1. Field of the Invention
The disclosure relates generally to sealing systems for use with panels, such as a door or a window, within a frame and, more specifically, to an active sealing system for providing an improved seal between a panel and frame.
2. Description of the Related Art
Certain types of panels, such as doors and windows, are positioned within openings of a wall and/or other structures using a frame. These panels may also open and close by pivoting relative to the frame. Alternatively, the one or more panel may slide relative to the frame. An issue associated with these types of panels is the integrity of the seals between the panels and the frame. In many instances, these seals are an insufficient barrier in preventing the transfer of such environmental elements as noise, weather, water, and insects from one side of the panel to the other side of the panel.
Attempts have been made to address these issues by using various types of weather stripping between the panels and frame. For example, the weather stripping may be strip of felt, foam, or a pile of flexible synthetic material. In many instances, however, this weather stripping fails to act as a sufficient seal between the panels and frame. Another issue prevalent associated with the seals between a frame and panel or between adjacent panels is that these seals can become disjoined. Either intentionally or unintentionally, the alignment between the frame and panel or between adjacent panels may be disturbed which can degrade the quality of the seal, since, in many instances, the integrity of the seal relies upon these members having certain positional relationships relative to one another.
Another issue associated with the movement of one or more panels relative to the frame is structural integrity and/or security of the panels relative to the frame. While in certain circumstances, allowing the panel to move relative to the frame is desirable, in other circumstances, not allowing the panel to move relative to the frame is desirable for the purpose of preventing undesired access through the panel. Means for providing these separate functionalities, however, can be incompatible with one another, and the means employed to provide both functions often involve tradeoffs that reduce the effectiveness of both functions.
There is, therefore, also a need for a sealing system that effectively allows both a panel to move relative to the frame and also to selectively prevent movement of the panel relative to the frame. There is also a need for a sealing system that can be employed between a frame and panel that prevents the transfer from one side of the panel to the other side of the panel such environmental effects as noise, weather, water, heat/cold, and insects.
Embodiments of the invention address deficiencies of the art with respect to effectively creating a seal between a panel and a frame. In this regard, a combined sealing system for connecting a panel to a frame includes a first active sealing system and a first passive seal. The first active sealing system engages a first surface of the panel or a first surface of the frame. The first passive seal engages a second surface of the panel and a second surface of the frame. Upon the panel being in a single closed position relative to the frame, the active sealing system has a locked configuration and an unlocked configuration, and the active sealing system in the locked configuration causes the first passive seal to be further engaged. The panel may pivot relative to the frame. The first active sealing system may be positioned within one or both of the panel and the frame.
In certain aspects of the combined sealing system, multiple active sealing systems are provided to respectively connect all pairs of adjacent surfaces of the panel and the frame. Also, engagement of the first active sealing system causes engagement of all the active sealing systems.
In other aspects of the combined sealing system, a second passive seal is included. Along a plane perpendicular to and intersecting the panel and frame and perpendicular to adjoining sides of the panel and frame, the first active sealing system creates an active seal positioned between the first passive seal and the second passive seal. Also along the plane perpendicular to and intersecting the panel and frame and perpendicular to adjoining sides of the panel and frame, the first passive seal is positioned closer to outer portions of the panel and frame than the active seal created by the first active sealing system. The active seal is created between the first surface of the panel and the first surface of the frame only in the locked configuration of the first active sealing system. Additionally, the active seal is created along substantially an entire side of the panel and the frame
In another embodiment, a sealing system is provided for connecting a panel to a frame, and the panel is movable relative to a frame in a first direction towards a single closed position. The sealing system includes a first active sealing system for creating an active seal between a first surface of the panel or a first surface of the frame. Upon the panel being in a single closed position relative to the frame, the active sealing system has a locked configuration and an unlocked configuration. The active seal is created between the first surface of the panel and the first surface of the frame only in the locked configuration of the first active sealing system, and in the locked configuration and while the panel is stationary relative to the frame, the first active sealing system generates a force component in a direction parallel to the first direction to prevent movement of the panel from the single closed position.
