1. Field of the Invention
The disclosure relates generally to sealing systems for use with panels, such as a door or a window, within a frame and, more specifically, to an active sealing system for providing an improved seal between a panel and frame.
2. Description of the Related Art
Certain types of panels, such as doors and windows, are positioned within openings of a wall and/or other structures using a frame. These panels may also open and close by pivoting relative to the frame. Alternatively, the one or more panel may slide relative to the frame. An issue associated with these types of panels is the integrity of the seals between the panels and the frame. In many instances, these seals are an insufficient barrier in preventing the transfer of such environmental elements as noise, weather, water, and insects from one side of the panel to the other side of the panel.
Attempts have been made to address these issues by using various types of weather stripping between the panels and frame. For example, the weather stripping may be strip of felt, foam, or a pile of flexible synthetic material. In many instances, however, this weather stripping fails to act as a sufficient seal between the panels and frame. Another issue prevalent associated with the seals between a frame and panel or between adjacent panels is that these seals can become disjoined. Either intentionally or unintentionally, the alignment between the frame and panel or between adjacent panels may be disturbed which can degrade the quality of the seal, since, in many instances, the integrity of the seal relies upon these members having certain positional relationships relative to one another.
Another issue associated with the movement of one or more panels relative to the frame is structural integrity and/or security of the panels relative to the frame. While in certain circumstances, allowing the panel to move relative to the frame is desirable, in other circumstances, not allowing the panel to move relative to the frame is desirable for the purpose of preventing undesired access through the panel. Means for providing these separate functionalities, however, can be incompatible with one another, and the means employed to provide both functions often involve tradeoffs that reduce the effectiveness of both functions.
There is, therefore, also a need for a sealing system that effectively allows both a panel to move relative to the frame and also to selectively prevent movement of the panel relative to the frame. There is also a need for a sealing system that can be employed between a frame and panel that prevents the transfer from one side of the panel to the other side of the panel such environmental effects as noise, weather, water, heat/cold, and insects.
Embodiments of the invention address deficiencies of the art with respect to effectively creating a seal between a panel and a frame. In this regard, a combined sealing system for connecting a first panel to a frame includes first, second, and third active sealing systems. The first active sealing system engages a sill rail of the first panel with a sill of the frame. The second active sealing system engages a meeting rail of the first panel with a meeting rail of a second panel within the frame. The third active sealing system engages a stile rail of the sash with a jamb of the frame. Upon the first panel being in a closed position relative to the frame, each of the first, second, and third active sealing systems having a locked configuration and an unlocked configuration.
In another aspect, a sealing system for connecting a panel to the frame is disclosed with the panel movable relative to a frame in a first direction towards a single closed position. The active sealing system includes a movable member pivoting between an engaged position and an unengaged position. Upon the panel being in a single closed position relative to the frame, the active sealing system has a locked configuration and an unlocked configuration, and the active seal is created between the first surface of the panel and the first surface of the frame only in the locked configuration of the active sealing system. In the locked configuration and while the panel is stationary relative to the frame, the movable member in the engaged position prevents movement of the panel in a second direction opposite to the first direction.
In other aspects, a drive member engages the movable member, and the engagement of the drive member with the movable member pivots the movable member from the unengaged position to the engaged position. The frame includes a lip, and the movable member pivots about the lip. The movable member can float freely between the lip and the drive member. The movable member includes a tip, a tail, the neck is positioned between the tip and the tail, and the neck is positioned between the lip and the drive member. A greatest distance between closest portions of the drive member and the lip is smaller than a width of the tail and a width of the tip. The panel includes a recess into which the movable member extends, and the recess includes an inwardly-extending nook. The inwardly-extending nook includes the first surface of the panel, and in the engaged position, the movable member positioned within the inwardly-extending nook and against the first surface of the panel.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The aspects of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
The door/window system 100 is not limited in the manner in which the panel 110A, 110B moves relative to the frame 120. For example, the panels 110A, 110B may pivot relative to the frame 120. In certain aspects of the door/window system 100, however, either one or both of the panels 110A, 110B may move relative to the frame 120 along a plane parallel to a longitudinal axis of one of the surfaces (e.g., the header 130, jambs 140, or sill 150) of the frame 120 and/or substantially along a plane defined by the panel 110A, 110B. In still further aspects of the door/window system 100, one or more of the panels 110A, 110B can move relative to the frame 120 in multiple manners (e.g., pivoting relative to the frame 120 and sliding relative to the frame 120).
The frame 120 may include a header 130, jambs 140, and a sill 150. A header 130 is a structural member that spans an upper portion of the window/door opening. Jambs 140 are the outermost vertical side members of the frame 120. A sill 150 is a threshold or structural member that spans a lower-most portion of the window/door opening. As recognized by those skilled in the art, different terms may also be associated with the above-structure identified as the header 130, jambs 140, and sill 150.
