Active shimmy mitigation

Information

  • Patent Grant
  • 8831854
  • Patent Number
    8,831,854
  • Date Filed
    Monday, August 16, 2010
    14 years ago
  • Date Issued
    Tuesday, September 9, 2014
    10 years ago
Abstract
A system mitigates shimmy of a wheel of a vehicle. The wheel is rotatable about an axis and is steerable by varying a steering angle of the wheel about a steering axis. The system includes a shimmy detection device that detects whether an oscillation/shimmy of the steering angle of the wheel occurs. The system also includes a brake that applies a braking load to decelerate rotation of the wheel about the axis. Furthermore, the system includes a controller that controls the brake to selectively apply the braking load to reduce the oscillation/shimmy of the steering angle of the wheel.
Description
FIELD

The following relates to a vehicle and, more particularly, relates to a system for active shimmy mitigation of a vehicle.


BACKGROUND

Vehicle shimmy can occur in the steerable wheels of a vehicle. For instance, the steerable front wheels of a vehicle can shimmy (i.e., inadvertently oscillate, turning left and right repeatedly) due to vehicle damage, due to particular road conditions, etc. This type of shimmy event can reduce ride comfort and quality.


Typically, vehicle steering systems include mechanical, viscous or passive-element dampers to reduce vehicle shimmy. However, these dampers can wear over time or can be damaged, for instance, if the vehicle drives over particularly rough terrain.


SUMMARY

A system for mitigating shimmy of a wheel of a vehicle is disclosed. The wheel is rotatable about an axis and is steerable by varying a steering angle of the wheel about a steering axis. The system includes a shimmy detection device that detects whether an oscillation/shimmy of the steering angle of the wheel occurs. The system also includes a brake that applies a braking load to decelerate rotation of the wheel about the axis. Furthermore, the system includes a controller that controls the brake to selectively apply the braking load to reduce the oscillation/shimmy of the steering angle of the wheel.


Moreover, a method of reducing shimmy of a wheel of a vehicle is disclosed. The wheel is rotatable about an axis, and the wheel is steerable by varying a steering angle of the wheel about a steering axis. The method includes detecting an oscillation/shimmy of the steering angle of the wheel. The method also includes selectively applying a braking load to decelerate rotation of the wheel about the axis and to reduce the oscillation/shimmy of the steering angle of the wheel.


Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating preferred embodiments of the present disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a schematic view of a system for mitigating shimmy of a vehicle according to various exemplary embodiments of the present disclosure;



FIG. 2 is a schematic view of a left front wheel of the vehicle of FIG. 1;



FIG. 3 is a graphical representation of a shimmy event and operation of the system of FIG. 1 according to various exemplary embodiments;



FIG. 4 is a graphical representation of a shimmy event and operation of the system of FIG. 1 according to various additional exemplary embodiments;



FIG. 5 is a graphical representation of a shimmy event and operation of the system of FIG. 1 according to various additional exemplary embodiments; and



FIG. 6 is a flowchart illustrating operation of the system of FIG. 1 according to various additional exemplary embodiments.





DETAILED DESCRIPTION

The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.


Referring initially to FIG. 1, a vehicle 10 is illustrated. The vehicle 10 can include a front, left wheel 12a, a front, right wheel 12b, a rear, left wheel 12c, and a rear, right wheel 12d. In some embodiments, the rear wheels 12c, 12d are not steerable, and the front wheels 12a, 12b are steerable. More specifically, in some embodiments, a driver (not shown) can selectively steer the front wheels 12a, 12b (e.g., turn the wheels 12a, 12b left and right relative to the rest of the vehicle 10) by turning a steering wheel (not shown) inside the passenger compartment of the vehicle 10. As such, the steering angle of the wheels 12a, 12b can be varied as will be discussed in greater detail below.


Also, the front wheels 12a, 12b can be operably coupled to the steering wheel by mechanical linkages (e.g., rack and pinion system) and/or via electronic connections to define a steer-by-wire system, a fully mechanical steering system, or any other suitable type of steering system. Moreover, the front wheels 12a, 12b can be operably coupled together such that the front wheels 12a, 12b turn in tandem to cooperatively steer the vehicle 10.