In yet another embodiment, a sealing system is provided for connecting a panel to a frame. The sealing system includes a movable member pivotably connected to one of the panel and the frame for forming an active seal between the panel and the frame. Upon the panel being in a single closed position relative to the frame, the active sealing system has a locked configuration and an unlocked configuration. The active seal is created between the first surface of the panel and the first surface of the frame only in the locked configuration of the first active sealing system, and the movable member pivots from a first position in the locked configuration to a second position in the unlocked position. A rotatable drive gate engages the movable member to drive movement of the movable member.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The aspects of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
The door/window system 100 is not limited in the manner in which the panel 110 moves relative to the frame 120. For example, the panel 110 may linearly slide relative to the frame 120. In certain aspects of the door/window system 100, however, the panel 110 pivots relative to the frame 120 about a hinge 190. Many types of hinges 190 are capable of allowing the panel 110 to pivot relative to the frame 120, and any hinge 190 so capable is acceptable for use with the present door/window system 100.
The frame 120 may include a header 130, jambs 140, and a sill 150. A header 130 is a structural member that spans an upper portion of the window/door opening. Jambs 140 are the outermost vertical side members of the frame 120. A sill 150 is a threshold or structural member that spans a lower-most portion of the window/door opening. As recognized by those skilled in the art, different terms may also be associated with the above-structure identified as the header 130, jambs 140, and sill 150.
Each panel 110 may include a sash 160 that surrounds a pane 170. The pane 170 is not limited as to a particular material. For example, the pane 170 may be translucent, such as glass or plastic, opaque, such as with wood or metal, or any combination thereof. The sash may include a header rail 175, jamb or stile rails 180, and a sill rail 185. As recognized by those skilled in the art, different terms may also be associated with the structure identified as the header rail 175, the jamb or stile rail 180, and sill rail 185.
The sealing system 200 (see
Additionally, although the present door/window system 100 is described herein with particular types of sealing systems 200 being positioned in particular locations, the door/window system 100 is not limited as to a particular type of sealing system 200 or a particular location of the sealing system 200. For example, a sealing system 200 may be positioned within the frame 120 and/or the sash 160.
To prevent the forced opening of the panel 110, the sealing systems 200 are not limited as to a percentage of coverage between particular members of the frame 120 and/or panel 110. For example, the sealing systems 200 may only cover a fractional number (e.g., 10%, 50%, 85%) of the length between particular members of the frame 120 and/or panel 110. However, in certain aspects, the sealing systems 200 provide substantially complete coverage between the sash 160 of a panel 110 and the frame 120. In so doing, the combined sealing systems 200 can provide a seal substantially, completely around the panel 110.
Referring to
Although many different profiles are capable of preventing movement of the panel 110 past a particular position, in certain aspects of the sealing system 200, the mating profiles 125, 165 respectively include surfaces 260, 270 and 265, 275 that are at an angle that is not tangent to an arc created by the rotation of the panel 110. As illustrated in
Although the sealing system 200 is not limited in this manner, the one or more matched pairs of angled surfaces 260/265, 270/275 may include seals on one or both surfaces. However, in certain aspects of the sealing system 200, the seals (hereinafter referred to as 260, 270) are located on the frame mating profile 125 of the frame 120.
The seals 260, 270 act to retard the movement of air, water, etc. and/or noise across the seals 260, 270 and any seal so capable is acceptable for use in the sealing system 200. However, in certain aspects of the sealing system 200, the seals 260, 270 are formed from a compressible material, such as foam and include T-shaped bases, which fit into T-shaped channels in the frame mating profile 125. As the panel 110 moves from the open position to the closed position, the angled surfaces 265, 275 of the sash 160 engage and compress the seals 260, 270.
Upon the panel 110 being disposed in the closed position (e.g.,
The active seal 205 can perform one or more of at least two functions, which may be performed separately or together. One of these functions is to create a seal between the movable member 210 and the opposing face 255. The other of the two functions is enhance and/or engage passive seals located between other portions of the frame 120 and sash 160. Unlike the active seal 205, which has both a completely unlocked/disengaged configuration and a locked/engaged configuration while the panel 110 is in a single position relative to the frame 120 (e.g.,
Referring to the first function, the movable member and/or opposing face 255 may include seals on one or both surfaces. However, in certain aspects of the active seal 205, the seal (hereinafter referred to as gate seal 250) is located on the movable member (hereinafter referred to as seal gate 210). Similar to the previously described seals 260, 270, the gate seal 250 can be any type of seal capable of acting to retard the movement of air, water, etc. and/or noise across the gate seal 250.