Each panel 110 may include a sash 160 that surrounds a pane 170. The pane 170 is not limited as to a particular material. For example, the pane 170 may be translucent, such as glass or plastic, opaque, such as with wood or metal, or any combination thereof. The sash may include a header rail 175, jamb or stile rails 180, and a sill rail 185. As recognized by those skilled in the art, different terms may also be associated with the structure identified as the header rail 175, the jamb or stile rail 180, and sill rail 185. The respective rails of the panels 110A, 110B that adjoin one another when the door/window system 100 is closed are also known as meeting rails 190A, 190B.
The sealing system 200 (see
Additionally, although the present door/window system 100 is described herein with particular types of sealing systems 200 being positioned in particular locations, the door/window system 100 is not limited as to a particular type of sealing system 200 or a particular location of the sealing system 200. For example, a sealing system 200 may be positioned within the frame 120 and/or the sash 160.
To prevent the forced opening of the panels 110A, 110B, the sealing systems 200 are not limited as to a percentage of coverage between particular members of the frame 120 and/or panels 110A, 110B. For example, the sealing systems 200 may only cover a fractional number (e.g., 10%, 50%, 85%) of the length between particular members of the frame 120 and/or panels 110A, 110B. However, in certain aspects, the sealing systems 200 provide substantially complete coverage between the sash 160 of a panel 110A, 110B and the frame 120 or between the meeting rail 190A of one panel 110A and the meeting rail 190B of another panel 110B. In so doing, the combined sealing systems 200 can provide a seal substantially completely around one or both of the panels 110A, 110B.
Top Sealing Mechanism
Referring to
The active seal 205 operates by having a movable member 210, disposed in one of the meeting rails 190A, 190B of the first or second panels 110A, 110B, engage a stationary or movable portion of the other of the sashes 160. Thus, a movable member 210 may be positioned in either the meeting rail 190A of the first panel 110A or the meeting rail 190B of the second panel 120B. However, in certain aspects of the sealing system 200, as illustrated, the movable member 210 is positioned in the meeting rail 190B of the second panel 110B and engages a stationary face 255 on the meeting rail 190A of the first panel 110A.
In certain aspects of the sealing system 200, the active seal 205 can create a seal 250 between the movable member 210 and the opposing face 255. The movable member 210 and/or opposing face 255 may include passive seals (not shown) on one or both surfaces. The active seal 205 is not limited in the manner by which the movable member 210 engages the opposing face 255. For example, the movable member 210 may operate as a linearly-traveling piston. However, in certain aspects of the active seal 205, the movable member 210 (hereinafter referred to as seal gate 210) pivots about a seal pivot 220. The manner in which the seal gate 210 itself is driven in not limited. For example, the seal gate 210 may be directly driven, for example, at the seal pivot 220. Alternatively, in certain aspects of the active seal, the seal gate 210 is driven using a drive gate 230 that causes the seal gate 210 to rotate about the seal pivot 220.
Although not limited in this manner, the drive gate 230 pivots about a drive pivot 240 and is itself driven by a drive system 300 (see discussion with regard to FIGS. 12A-12C and 13A-13C). By using leverage generated by these inter-engaging levers 210, 230, the active seal 205 is capable of exerting significant force against the meeting rail 190A or 190B. In so doing, a seal 250 between the movable member 210 and the opposing face 255 can be created and/or enhanced. Additionally, the active seal 205 can prevent movement of the first panel 110A relative to the second panel 110B or the frame 120. For example, referring to
Side Active Sealing Mechanisms
Referring to
In certain aspects of the sealing system 200, the seal 250 is formed by engagement of the movable member 210 positioned on one of the frame 120 and sash 160 with another feature positioned on the other of the frame 120 and sash 160. However, in certain aspects of the sealing system 200, the movable member 210 is disposed in the frame 120 and engages a portion of the sash 160 of the panel 110A.
Although not limited in this manner, the sealing system 200 may be positioned within jambs 140 of the frame 120, and the movable member 210 is variably extendable through a guide shoulder 145. The guide shoulder 145 extends into a channel 155 of the sash 160 and acts as a guide for the panel 110A as the panel 110A is moved within the frame 120. In extending through the guide shoulder 145, the movable member 210 may engage an inner surface of the channel 155 to form a seal 250 between the movable member 210 within the frame 120 and the sash 160.
Bottom Active Sealing Mechanism
Referring to
The active seal 205 operates by having a movable member disposed in the sill 150 of the frame 120 engage a stationary or movable portion of the sill rail 185 of the first panel 110 or vice-versa. Thus, a movable member 210 may be positioned in either the sill 150 of the frame 120 or the sill rail 185 of the first panel 110A. However, in certain aspects of the sealing system 200, as illustrated, the movable member 210 is positioned in the sill 150 of the frame 120 and engages an inner surface of a recess 135 in the sill rail 185 of the first panel 110A.
