The present invention generally relates to an active suspension system for a vehicle driver seat, notably in a buss, a heavy vehicle or a specialized use vehicle, for example, an excavating or forestry equipment, and of which the operator or driver is submitted to vibrations.
It is known that irregularities in roads cause the presence of important vibrations in the driver cab for bus drivers or drivers of heavy vehicles such as trucks or specialized use vehicles, for example, excavating or forestry equipment. Exposures of drivers to these vibrations make the exercise of their work uncomfortable and can have a negative influence on their health. In order to reduce the acceleration transmitted to the level of the driver's seat, a suspension is often introduced between the vehicle floor and the seat. The seat suspension must minimize the acceleration transmitted to the driver, but must also maintain minimal the gap in position between the seat and the floor with respect to chosen height adjustment so that the position of the driver with respect to his driving area (steering wheel, pedals . . . ) does not vary too significantly. The design of the suspension must therefore take into account this compromise. Therefore, a very soft suspension will allow a considerable reduction in the level of transmitted acceleration, but at the cost of a significant relative displacement. However, a suspension that is too stiff will maintain a good interaction between the driver and his driving area, but will only offer a weak reduction in the transmitted acceleration.
When taking into account the two above-mentioned requirements, it is possible to determine qualitatively the characteristics that must possess the transmissibility of a suspension in the frequency domain. Given that the positional excitation signal relative to the acceleration excitation signal is more important at lower frequencies, (the amplitude of an harmonic signal with respect to it's second derivative is inversely proportional to the square of the frequency), to be efficient, a seat suspension must have an almost unitary transmissibility at lower frequencies because the influence of the position is dominating at those levels, and almost null at high frequencies where in this case the acceleration transmitted to a seat can be reduced without creating a significant relative displacement between the seat and the floor.
In the case of passive suspensions comprising a spring element and a damping element as illustrated in the
To obtain better performances than that of passive systems, alternative solutions have already been considered.
Thus, semi-active systems have been proposed, in which the functional principle generally consists of modifying in real time the dampening of the suspension according to the magnitudes (position, velocity, acceleration . . . ) that can be measured in real time by sensors placed on the suspension.
Semi-active systems of the type mentioned-above have already been implemented for various applications, in particular for the suspension of seats of vehicles (see patent FR-A-2 761 643; see also the article by Choi, S. B. et al, A semi-active suspension using ER fluids for a commercial vehicle seat, Journal of intelligent material systems and structures, vol. 9—August 1998). Certain studies (see the article of Boileau, P. E. et al, Essais en vibration de sièges pour autobus urbains. Phase 2: Évaluation de sièges candidats, IRSST, June 1997) demonstrate however that their performance in this use is not appreciably better than the performance of passive suspension having fixed dampening.
Active systems have also been proposed, in which the functional principle consists of introducing an actuator that applies in real time a force to the seat in a matter such that the desired response is created at the level of the seat. As opposed to semi-active suspensions that are only dissipative, active systems can inject energy into the system. It is generally admitted that performance of active systems is superior to that of semi-active systems.
Active systems of the type mentioned above have also already been applied, but namely to suspensions of vehicles. These systems have been, in the great majority, put into practice with the help of hydraulic actuators that present several inconveniences, notably of being voluminous, of having a high cost and an excessive consumption of energy and requiring delicate maintenance. These hydraulic actuators can be replaced by electric actuators for vehicle suspensions (see patent U.S. Pat. No. 5,060,959).
Active suspensions have also been considered for seats. These use:
In the majority of the presented solutions and for all systems using an electric actuator, the active suspension is implemented in parallel with a traditional passive suspension (see
The disadvantage related to active suspension systems that are coupled in parallel with a traditional passive suspension, that is to say capable of functioning autonomously and having relatively high values for stiffness and dampening, are the following:
An object of the present invention is to propose an active suspension system which overcomes the above-mentioned problems.
More specifically, the object of the present invention is to provide an active suspension for a vehicle driver seat, such for use on a bus, a heavy vehicle or a specialized use vehicle, for example excavating equipment or forestry equipment, in which the operator or the driver is submitted to vibrations, and that comprises an electric actuator allowing to exert a force between the vehicle floor and the seat. The adjustment of the height of the seat is accomplished by an electric actuator or by an independent mechanical system. A controller generates a force command calculated from measurements obtained by sensors placed at different locations on the suspension. A preferred embodiment of the present invention considers the possibility of placing in parallel to the active suspension, passive suspension elements that offer a low passive transmission path at high frequencies comparatively to a traditional passive suspension that is optimized for a given application. These passive elements allow a reduction in the size of the actuator. In the present invention, the value of the passive elements is such that these cannot ensure alone the role of a suspension for a given application.
