efficiency of the conventional passive RF coils may compromise the higher SNR that is obtained by increasing the static magnetic field. One of the objects of the present invention is to address such efficiency reduction, e.g., using an active RF coil.
Previously, active devices have been used in active antenna and active filter designs. However, the use of the active devices not been significantly utilized in the conventional MRI coil designs. One of the reasons for such lack of utilization is because the sample loss (as opposed to coil loss) is dominant in common low field (1.5 T) RF detection. As the static magnetic field increases, the resonance frequency increases, and signal lost due to the coil becomes an issue, and therefore minimizing loss due to the coil is desirable.
In order to compensate for the coil loss in the high field, and in accordance with at least one of the objects and exemplary embodiments of the present invention, it is possible to use an active device (e.g., a diode, a transistor, etc.) to generate a negative resistance to cancel the coil loss resistance. In this manner, the efficiency of the RF coil at a high frequency can be improved.
According to one exemplary embodiment of the present invention, a radio frequency coil (“RF”), MRI system and method can be provided adapted for high field magnetic resonance imaging. In particular, an arrangement can be provided therefor exhibiting negative resistance characteristics. The arrangement can include a negative resistance device which has a field effect transistor. The field effect transistor can include a Metal Shottky field effect transistor (“MESFET”), a Metal Oxide Semiconductor Field Effect Transistor (“MOSFET”), a high electron mobility transistor (“HEMT”) and/or a Pseudomorphic High Election Mobility Transistor (“pHEMT”). Further, the field effect transistor can include a common-gate which includes a inductive feedback device, a common-source which includes a capacitive feedback and drain output device, and a common-source which includes a capacitive feedback with gate output device.
According to another exemplary embodiment of the present invention, the arrangement can be a bipolar-junction transistor. The bipolar-junction transistor may include a NPN transistor and/or a PNP transistor. Further, the arrangement can include a diode. The diode may include a Gunn diode, an Impact Ionization Avalanche Transit-Time diode (IMPATT diode) and/or a tunnel effect diode. The arrangement can also be an operational amplifier.
According to still another exemplary embodiment of the present invention, at least one capacitor can be provided which is capable of controlling the arrangement. For example, the arrangement can be controlled using the at least one capacitor by controlling a transconductance and/or a feedback capacitance. The arrangement may be capable of exhibiting capacitive properties. The arrangement is capable of exhibiting inductive properties. In addition, the arrangement can be a negative resistance device which is shunted to a ground with a copper strip.
In a further exemplary embodiment of the present invention, a varactor may be provided which is capable of controlling the negative resistance of the arrangement.
For a more complete understanding of the present invention and its advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
b is a further exemplary active array element with the negative resistance device shunted to the ground shield in series with a copper strip according to another exemplary embodiment of the present invention.
Throughout the drawings, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components, or portions of the illustrated embodiments. Moreover, while the present invention will now be described in detail with reference to the Figures, it is done so in connection with the illustrative embodiments.
Conventional MRI RF coils have utilized passive resonators (“PR”) which can be modeled with a variety of LCR circuits, as described in Chen C-N et al., Biomedical Magnetic Resonance Technology, Adam Hilger (1989). Although there are some active parts on various coils, such as diodes, these active parts are likely only provided for a transmit/receive (“TR”) switch, and generally do not contribute to coil tuning and matching. To demonstrate the limitation of passive resonators in lossy conditions which is likely the reality in high field, it is possible to analyze a simplified circuit model for a conventional surface coil 10 (shown in
As indicated herein above, the higher the magnetic field, the higher the coil loss. Therefore, Equation [1] indicates the following. First, when the frequency-dependent coil loss is increased to the extent that the resistance of the resistor R becomes larger than the square root of L/C, then ω becomes an imaginary number, which means that this passive LCR circuit likely cannot resonate. Second, a higher resistance of the resistor R may lead to a lower Q-factor. To avoid the diminishing consequence of high coil loss in high field, e.g., in a 7 T body coil, it is preferable to provide a negative resistance from a transistor circuit, e.g., to cancel at least a portion of the resistance, keep the resonance frequency ω from becoming an imaginary number, and maintain the coil's Q high.
The resistance of the resistor R is defined by Ohm's law R=V/I, in which V is voltage and I is current. However, various active devices, such as diodes and transistors, do not always follow Ohm's law. A more broad definition of resistance can be provided by a ratio of a differential voltage to a differential current, i.e., R=dV/dI. In general, the current tends to rise with an increasing voltage. However, for transistors and diodes, there are certain conditions where current falls as voltage rises. This can result in a negative resistance, which can be realized by, for example, (i) a Gunn Diode, (ii) an FET, or (iii) a bipolar-junction-transistor (“BJT”), as described in Mantena N.R. et al., “Circuit Model Simulation of Gunn Effect Devices,” IEEE Trans. on Microwave Theory and Techniques (1969) MTT-17, p. 363, Karacaoglu U. et al., “Dual-Mode Microstrip Ring Resonator Filter with Active Devices for Loss Compensation,” IEEE MTT-S International Microwave Symposium Digest (1993), pp. 189-192 (“Karacaoglu et al.”), and Adams D.K. et al., “Active Filters for UHF and Microwave Frequencies,” IEEE trans. on Microwave Theory and Techniques (1969) MTT-17, pp. 662-670, respectively.