The vehicle 10 further includes one or more sensors. The sensors can detect any one of various characteristics of the vehicle 10. For instance, the sensor can detect a change in a steering component, a tire pressure of the wheels 12a-12d, an ambient temperature in which the vehicle 10 is operating, an operating time of the vehicle 10, a wet or dry road condition, etc. to provide a shimmy mitigation braking signal based on vehicle shimmy history and vehicle component conditions and will be described in greater detail below. In another embodiment, one or more sensors detect vehicle acceleration in one or more directions, such as longitudinal, lateral and yaw. This data can be utilized to determine if a shimmy event is the result of vehicle operator actions, a vehicle component, or other driving conditions.


The vehicle 10 can also include brakes 22a, 22b. For instance, the vehicle 10 can include a left front brake 22a and a right front brake 22b. The left front brake 22a can be operably coupled to the left front wheel 12a for selectively applying a braking load thereto, and the right front brake 22b can be operably coupled to the right front wheel 12b for selectively applying a braking load thereto. Accordingly, the brakes 22a, 22b can selectively decelerate rotation of the respective wheels 12a, 12b.


The brakes 22a, 22b can include brake calipers, rotors, drum brakes, or any other suitable brake components. Also, the brakes 22a, 22b can be part of an anti-lock brake system (ABS) and/or an electronic braking control system (EBC), which controls the brakes 22a, 22b for reducing locking of the wheels 12a, 12b, improving stability of the vehicle 10, etc. Furthermore, it will be appreciated that the vehicle 10 can include brakes that are operably coupled to the rear wheels 12c, 12d.


Moreover, the vehicle 10 can include a shimmy mitigation system 14 for mitigating shimmy of the front wheels 12a, 12b. It will be appreciated that shimmying of the front wheels 12a, 12b can be at least in part due to an oscillation of the steering angle of the wheels 12a, 12b, as will be discussed in greater detail below. Thus, during a shimmy event, both the front wheels 12a, 12b can inadvertently oscillate, turning left and turning right.


In the embodiments illustrated, the vehicle 10 is a passenger car with four wheels 12a-12d. However, it will be appreciated that the vehicle 10 can be of any other type (truck, motor home, etc.) with any suitable number of wheels 12a-12d without departing from the scope of the present disclosure. It will also be appreciated that the rear wheels 12c, 12d can be steerable in some embodiments, and the system 14 can be adapted for mitigating shimmy of the rear wheels 12c, 12c without departing from the scope of the present disclosure.


Referring now to FIG. 2, the steerable front wheels 12a, 12b will be discussed in greater detail. Although only the left front wheel 12a is illustrated, it will be appreciated that the right front wheel 12b can operate in a substantially similar manner.


The wheel 12a can be rotatable about an axis X (i.e., a central or horizontal axis). For instance, assuming that the vehicle 10 is a front wheel drive vehicle, a drive load FD (torque) can drivingly rotate the wheel 12a about the axis X to thereby propel the vehicle 10. Also, when the brake 22a is applied, a braking load FB (brake torque) is applied to decelerate rotation of the wheel 12a and to decelerate the vehicle 10.


Furthermore, the wheel 12a can be steerable by rotating the wheel 12a about a steering axis As. (The steering axis AS can extend normal to the page, substantially normal to the page, or otherwise out of the page of FIG. 2.) When the wheel 12a is steered and rotated about the steering axis AS, a steering angle α is varied. The steering angle α has been labeled in FIG. 2 such that, when the wheel 12a is steered straight ahead (the reference direction), the steering angle α is zero degrees, when the wheel 12a turns to the left, the steering angle α is positive, and when the wheel 12a turns to the right, the steering angle α is negative.


The front wheels 12a, 12b (FIG. 1) of the vehicle 10 can be coupled so as to steer in tandem. As such, the steering angle α for both front wheels 12a, 12b can be substantially equal.


During a shimmy event, the steering angle α of the wheels 12a, 12b oscillates back and forth. For instance, in some instances, the steering angle α repeatedly oscillates between positive and negative values such that the wheels 12a, 12b inadvertently turn left and right, respectively.