A non-restrictive description of preferred embodiments of the invention will now be given with reference to the appended drawings.
In the appended drawing:
Thus an object of the present invention is to provide an active levitation seat in which the seat rest on an electric actuator that can exert the force. A schematic illustration of this active suspension system is illustrated in
The control law is optimized by taking into account the specific characteristics of the measured perturbations at the floor of the vehicle being considered, for example based on the spectral content of the vibrations present at the floor (see
Obviously, vibratory discomfort manifests itself also for drivers of other types of vehicles such as truck or heavy vehicles. The characteristics of the acceleration signal present at the floor varies from one vehicle to another, but the invention can be applied to these different cases.
The present invention therefore proposes a slaved system as illustrated in
This type of passive suspension is characterized among other things by the presence of a spring element having low stiffness and elements in rotational movement, if need be, having low inertia.
The presence of a spring element allows to generate an upwards force in order to completely or partly compensate, the static weight of the operator in the seat. The actuator therefore does not have to support this weight which is taken care of by the spring element, which contributes to the reduction of its size. The apparatus comprising the spring element and fixation means is designated hereafter in this text by the expression compensation system.
The compensation system of the preferred embodiment of the invention is only present to reduce a given value of static weight imposed on the motor. This given value can either include the total static weight of the driver and the part of the seat situated above the suspension, or only a fraction of this static weight. In this last case, the resulting static weight seen by the motor corresponds to the weight of the part of the seat located above the suspension plus the weight of the driver minus the force generated by the compensation system. Always according to this last case, the resultant static weight that the motor sees and must equilibrate, will be little or not variable over the complete range of movement of the suspension.
The option of adding a passive suspension having low transmissibility at high frequencies, in parallel to the actuator, requires that the rotational passive elements have a low inertia. This inertia comprises for example the rotational inertia of the members of a suspension guiding system such as that in the shape of scissors, as seen in passive traditional suspension systems. It can also be question of the inertia of a mechanical transmission system that converts a rotational movement of the actuator into a vertical movement of the seat, in cases where a rotational motor is used as an actuator.
This rotational motor will also offer a minimal rotational inertia in order to optimally reduce the torque required by the motor.
According to a preferred embodiment of the invention, the compensation system is a groupe of tension springs that are installed in the shape of a U. A lateral displacement of the extremities of the spring or springs allows to obtain a reaction force on behalf of the spring which is practically constant whatever the value of the displacement may be; this corresponds to a very low spring stiffness. It is possible to understand better the functioning of this type of springs with the help of the description provided below with respect to the appended figures.
According to another preferred embodiment of the invention, a compression spring system connected to a lever with a cable, is equivalent to a compensation system having low stiffness which provides a torque for balance of the seat-driver load whatever the position of the seat in its suspension movement may be. The torque generated by the spring-lever system is relatively constant due to the fact that the lever, somewhat similar to a quarter of a pulley, possesses a radius which varies in accordance with the rotational angle of the lever, and in which the value of this radius has been designed in order to allow a relatively constant torque whatever the spring compression may be (that is to say whatever the position of the seat in its suspension movement may be). Indeed, the torque generated by the system, which can be calculated as a product of the force generated by the spring multiplied by its lever arm, that is to say the radius of the lever, is therefore relatively constant. It will also be possible to better understand the functioning of this mechanism with the help of the description presented below at example 2.
In accordance with this last preferred embodiment of the invention, it is also possible to render adjustable the compensation system such that the system can balance at all times the weight of the seat and its occupant. In this case, if a conductor having a given weight sits on the seat-suspension system, then the system will balance relatively precisely the value of this driver's weight, and to which is added the weight of the seat, and this in a relatively constant manner over the complete range of motion along the height of the suspension. Therefore, the sizing of the motor can only consider the requirements related to the dynamic forces that it must transmit. One obtains this adjustment in the force or the torque, as a function of the weight of the operator by moving the base of the spring or springs through mechanical, electric or pneumatic means.
According to a preferred embodiment of the invention, it is possible to obtain the functionality of the low stiffness and adjustable compensation system, through pneumatic system means. Indeed, an easy way to obtain a constant force or pressure may consists among other things to connect a pneumatic cylinder having an air chamber, and having a volume much superior than the variations in volume caused by the displacement of the cylinder. Consequently, the force exerted by the cylinder is practically constant no matter what the position of the piston in the cylinder is, since the variations in the volume of air in the complete system are considered to be negligible. The adjustment as a function of the weight of the driver of the reaction force exerted by the cylinder can be accomplished by acting on the fill pressure of the cylinder and chamber system.