One example of the negative resistance that can be obtained by utilizing the FET is shown in
In particular, Cgs is the gate-source capacitance, Cjb is the feed back capacitance, gm is the mutual conductance. The exemplary circuit 20 shown in
The device 20 of
One having ordinary skill in the art with the benefit of this disclosure would clearly realize that other active devices may be utilized to obtain the objects, features and advantages of the present invention. For example a variety of configurations of negative resistance devices according to the present invention may be utilized at, e.g., 300 MHz at 7 T. As known by those of ordinary skill in the art, there may be three common types of solid state devices that can be used for generating negative resistance. For example, these devices may include: (a) FET which can be a Metal Shottky Field Effect Transistor (“MESFET”), a Metal Oxide Semiconductor Field Effect Transistor (“MOSFET”), a High Electron Mobility Transistor (“HEMT”) and a Pseudomorphic High Electron Mobility Transistor (“pHEMT”); (b) BJT which can be either a NPN transistor or a PNP transistor; or (c) a diode, which can be Gunn diode, an Impact Ionization Avalanche Transit-Time diode (“IMPATT” diode), or a tunnel effect diode. In a further exemplary embodiment of the present invention, the negative resistance can also be realized by operational-amplifiers or certain composite materials. Each type of negative resistance device may also have a different circuit topology. For example, in the case of FET, the negative resistance device can be: (a) common-gate with inductive feedback; (b) common-source with capacitive feedback and drain output; or (c) common-source with capacitive feedback with gate output.
In a further exemplary embodiment of the present invention, the different types and topologies of the negative resistance devices may be controlled for use as part of the RF coil. For example, it may be possible to adjust the negative resistance values by varying certain portions of the negative resistance device. In particular, with reference to
According to another consideration for providing an optimal negative resistance device according to yet another exemplary embodiment of the present invention, an absolute value of the negative resistance may be provided to be in the vicinity of the coil loss resistance, e.g., RCL=Rr+Rc, where Rr is the radiation loss resistance and Rc is the conductor loss resistance. The Rr and Rc can be determined analytically, based on the conductor geometry of the coil, and/or estimated experimentally. Other considerations for the exemplary design according to the present invention may include the noise considerations and power handling of the device of the present invention. In order to transmit signals, the negative resistance device's noise figure may not be crucial. However, the power tolerance and power saturation threshold should preferably be optimized. For example, it may be preferable for the power tolerance to be about 200 W for 16 channels and 100 W for 32 channels, given a maximum power output from power amplifier of 8 kW. For receiving signals, the negative resistance device's noise figure should preferably be as low as possible (e.g., less than 0.5 dB), while power handling should preferably be on the order of milliwatts (mW).
In a still further exemplary embodiment of the present invention, the Q of the resonators can be enhanced by integrating the negative resistance device to compensate the loss. Various different negative resistance circuits can be used for such purpose. As one exempla, the common-source FET negative resistance circuit 210 provided in an MRI arrangement 200 shown in
In other exemplary embodiments of the present invention, an active array element may be used as part of a high field MRI radio frequency coil. One such exemplary embodiment includes the active array element which has a negative resistance device, either (i) shunted to the ground shield in the front end, or (ii) provided in series with a copper strip, for example, as shown in
For example, the exemplary embodiment shown in
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. All publications and references cited above are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/007606 | 3/7/2005 | WO | 00 | 9/8/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/086817 | 9/22/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2785371 | Terry et al. | Mar 1957 | A |
3103623 | Greenwood, Jr. | Sep 1963 | A |
3174099 | Larson | Mar 1965 | A |
3443208 | Ruddock et al. | May 1969 | A |
3515981 | Tong et al. | Jun 1970 | A |
3548110 | Lundkvist | Dec 1970 | A |
4087738 | Van Degrift et al. | May 1978 | A |
4613818 | Battocletti et al. | Sep 1986 | A |
4626800 | Murakami et al. | Dec 1986 | A |
4782298 | Arakawa et al. | Nov 1988 | A |
4793356 | Misic et al. | Dec 1988 | A |
5461314 | Arakawa et al. | Oct 1995 | A |
5565779 | Arakawa et al. | Oct 1996 | A |
5721490 | Takano et al. | Feb 1998 | A |
6236205 | Ludeke et al. | May 2001 | B1 |
6501274 | Ledden | Dec 2002 | B1 |
6900638 | Yair et al. | May 2005 | B1 |
6930483 | Sabate et al. | Aug 2005 | B2 |
7030704 | White | Apr 2006 | B2 |
7800368 | Vaughan et al. | Sep 2010 | B2 |
20050024056 | Sabate et al. | Feb 2005 | A1 |
20050088248 | White | Apr 2005 | A1 |
20050090732 | Ivkov et al. | Apr 2005 | A1 |
20070146104 | Lee | Jun 2007 | A1 |
20080129298 | Vaughan et al. | Jun 2008 | A1 |
20100253353 | Cork et al. | Oct 2010 | A1 |
20100264917 | Budker et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 2005086817 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070146104 A1 | Jun 2007 | US |