Referring to the second function, the gate seal 250 presses against the opposing face 255, and in so doing, causes one or more other seals (for example, seals 260, 270) to engage or further engage. For example, as the gate seal 250 presses against the opposing face 255, the generated force includes a component in a direction parallel that causes the sash 160 and panel 110 to moved into the closed position relative to the frame 120, thereby compressing the seals 260, 270. Alternatively, this generated force may drive a portion of either the sash 160 or frame 120 into the seals 260, 270, thereby engaging or further engaging the seals 260, 270.
The active seal 205 is not limited in the manner by which the gate seal 250 engages the opposing face 255. For example, the seal gate 210 may operate as a linearly-traveling piston. However, in certain aspects of the active seal 205, the seal gate 210 pivots about a seal pivot 220. The manner in which the seal gate 210 itself is driven in not limited. For example, the seal gate 210 may be directly driven, for example, at the seal pivot 220. Alternatively, in certain aspects of the active seal, the seal gate 210 is driven using a drive gate 230 that causes the seal gate 210 to rotate about the seal pivot 220.
Although not limited in this manner, the drive gate 230 pivots about a drive pivot 240 and is itself driven by a drive system 300 (see discussion with regard to
In certain aspects of the sealing system 200, the active seal 205 is positioned either between two other seals 260, 270 and/or positioned behind one seal 270 relative to an outside portion of the door/window system 100. Since the active seal 205 includes at least one movable member 250, the active seal 205 may be more susceptible to environmental effects, such as water and/or excessive heat/cold. By positioning the active seal 205 between two other seals 260, 270 and/or positioning the active seal 205 behind one seal 270 relative to an outside portion of the door/window system 100, the one or more seals 260, 270 can reduce the impact of these adverse environmental effects on the active seal 205.
Referring to
How the drive system 300 moves the sealing system 200 from the unlocked configuration to the locked configuration (and back again) is not limited as to a particular manner and/or device. As can be readily envisioned, the configuration and operation of the drive system 300 may be determined by the configuration and operation of the sealing systems 200. Although the illustrated drive system 300 is shown as being driven with a manual device, other devices capable of driving a sealing system 200 are commonly known, such as a magnetic, mechanical, and electromechanical devices.
As previously described, the present sealing system 200 operates using a drive gate 230, which urges a seal gate 210 against an opposing face 255 to form a seal between the frame 120 and sash 160. Any drive system 300 capable of driving the drive gate 230 in this manner is acceptable for use with the present door/window system 100. In a present aspect of the door/window system 100, the drive system 300 employs a knob 310, which rotates a threaded shaft 330 about a bearing 320. A thread gear 340 is positioned about the threaded shaft 330, and rotation of the threaded shaft 330 moves the thread gear 340 up or down relative to the threaded shaft 330. The thread gear 340 is attached to the drive gate 230 about a gear pivot 350.
Referring to
The opposite movement of the thread gear 340 from a higher position to a lower position on the threaded shaft 340 rotates the drive gate 230 in an opposite direction about the drive pivot 240. Many techniques or devices can be used to return the seal gate 210 to its fully unlocked position (i.e.,
Referring to
Many types of transfer systems are capable of transferring motion from one drive element 280A to another drive element 280B, and the door/window system 100 is not limited as to transfer system 290 so capable. For example, as illustrated, the transfer system 290 may include a set of inter-engaging gears respectively attached to the drive elements 280A, 280B to transfer rotation from one drive element 280A to the other drive element 280B.
Referring to
In additional aspects, the framing system 400 also functions to provide a thermal and/or acoustical break between an outer portion 470 of the framing system 400 and an inner portion 460 of the framing system 400. Although not limited in this manner, the framing system 400 and certain portions of the sealing system 200 may be formed from a metal, such as aluminum. These types of materials readily conduct heat and/or transmit sound. Therefore, it is advantageous to “break” the thermal and/or acoustical connection from an outer portion 470 to an inner portion 460 to respectively reduce the transmission of heat/cold and noise across the framing system 400.