The pneumatic cylinder of the preceding preferred embodiment can also be replaced by an air spring. In this last case however, the choice of the air spring is such that it must present a sufficiently constant force over the range of the desired heights when the pressure is maintained almost constant, as described previously. It may also be possible to select an air spring that offers a low stiffness or a low variation in force as a function of the displacement of the seat in the range of the height, without being linked to a chamber.
In accordance with a preferred embodiment of the invention, the height adjustment system is independent from the suspension. A scissor mechanical system is superimposed on the suspension mechanism for adjustment of the height. One of the advantages related to this configuration is that given a break in the suspension or a problem with the actuator, the fall of the seat is limited to the value of the range of motion of the suspension, which represents a much lower value than the range of motion in height.
However, in accordance with another preferred embodiment of the invention, the actuator can be used also as a mechanism for adjustment of the height. In this last case, a security system is provided to stop any fall of the seat in the eventuality of a break or a problem with the actuator for example.
In the case where a rotational electric motor is used, it is necessary to transmit the rotational movement from the motor into the translational movement of the seat. This can be accomplished with different mechanisms such as a rack and pinion, pulleys and toothed transmission belts or with screws and ball nuts. In this last case, the screw is linked to the motor shaft while a ball nut is connected to the element supporting the driver's seat. Therefore, when the motor shaft and the screw connected to it turn in one direction or another, the ball nut which allows a reduction in the friction of the system, as well as the mass supported as linked to this ball nut, will move upwards or downwards.
In the case where the chosen motor is a linear motor, then the translational movement is directly transmitted to the mass being supported, allowing the mass to move upwards or downwards according to the need.
In order to allow the seat to move upwards or downwards without having the actuator being submitted to other strains than those along a vertical axis, a guidance system is used to limit other forces and moments.
In the case where the actuator is a rotational type electric motor, a preferred embodiment of the invention comprises a guidance system comprising an apparatus having pivotally connected members of which the functional principle is presented below and illustrated in the appended drawings.
Also in the case of a rotational electric motor, but also in the case a linear type electric motor, another preferred embodiment of the invention consists in having a guidance system comprising a certain number of vertical members along which linear bearings ensure the displacement of the seat while reducing friction.
A possible example of a preferred embodiment of the invention is illustrated in FIGS. 6 to 9 of the appended drawings. In this example, the seat 25 is mounted on an overall system 1 combining the height adjustment and the suspension mechanism.
Concerning this, one shall note that the height adjustment mechanism is independent of the suspension mechanism. Indeed, the suspension mechanism is “superimposed” on the mechanical system having members or diagonal braces 3 used in the height adjustment mechanism. The height adjustment mechanism also comprises a base 2 fixed to the floor and an element 4 parallel to the base 2. These two elements 2 and 4 are connected between themselves through the cross member or diagonal brace system 3 mentioned above which allows an elevation of the element 4 with respect to the base 2 when it is activated.
More particularly, the drive pinion 20 of the shaft 17 of the rotational electric motor 16 is connected to the pinion 21 of the ball screw 19 with a transmission belt 18. The bearing 22 as well as the ball nut 23 are two fixation points for the ball screw 19. The bearing 22 is connected to a top element 4 of the height adjustment mechanism with a fixation element (not illustrated), while the ball nut 23 is connected to the element 5 on which the seat 25 is fixed. Therefore, when the shaft 17 of the motor 16 turns in one direction or the other, the screw 19 turns also in a manner such that the ball nut 23 moves upwards or downwards. Therefore, through the same movement of the ball nut 23, the element 5 as well as the seat 25 which is fixed to the element moves upwards or downwards. Inversely, a vertical motion of the seat 25 and of the element 5 on which it is fixed, will produce a rotation of the shaft 17 of the electric motor 16.
In order to allow the seat 25 to move upwards and downwards without the motor 16 acting as an actuator being submitted to forces other than those generated along the vertical direction, a guidance system is used to limit forces and moments along other directions. In the preferred embodiment shown in
Because of the light horizontal displacement mentioned above of the top element 5 of the suspension, it is important that the ball screw 19 is able to pivot in the plan of the figure, at the same time as its two fixation points, the bearing 22 and the ball nut 23. Therefore, the bearing 22 can pivot with respect to a fixation element (not shown) that relates it to the top element 4 of the height adjustment system. Moreover, the ball nut 23 is pivotally connected to the top element 5 of the suspension system to which it is connected. The electric motor 16 being interconnected with element 4, the transmission belt 18 will be submitted to a light bending due to the pivoting of the ball screw 19 as described previously.
As shown in
The spring system 24 shown in this preferred embodiment of the invention comprises essentially one or several tension type springs that are installed in a U shape, and in which one extremity is connected to the top element 4 of the height adjustment system, while another extremity is connected to the top element 5 of the suspension system. A lateral displacement, that is to say a vertical displacement of the extremities of the spring or springs 24 allows one to obtain a reaction force generated by the spring which is practically constant whatever the value of the displacement may be. This reaction force has therefore the effect of decreasing the apparent weight that the motor 16 must lift.