It will be appreciated that the steering angle α in FIG. 2 has been labeled in the above-described manner for purposes of discussion only. The steering angle α could be positive when turning to the right, and the steering angle α could be negative when turning to the left. Also, the reference direction at which the steering angle α is zero can be any suitable direction other than straight ahead travel of the vehicle 10.


Still referring to FIG. 2, it will be appreciated that the wheel 12a can have a scrub radius Rs defined between the steering axis As and the center C of the wheel 12a. The scrub radius Rs can be of any suitable value, positive or negative.


It will be appreciated that because the braking load FB acts substantially at the center C of the wheel 12 and because there is a moment arm (the scrub radius Rs) between the braking load FB and the steering axis As, application of the braking load FB biases and rotates the wheel 12a about the steering axis As.


As will be discussed in greater detail, the shimmy mitigation system 14 can rely on this phenomenon to reduce shimmy of the wheels 12a, 12b. For instance, during the shimmy event, when the wheel 12a turns toward the right (negative or less positive steering angle α), one or more of the brakes 22a, 22b can be selectively applied to bias the wheel 12a toward the left (positive or less negative steering angle α), and vice versa. Accordingly, shimmying can be mitigated or damped. It will be appreciated that the system 14 can be used in addition to or instead of conventional mechanical, viscous or passive-element shimmy dampers.


Referring back to FIG. 1, the system 14 will be described in greater detail. As shown, the system 14 can include a shimmy detection device 18 that is operably coupled to the front wheels 12a, 12b for detecting whether an oscillation/shimmy of the steering angle α occurs. In some embodiments, the shimmy detection device 18 can include a steering angle sensor 20. The steering angle sensor 20 can be of any suitable type for detecting the steering angle of the wheels 12a, 12b. Also, and in some embodiments, the steering angle sensor 20 can be directly and operably coupled to a steering wheel of the vehicle (not shown), such that the steering angle sensor 20 is a steering wheel angle sensor 20, including those of a largely conventional type.


In some embodiments, the shimmy detection device 18 can determine a magnitude of the steering angle α without determining whether the steering angle α is positive or negative (i.e., without determining whether the wheel is turning left or right). In other embodiments, the shimmy detection device 18 can determine the magnitude and the direction of the steering angle α. In some embodiments, the shimmy detection device 18 can also include an accelerometer in addition to the steering wheel angle sensor 20 to determine the magnitude and direction of the steering angle α.


The system 14 can further include a controller 24 in communication with the sensors. The controller 24 can be part of, in communication with, or distinct and separate from an engine control unit (ECU) or other control system of the vehicle 10. Furthermore, the controller 24 can be in communication with the brakes 22a, 22b for selectively applying the brake loads FB to the wheels 12a, 12b. Also, the controller 24 can include a hydraulic control unit for controlling and modifying fluid pressure to thereby control the brakes 22a, 22b.


The controller 24 can include and/or be in communication with a processor 26 that performs calculations for mitigating the shimmy event based on sensor data and other instructions as will be discussed. The processor 26 can have any suitable processing speed and can be of any suitable type. The controller 24 can be configured to make a determination if a shimmy event is the result of vehicle operator actions, a vehicle component, or other driving conditions.


The controller 24 can also be in communication with and/or include a memory module 28. The memory 28 can be of any suitable capacity, and can be of any suitable type, such as random access memory (RAM) and/or read only memory (ROM). As will be discussed in greater detail below, the memory 28 can be used for storing look-up tables or other data characterizing previously tested shimmy conditions. The memory 28 can also be used for storing data gathered during shimmy events that occur during actual use of the vehicle 10.


In addition, the system 14 can include an alarm 30. The alarm 30 can be of any suitable type for indicating that a shimmy event is occurring and/or has occurred. It will be appreciated that the alarm 30 can be a visual alarm (e.g., light, lamp, etc.), an audible alarm, a tactile alarm (e.g., a vibrating surface, etc.), or any other suitable type.