Many types of framing systems 400 are capable of reducing the transmission of heat/cold and noise across the framing system 400, and the door/window system 100 is not limited as to a particular framing system 400 so capable. However, in certain aspects of the framing system 400, the framing system 400 includes a pair of combs 410, 420, which are respectively attached to the outer and inner portions 470, 460 of the framing system 400.
Each of the combs 410, 420 includes multiple teeth 480 having a first side 485, a second side 490, and a gap 495 between the first side 485 and the second side 490. The teeth 480 of the combs 410, 420 loosely inter-engage with one another to form a channel 440, which is comprised of portions of the gaps 495 of the teeth 480 of both the first comb 410 and the second comb 410. The tightness or looseness of the fit between the inter-engaged combs 410, 420 is not limited as to a particular clearance. However, preventing any contact between the combs 410, 420 increases the effectiveness of the thermal and/or acoustical break. Conversely, close contact between the combs 410, 420 may increase the structural integrity of the framing system 400.
An insert 430 is position within the channel 440 formed by the inter-engaging of the combs 410, 420. The insert 430 acts as the thermal and/or acoustical break between the combs 410, 420 and, thus, the outer and inner portions 470, 460 of the framing system 400. The insert 430 may also provide structural support to prevent the combs 410, 420 from being pushed together and/or pulled apart. Thus, the material from which the insert 430 is formed may vary depending upon the desired combination of functionality of the framing system 400. For example, if minimal structural support is required, then a material, such as large-celled solid foam having low thermal and/or acoustical transmissive properties may be selected for the insert 430. Alternatively, if greater structural support is required, a more solid material, such a high-density plastic, may be selected for the insert 430. Many materials have these combinations of desired characteristics, and the present framing system 400 is not limited to a material of the insert 430 so capable.
One or both of the combs 410, 420 may be attachable to or integral with the outer and inner portions 470, 460 of the framing system 400. In certain aspects of the framing system 400, however, one of the combs 410 is integrally formed with one portion 470 of the framing system 400, and the other of the combs 420 is attachable to the other portion 460 of the framing system 400 to aid in the assembly of the framing system 400. Although not limited in this manner, the comb 420 is attachable to the framing system 400 using barbed hooks 450.
Referring to
This application is a Continuation-In-Part of U.S. application Ser. No. 11/425,377, filed on Jun. 20, 2006, incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
19217 | Tinney | Jan 1858 | A |
724139 | Smith | Mar 1903 | A |
946305 | Twyman | Jan 1910 | A |
982828 | Kelly | Jan 1911 | A |
1009978 | Knappe | Nov 1911 | A |
1021862 | Culver | Apr 1912 | A |
1170101 | Pullets | Feb 1916 | A |
1178775 | Albright | Apr 1916 | A |