The recess 135 can be configured to include an inwardly-extending nook 137 and a complementing outwardly-extending shoulder 138, and the movable member 210 includes a tip 271 and a tail 273. As a drive member 270 positioned against the movable member 210 extends upward, the movable member 210 rotates about a lip 275 of the sill 150. Upon the movable member 210 being positioned within the recess 135 and the drive member 270 engaging the movable member 210, the tip 271 of the movable member 210 is driven into the nook 137 (see
The movable member 210, as illustrated, is shown to be floating (i.e., not positively connected) between the drive member 270 and the lip 275 of the sill 150. Alternatively, the movable member 210 may have a positive connection via, for example, a hinge, between either the drive member 270 or the sill 150. Although the movable member 210 floats between the drive member 270 and the lip 275, the movable member 210 is prevented from being removed by being passively attached to the drive member 270 and lip 275 at a neck between the tail 273 and the tip 271 of the movable member 210. The greatest distance between closest portions of the drive member 270 and the lip 275 along any position during the drive members 270 movement is smaller than either the width of the tail 273 or the tip 271. In this manner, the movable member 210 is prevented from being removed despite floating within the sealing system 200.
Although not limited in this manner, the drive member 270 is itself driven by a drive system 300 (see discussion with regard to
Seal Drive Mechanisms
Referring to FIGS. 7, 8A-8B, 9A-9C, 10A-10C, 11A-11C, 12A-12C, 13A-13C, a drive system 300 for use in the door/window system 100 is illustrated. The drive system 300 moves the sealing system 200 from the unlocked configuration (e.g.,
How the drive system 300 moves the sealing system 200 from the unlocked configuration to the locked configuration (and back again) is not limited as to a particular manner and/or device. As can be readily envisioned, the configuration and operation of the drive system 300 may be determined by the configuration and operation of the sealing systems 200. Referring to
Referring to
A transfer device transfers the back and forth motion of the actuator 245 to the movable member 210 thereby moving the movable member 210 from the disengaged/unlocked position to the engaged/locked position and back again. Many types of devices are capable of transferring motion along one direction to another direction, and the transfer device is not limited to any type of device so capable. However, in certain aspects of the drive system 300, the transfer device is a rocker 260 that is pivotally connected to the actuator 245, the movable member 210 and the jamb 140 or sill 150. As the actuator 245 moves back and forth, the rocker 260 pivots about a pivot on the jamb 140 or sill 150 and moves the movable member 210 between the disengaged/unlocked position and the engaged/locked position.
Referring to
Transfer System
Referring to FIGS. 7, 8A-8B, 12A-12C, 13A-13C, a transfer system 290, 295 for use in the door/window system 100 is illustrated. The transfer system 290, 295 transfers motion, such as rotation and linear, from one drive system 300 to another drive system 300. In so doing, the motion generated by a single drive system 300 is capable of driving two or more sealing systems 200 located on different edges of the frame 120, sash 160, and/or meeting rail 190B through the use of one or more transfer systems 290. Alternatively or, in addition to a single drive system 300 driving two or more sealing systems 200, as previously discussed, multiple drive systems 300 can each separately drive one or more sealing systems 200.
Many types of transfer systems are capable of transferring motion from one drive system 300 to another drive system 300, and the door/window system 100 is not limited as to a transfer system 290, 295 so capable. For example, as illustrated in
The actuator 245 works with the transfer systems 290, 295 and the drive systems 300 to transfer motion from one drive system 300 to another drive system 300. Many types of actuators 245 so capable are known, and the door/window system 100 is not limited as to a particular type of actuator 245 so capable. For example, the actuator 245 may be a rigid shaft that rotates or moves linearly. However, in certain aspects of the door/window system 100, the actuator 245 is a chain. In this manner, the actuator 245, as a chain, is both flexible and easily gripped and/or attached to the drive systems 300 and transfer systems 290, 295.
The actuator 245 may be directly attached to the drive systems 300, or, as illustrated, the drive systems 300 may be connected to a chain support 297. In addition to act as a connector between the actuator 245 and the drive system 300, the chain support 297 may also be used to limit the motion of the actuator 245. For example, referring to
Drive Mechanisms
Many types of motive power is capable of being supplied to the drive systems 300, and the door/window system 100 is not limited as to a particular device or manner so capable. For example, referring to
Referring to
The electro-mechanical system 420 is not limited in the manner in which the electro-mechanical system 420 receives electrical power. For example, the electro-mechanical system 420 may receive electrical power from a battery located within the frame 120 or the panel 110. In addition to, or alternatively, the electro-mechanical system 420 may receive electrical power from line voltage via the structure in which the door/window system 100 is installed.
This application is a Continuation-In-Part of U.S. application Ser. No. 11/322,952, filed on Dec. 30, 2005 and a Continuation-In-Part of U.S. application Ser. No. 11/756,957, which is a Continuation-In-Part of U.S. application Ser. No. 11/425,377, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11322952 | Dec 2005 | US |
Child | 11846139 | Aug 2007 | US |
Parent | 11756957 | Jun 2007 | US |
Child | 11846139 | Aug 2007 | US |
Parent | 11425377 | Jun 2006 | US |
Child | 11756957 | Jun 2007 | US |