Now referring to FIG. 3, operation of the shimmy mitigation system 14 will be described in greater detail. As shown in FIG. 3, the shimmy event can produce a wheel oscillation/shimmy represented as curve 36, wherein the front wheels 12a, 12b oscillate and repeatedly turn left and right. (As shown, the X-axis represents time, and the Y-axis represents a steering angle detected by the sensor 20, wherein a positive steering angle +α represents turning to the left and a negative steering angle −α represents turning to the right.) As shown, the oscillation 36 can be substantially sinusoidal; however, it will be appreciated that the oscillation 36 can have any non-sinusoidal waveform.


Also, the shimmy mitigating system 14 can operate according to the braking signal 38 to mitigate the shimmy event. (The braking signal 38 can represent the direction of bias applied to the wheels 12a, 12b by the brake(s) 22a, 22b.) As shown, the braking signal 38 can be substantially opposite the wheel oscillation 36 during particular time intervals. For instance, in the embodiment of FIG. 3, the magnitude (amplitude) of the braking signal 38 is approximately equal to negative one (−1) times the detected magnitude of the oscillation 36.


More specifically, the shimmy detection device 18 can detect the shimmy event occurring between the time period T0 to T2. Also, the shimmy detection device 18 can detect particular characteristics of the shimmy event and/or the wheel oscillation 36 (e.g., the frequency, the amplitude, the number of the oscillations, etc.). The shimmy detection device 18 can communicate this information to the controller 24.


Then, the controller 24 can refer to lookup tables or the like within the memory module 28 to determine a target braking signal 38 (i.e., target braking load, target braking time interval, etc.) that will substantially mitigate the particular oscillation 36. In other embodiments, the processor 26 calculates the target braking signal 38 that will mitigate the oscillation 36. Once the braking signal 38 is determined, the controller 24 can control one or more of the brakes 22a, 22b (here, the right front brake 22b) to selectively apply the braking load FB at the particular time intervals (TB1, TB2, TB3, TB4) to mitigate the shimmy.


Accordingly, the wheels 12a, 12b turn left during the time interval between T0 and T1, the wheels 12a, 12b turn right between T1 and T2, and so on. Then, as represented by braking signal 38, the right front brake 22b is applied between T2 and T3 (time interval TB1) Accordingly, although the wheels 12a, 12b are oscillating to the left during this time interval, the braking force FB from the right front brake 22b biases the wheels 12a, 12b to turn to the right to reduce the shimmying. Subsequently, the right front brake 22b can be applied during the time intervals TB2, TB3, and TB4 (i.e., when the wheels 12a, 12b are turned left). As shown, the shimmying can eventually be reduced and/or completely damped out.


In the embodiment of FIG. 3, only one of the brakes, the right front brake 22b, is applied at predetermined time intervals to mitigate the shimmy event. However, it will be appreciated that the left front brake 22a could be applied instead of the right front brake 22b in the embodiment of FIG. 3 to mitigate the shimmy event. More specifically, the left front brake 22a can be applied during the time intervals T2-T4-T3, T6-T5, T8-T7 in order to mitigate the shimmy event.


Furthermore, in some embodiments, both of the left and right front brakes 22a, 22b can be alternatingly applied to mitigate the shimmy event. More specifically, as shown in the embodiment of FIG. 4, the right front brake 22b can be applied during the time interval T3-T2, the left front brake 22a can be applied during the time interval T4-T3, and so on, until the shimmy event represented by the oscillation 36′ is damped and/or substantially reduced to zero.


Thus, the shimmy mitigation system 14 can detect that the shimmy event is occurring. Then, the system 14 can determine which of the left or right front brakes 22a, 22b to operate and when to apply the brake(s) 22a, 22b for reducing the shimmy event.


It will be appreciated that the embodiments in FIGS. 3 and 4 can be implemented for reducing shimmy when the shimmy event is in phase with the shimmy detection device 18. However, the system 14 can be operated for mitigating shimmy when the wheel oscillation and the shimmy detection device 18 are out of phase, as represented in the embodiment of FIG. 5. More specifically, if the shimmy detection device 18 relies on a steering wheel angle sensor 20 that detects the angle of the steering wheel, the oscillation/shimmy of the steering wheel and the wheels 12a, 12b may be out of phase (i.e., opposite each other). Even in this out of phase condition, the system 14 can mitigate shimmy as shown in FIG. 5.