1345967 | Smelser | Jul 1920 | A |
1468958 | Champion | Sep 1923 | A |
1489018 | Shultz | Apr 1924 | A |
1675230 | Snyder | Jun 1928 | A |
1715188 | Bullock | May 1929 | A |
1797839 | Ramsay | Mar 1931 | A |
1974269 | Gonder | Sep 1934 | A |
1977726 | Jacobson | Oct 1934 | A |
1995939 | Osten | Mar 1935 | A |
2207065 | McCormick | Jul 1940 | A |
2248719 | Owen | Jul 1941 | A |
2268114 | Foster | Dec 1941 | A |
2541421 | Hunter | Feb 1951 | A |
2552369 | Currie | May 1951 | A |
2593093 | Bjork | Apr 1952 | A |
2628678 | Webster | Feb 1953 | A |
2719342 | Hunt | Oct 1955 | A |
2753020 | Ware, Jr. | Jul 1956 | A |
2766860 | Travis | Oct 1956 | A |
2805451 | Evans | Sep 1957 | A |
2837151 | Stroup | Jun 1958 | A |
2862256 | Stroup | Dec 1958 | A |
2862262 | Shea | Dec 1958 | A |
2928144 | Persson | Mar 1960 | A |
3004309 | Karodi | Oct 1961 | A |
3054152 | Trammell | Sep 1962 | A |
3059287 | Baruch | Oct 1962 | A |
3070856 | Minick | Jan 1963 | A |
3077644 | Kesling | Feb 1963 | A |
3098519 | Myers | Jul 1963 | A |
3111727 | Gerecke | Nov 1963 | A |
3126051 | Sussin | Mar 1964 | A |
3163891 | Seliger | Jan 1965 | A |
3184806 | Bragman | May 1965 | A |
3252255 | Marpe | May 1966 | A |
3289377 | Hetman | Dec 1966 | A |
3295257 | Douglass | Jan 1967 | A |
3335524 | Carson | Aug 1967 | A |
3374821 | White | Mar 1968 | A |
3383801 | Dallaire | May 1968 | A |
3466801 | Bohn | Sep 1969 | A |
3512303 | Wright | May 1970 | A |
3590530 | Duguay | Jul 1971 | A |
3590531 | Childs | Jul 1971 | A |
3660936 | Bryson | May 1972 | A |
3660940 | Tavano | May 1972 | A |
3816966 | Sause, Jr. | Jun 1974 | A |
3818636 | Calais et al. | Jun 1974 | A |
3821884 | Walsh | Jul 1974 | A |
3848908 | Rich | Nov 1974 | A |
3857199 | Frach et al. | Dec 1974 | A |
3910155 | Wilson | Oct 1975 | A |
3959927 | Good | Jun 1976 | A |
4018022 | Fink | Apr 1977 | A |
4027431 | Rackard | Jun 1977 | A |
4064651 | Homs | Dec 1977 | A |
4128967 | Kirsch | Dec 1978 | A |
4170846 | Dumenil et al. | Oct 1979 | A |
4307542 | Lense | Dec 1981 | A |
4317312 | Heideman | Mar 1982 | A |
4322914 | McGaughey | Apr 1982 | A |
4392329 | Suzuki | Jul 1983 | A |
4413446 | Dittrich | Nov 1983 | A |
4453346 | Powell et al. | Jun 1984 | A |
4479330 | Muller | Oct 1984 | A |
4496942 | Matsuoka | Jan 1985 | A |
4513536 | Giguere | Apr 1985 | A |
4535563 | Mesnel | Aug 1985 | A |
4614060 | Dumenil et al. | Sep 1986 | A |
4656779 | Fedeli | Apr 1987 | A |
4656799 | Maryon | Apr 1987 | A |
4716693 | Webster | Jan 1988 | A |
4765105 | Tissington et al. | Aug 1988 | A |
4768316 | Haas | Sep 1988 | A |
4831509 | Jones et al. | May 1989 | A |
4837560 | Newberry | Jun 1989 | A |
4870909 | Richter | Oct 1989 | A |
4936049 | Hansen | Jun 1990 | A |
5007202 | Guillon | Apr 1991 | A |
5020292 | Strom et al. | Jun 1991 | A |
5029911 | Daniels | Jul 1991 | A |
5030488 | Sobolev | Jul 1991 | A |
5187867 | Rawlings | Feb 1993 | A |
5293726 | Schick | Mar 1994 | A |
5327684 | Herbst | Jul 1994 | A |
5339881 | Owens | Aug 1994 | A |
5349782 | Yulkowski | Sep 1994 | A |
5379518 | Hopper | Jan 1995 | A |
5446997 | Simonton | Sep 1995 | A |
5467559 | Owens | Nov 1995 | A |
5479151 | Lavelle et al. | Dec 1995 | A |
5511833 | Tashman et al. | Apr 1996 | A |