An optical encoder integrated to the motor 16 casing is used as a sensor to detect the relative position of the seat with respect to the chosen adjustment in height. This optical encoder is connected to an electronic circuit integrated into the casing 26 through isolated electrical lines located in a cladding 27. The casing 26 comprises the control electronics of the compensator allowing the calculation of the force that must be generated by the motor as a function of the relative position provided by the encoder. The casing 26 comprises also the electronics required for the production of the force generated by the motor previously mentioned. The motor 16 windings are connected to the electronic circuit integrated in the casing 26 through other electrical isolated lines and are situated in the cladding 27. The electronic circuit integrated in the casing 26 is fed by the vehicle battery through isolated electrical lines 28.
A second example of an embodiment of the invention is illustrated in FIGS. 10 to 12. This example, which is described in the following paragraphs, presents the base of the seat shown in
As in the previous example, the height adjustment mechanism is independent of the suspension mechanism. The height adjustment mechanism comprises of a scissor-shaped system having pivotally connecting members 30, 31 and 32. These members are the link between the base 33 and element 34. The adjustment in height that allows an elevation of the element 34 with respect to the base 33, is accomplished through relative displacement of members 30, 31 and 32. The displacement of these members 30, 31 and 32 is controlled by mechanical or electrical means not showed.
The suspension stage is located between element 34 and element 35. Element 35 of the suspension represents the structural element on which are fixed the components of the back 63 and the bottom 64 of the seat 29 (the base cushion is not shown).
In this preferred embodiment, the guidance in the movement of the suspension, that is the vertical movement of the support 35 with respect to the element 34 is accomplished through the movement of linear bearings 36 along rails 37. The linear bearings 36 are integral to the support 35, and the rails 37 are integral to the element 34, or vice-versa. These guidance elements ensure that the internal elements of the suspension (motor, transmission and compensation systems) shown in FIGS. 10 to 12 and described below, do not have to support forces in directions different then that of the vertical direction.
This preferred embodiment of the invention shown in
The adjustment as a function of the weight of the driver, of the reaction force exerted by the air spring, can be accomplished through control of the filling pressure of the air spring and chamber system. This can be accomplished for example through the use of mechanisms not shown used to collect information on the weight of the driver and the use of valves to control the desired pressure. Of course, a cylinder can be used instead of the air spring 51.
When the support 52, on which the feet is fixed (not shown) moves upwards and downwards to allow an attenuation in the vibrations and the shocks transmitted by the floor of the vehicle, the compressed length of the spring 53 varies, which allows the spring 53 to generate a force proportional to its compressed length (F=−kx). An extremity of the spring 53 is connected to a point of the lever 55 through the means of a cable and a fixation element 57 located at the extremity of the spring. The other extremity of the spring 53, held back by a fixation element 62 is integral to the base not shown located below the suspension mechanism. The radius of the lever 55 varies with its angular position. This radius which represents the lever arm generated by the spring 53, is calculated such that the cable 56 which transmits the force of the spring 53 produces a torque which is relatively constant with respect to the pivot 58 of the lever 55. The pivot 58 is also integral to another lever 59, having a constant radius, to which is fixed the extremity of a second cable 60. The other extremity of this cable 60 is anchored to the base of a vertical member 61 which is integral to a support 52 of the seat not shown. The weight of the driver and of the seat fixed on the support 52 therefore generates a torque with respect to the pivot 58, via the force transmitted to the cable 60 which acts with the lever arm equal to the radius of the lever 59. Since this radius is constant no matter what the angular position of the shaft may be, the torque created by the load of the driver and the seat is therefore constant over the complete range of motion of the suspension. This torque load submitted at the pivot 58 is therefore balanced by the torque generated by the spring 53. Of course, a similar mechanism can also be devised by an extension spring instead of a compression spring.
In accordance with the preferred embodiment shown in this example, it is also possible to make adjustable the force generation system or the torque generation system which is relatively constant in a manner such that it can always balance the weight of the seat and its occupant. This can be accomplished simply by positioning the fixation element 62 such that the compressed length of the spring 53 is changed and therefore the torque generated by the spring is changed also. The displacement of the fixation element 62 can be accomplished through a pneumatic, electric or other mechanism following the detection of the weight of the operator-seat to be balanced. The detection of this weight can be made with the help of a sensor, with a load cell or any other mechanism known for this task.
Number | Date | Country | Kind |
---|---|---|---|
2,420,324 | Mar 2003 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA04/00321 | 3/3/2004 | WO | 5/30/2006 |