Specifically, the shimmy event is detected between the time interval T2-T0, and the controller 24 outputs a first control signal to cause the right front brake 22b to be applied between the time interval T3-T2 and also between the time interval T5-T4. Then, the shimmy detection device 18 detects that the shimmying increases (i.e., the oscillation 36″ increases) due to the application of the right front brake 22b during these time intervals. As shown, the shimmy detection device 18 detects that the shimmying is increasing between the time intervals T7-T2. As a result, the controller 24 can output a second, corrective control signal that is time shifted by one half period (180 degrees) to cause the right front brake 22b to apply the respective braking load during the time interval T8-T7, during the time interval T10-T9, during the time interval T12-T11, and so on.


It will be appreciated that, in the embodiments of FIG. 5, the system 14 applies only one brake 22a, 22b at a time to mitigate the shimmy event (similar to the embodiment of FIG. 3). However, it will be appreciated that the system 14 can alternatingly apply the brakes 22a, 22b to mitigate the shimmy event (similar to the embodiment of FIG. 4).


Referring now to FIG. 6, additional details of the operation of the shimmy mitigation system 14 will be discussed. As shown, the method can begin in decision block 60, in which it is determined whether the shimmy event (i.e., underdamped oscillation/shimmy of the steering angle α) is occurring. As shown, the method can repeatedly monitor and determine whether the shimmy event is occurring. If the shimmy event is detected (decision block 60 answered affirmatively), then the alarm 30 can be operated 60 (i.e., light, noise, etc. is emitted) to thereby indicate to the user that the shimmy event is occurring. In some embodiments, the alarm 30 is not operated unless the shimmy event occurs multiple times and/or is above a predetermined threshold. Furthermore, in some embodiments, the alarm 30 is operated if the shimmy event occurs only once, and the alarm 30 eventually turns off if there are no further shimmy events during a predetermined time.


Then, in step 64 (FIG. 6), the controller 24 determines the target braking signal 38, 38′, 38″ (FIGS. 3-5) according to the shimmy detected in decision block 60. More specifically, the controller 24 can determine whether the left or right brake 22a, 22b should be applied, the target braking load FB for the brake(s) 22a, 22b, and the target time interval TB during which to apply the braking loads FB. In embodiments in which the vehicle 10 includes steerable wheels other than the front wheels 12a, 12b, such as steerable rear wheels 12c, 12d, step 64 can include determining a target braking signals 38, 38′, 38″ for those wheels 12c, 12d.


Next, in decision block 70, it is determined whether the target braking load FB will exceed any predetermined braking limit FMAX. If the target braking load FB does not exceed the limit FMAX (decision block 70 answered negatively), the controller 24 outputs a corresponding target braking control signal to the left front brake 22a and/or the right front brake 22b in step 74. However, if the target braking load FB exceeds the limit FMAX (decision block 70 answered affirmatively), then, in step 72, the controller 24 adjusts the braking load FB and the time interval TB for applying the braking load FB. More specifically, the controller 24 can decrease the target braking load FB and increase the target time interval TB. Then, the controller 24 outputs the corresponding target braking control signal in step 74.


Next, in decision block 76, it is determined whether the control signal transmitted in step 74 is reducing the wheel oscillation. If the oscillation is increasing (decision block 76 answered negatively), then the target braking signal (i.e., target braking loads FB, the target time interval TB) are adjusted in step 78. In another embodiment, if only one brake 22a, 22b is being applied, then in step 78, the target braking signals are adjusted for application of the brake 22a, 22b by time shifting the original braking signal by one half period (see FIG. 5). Otherwise, if both brakes 22a, 22b are being alternately applied to reduce the oscillation, then, in step 78, the target time intervals for applying the braking loads are shifted to thereby reduce the shimmying. It will also be appreciated that the magnitudes of the target braking load FB and the target time interval TB can be adjusted in step 78 depending on the detected oscillation event. After step 78, the system 14 loops back to decision block 70, which is discussed above.