5521585 | Hamilton | May 1996 | A |
5522180 | Adler et al. | Jun 1996 | A |
5522195 | Bargen | Jun 1996 | A |
5569878 | Zielinski | Oct 1996 | A |
5584142 | Spiess | Dec 1996 | A |
5605013 | Hogston | Feb 1997 | A |
5638639 | Goodman et al. | Jun 1997 | A |
5784834 | Stutzman | Jul 1998 | A |
5786547 | Zielinski | Jul 1998 | A |
5870859 | Kitada | Feb 1999 | A |
5870869 | Schrader | Feb 1999 | A |
5964060 | Furlong | Oct 1999 | A |
6041552 | Lindahl | Mar 2000 | A |
6057658 | Kovach et al. | May 2000 | A |
6082047 | Comaglio et al. | Jul 2000 | A |
6105313 | Holloway et al. | Aug 2000 | A |
6112466 | Smith et al. | Sep 2000 | A |
6112467 | Bark et al. | Sep 2000 | A |
6112496 | Hugus et al. | Sep 2000 | A |
6170195 | Lim | Jan 2001 | B1 |
6173533 | Cittadini et al. | Jan 2001 | B1 |
6181089 | Kovach et al. | Jan 2001 | B1 |
6202353 | Giacomelli | Mar 2001 | B1 |
6218939 | Peper | Apr 2001 | B1 |
6243999 | Silverman | Jun 2001 | B1 |
6289643 | Bonar | Sep 2001 | B1 |
6318037 | Hansen | Nov 2001 | B1 |
6442899 | Gledhill | Sep 2002 | B1 |
6490832 | Fischbach et al. | Dec 2002 | B1 |
D470252 | Castrey | Feb 2003 | S |
6546682 | DeBlock et al. | Apr 2003 | B1 |
6553735 | Wang Chen | Apr 2003 | B1 |
6568131 | Milano, Jr. | May 2003 | B1 |
6619005 | Chen | Sep 2003 | B1 |
6644884 | Gledhill | Nov 2003 | B2 |
6651389 | Minter et al. | Nov 2003 | B2 |
6772818 | Whitley et al. | Aug 2004 | B2 |
6786005 | Williams | Sep 2004 | B1 |
6871902 | Carson et al. | Mar 2005 | B2 |
6973753 | Liebscher | Dec 2005 | B2 |
7010888 | Tumlin et al. | Mar 2006 | B2 |
7124538 | Kline | Oct 2006 | B1 |
7145436 | Ichikawa et al. | Dec 2006 | B2 |
7185468 | Clark et al. | Mar 2007 | B2 |
7487616 | Deaver | Feb 2009 | B2 |
7566035 | Bonshor | Jul 2009 | B2 |
7624539 | Speyer et al. | Dec 2009 | B2 |
7627987 | Thielmann et al. | Dec 2009 | B2 |
7665245 | Speyer et al. | Feb 2010 | B2 |
7685774 | Thielmann | Mar 2010 | B2 |
7685775 | Speyer et al. | Mar 2010 | B2 |
7685776 | Speyer et al. | Mar 2010 | B2 |
7707773 | Thielmann et al. | May 2010 | B2 |
7719213 | Herman et al. | May 2010 | B2 |
20030033786 | Yulkowski | Feb 2003 | A1 |
20040068935 | Ichikawa et al. | Apr 2004 | A1 |
20050097842 | Arcamonte et al. | May 2005 | A1 |
20050102908 | Martin | May 2005 | A1 |
20060207199 | Darnell | Sep 2006 | A1 |
20070289221 | Speyer et al. | Dec 2007 | A1 |
20090151259 | Speyer et al. | Jun 2009 | A1 |
20090165415 | Salerno | Jul 2009 | A1 |
20090165423 | Salerno | Jul 2009 | A1 |
20100077665 | Speyer et al. | Apr 2010 | A1 |
Entry |
---|
active. Dictionary.com. The American Heritage® Dictionary of the English Language, Fourth Edition. Houghton Mifflin Company, 2004. http://dictionary.reference.com/browse/active (accessed: Sep. 30, 2009. |
Patio Life—Operation, retrieved online at: http://www.rotohardware.com/Products/Patio%20Life/PL-Operation.htm (2006). |
International Search Report for Application No. PCT/US2010/029383, dated May 25, 2010. |
International Search Report for Application No. PCT/US2010/029206, dated Jun. 2, 2010. |
Number | Date | Country | |
---|---|---|---|
20070290456 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11425377 | Jun 2006 | US |
Child | 11756957 | US |