As shown in FIG. 6, if the shimmying or oscillation is being reduced (decision block 76 answered affirmatively), then data is saved in the memory module 28 in step 80. This stored data can be analyzed at a later time, for instance, to determine whether the vehicle 10 is damaged, whether the vehicle 10 needs to be repaired, and/or whether any additional shimmy dampers (e.g., mechanical, viscous or passive-element dampers) need to be replaced and/or repaired.


As mentioned above, the system 14 can include a sensor 29 that can detect a characteristic of the vehicle 10, such as the tire pressure, the ambient temperature, wet/dry road conditions, etc. In some embodiments, data from the sensor 29 can also be stored in the memory module 28, and the shimmy/oscillation data stored in memory can be correlated therewith to detect certain trends and changed components (e.g. tire pressure, wear) of the vehicle 10. For instance, this correlated data can be used to determine the conditions in which the vehicle 10 oscillates/shimmies above a certain threshold, etc. The controller 24 can rely on this correlated data and history to learn and adjust a target braking signal for reducing such oscillation/shimmy in the future.


Accordingly, the shimmy mitigation system 14 can provide several advantages. For instance, the system 14 can significantly improve operation of the vehicle 10 without significantly increasing costs. For instance, the system 14 can be relatively inexpensive because it can incorporate existing hardware of the vehicle 10, and the system 14 can be implemented largely by software and programming included on the controller 24. For instance, the existing electronic brake control system, traction control system, and/or steering angle sensor 20 of the vehicle 10 can be employed in the shimmy mitigation system 14 described above, and the existing ECU of the vehicle 10 can be programmed to provide the functionality described above. Accordingly, the system 14 can significantly improve the vehicle 10 without having to significantly increase material costs, manufacturing time, etc.


Furthermore, the system 14 can be redundant to and act as a failsafe system for other conventional shimmy dampers (e.g., mechanical, viscous or passive-element dampers). As such, the system 14 can compliment these dampers. Also, the system 14 can be used to diagnose any existing problems in the other shimmy dampers, as described above. Also, if there is oscillation/shimmy that is below a predetermined threshold necessary for activating the conventional shimmy dampers, the system 14 can be used to detect this low-level oscillation/shimmying, and data representative of this oscillation/shimmy can be recorded by the system 14 for operator notification and future analysis.


The description of the present disclosure is merely exemplary in nature and, thus, variations that do not depart from the gist of the present disclosure are intended to be within the scope of the present disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure.

Claims
  • 1. A method of reducing shimmy of a wheel of a vehicle, the wheel including a wheel brake and being rotatable about a central axis, steerable by varying a steering angle of the wheel about a steering axis that is arranged orthogonal to the central axis, and having either a positive or a negative scrub radius, the method comprising: detecting an oscillation/shimmy of the steering angle of the wheel about the steering axis in a first direction; andselectively applying a braking load with the wheel brake to decelerate rotation of the wheel about the central axis, and due to the wheel having the scrub radius, bias the wheel about the steering axis in a second direction opposite to the first direction to counteract the oscillation/shimmy of the steering angle of the wheel about the steering axis:wherein selectively applying the braking load includes: outputting a first signal to selectively apply a first braking load,detecting whether the first braking load increases an amplitude of the oscillation/shimmy of the steering angle, andoutputting a second signal to selectively apply a second braking load to counteract the increased amplitude of the oscillation/shimmy, the corrective signal being different from the initial signal.
  • 2. The method of claim 1, further comprising determining a time interval for applying the braking load necessary for reducing the oscillation/shimmy, and wherein selectively applying the braking load includes selectively applying the braking load approximately during the time interval.
  • 3. The method of claim 1, further comprising determining a target magnitude of the braking load for reducing the oscillation/shimmy, and wherein selectively applying the braking load includes selectively applying the braking load approximately equal to the target magnitude.
  • 4. The method of claim 1, wherein detecting the oscillation/shimmy includes detecting turning of the wheel in a first direction about the steering axis, and wherein selectively applying the braking load includes selectively applying the braking load to bias turning of the wheel in a second direction about the steering axis that is opposite the first direction.
  • 5. The method of claim 1, further comprising: determining a target time interval for applying the braking load and determining a target magnitude of the braking load for reducing the oscillation/shimmy; anddetermining if the target magnitude is greater than a predetermined braking limit of the wheel, andwherein selectively applying the braking load includes selectively applying the braking load during an actual time interval and at an actual magnitude, wherein the actual time interval is greater than the target time interval, and wherein the actual magnitude is less than the target magnitude.
  • 6. The method of claim 1, further comprising outputting an alarm signal to indicate the oscillation/shimmy of the steering angle of the wheel.
  • 7. The method of claim 1, wherein the vehicle includes a first wheel and a second wheel that are cooperatively steerable to steer the vehicle, wherein the first wheel includes a first brake, and wherein the second wheel includes a second brake, and further comprising determining which of the first and second brakes to selectively apply the respective braking load to reduce the oscillation/shimmy.
  • 8. The method of claim 7, wherein selectively applying the braking load includes alternatingly applying the respective braking load to the first and second brakes.
  • 9. The method of claim 7, wherein selectively applying the braking load includes applying only one of the respective braking load to the first and second brakes.
US Referenced Citations (97)
Number Name Date Kind
4619338 Higashi et al. Oct 1986 A
4645025 Ohe et al. Feb 1987 A
4686438 Ohe et al. Aug 1987 A
4715461 Shimizu Dec 1987 A
4719445 Fremd Jan 1988 A
4792008 Hosotani Dec 1988 A
5386372 Kobayashi et al. Jan 1995 A
5406834 Taniguchi Apr 1995 A
5473231 McLaughlin et al. Dec 1995 A
5504403 McLaughlin Apr 1996 A
5816587 Stewart et al. Oct 1998 A
5919241 Bolourchi et al. Jul 1999 A
5927429 Sugino et al. Jul 1999 A
6013994 Endo et al. Jan 2000 A
6062123 Obata et al. May 2000 A
6122579 Collier-Hallman et al. Sep 2000 A
6131693 Mukai et al. Oct 2000 A
6161068 Kurishige et al. Dec 2000 A
6176341 Ansari Jan 2001 B1
6263738 Hogle Jul 2001 B1
6326753 Someya et al. Dec 2001 B1
6360151 Suzuki et al. Mar 2002 B1
6370459 Phillips Apr 2002 B1
6454303 Ashtiani et al. Sep 2002 B2
6464050 Smith et al. Oct 2002 B2
6502025 Kempen Dec 2002 B1
6547043 Card Apr 2003 B2
6548969 Ewbank et al. Apr 2003 B2
6615124 Adachi Sep 2003 B1
6622576 Nakano et al. Sep 2003 B1
6622813 Matz et al. Sep 2003 B2
6647329 Kleinau et al. Nov 2003 B2
6681165 Shibasaki et al. Jan 2004 B2
6681883 Loh et al. Jan 2004 B2
6687588 Demerly et al. Feb 2004 B2
6725965 Kogiso et al. Apr 2004 B2
6736604 Okada et al. May 2004 B2
6752425 Loh et al. Jun 2004 B2
6827177 Asada et al. Dec 2004 B2
6856869 Takahashi Feb 2005 B2
6927548 Nishizaki et al. Aug 2005 B2
6938725 Fujioka et al. Sep 2005 B2
6965820 Amberkar et al. Nov 2005 B2
6968262 Higashi et al. Nov 2005 B2
6999862 Tamaizumi et al. Feb 2006 B2
7005822 O'Gorman et al. Feb 2006 B1
7032704 Zernickel et al. Apr 2006 B2
7079929 Sawada et al. Jul 2006 B2
7159688 Onizuka et al. Jan 2007 B2
7165644 Offerle et al. Jan 2007 B2
7308964 Hara et al. Dec 2007 B2
7316419 Fischer Jan 2008 B2
7406375 Fujita et al. Jul 2008 B2
7426978 Onizuka et al. Sep 2008 B2
7469176 Turner et al. Dec 2008 B2
7540351 Kataoka et al. Jun 2009 B2
7604088 Nishizaki et al. Oct 2009 B2
7694777 Yamashita et al. Apr 2010 B2
7743874 Yasui et al. Jun 2010 B2
7823708 Maranville et al. Nov 2010 B2
7828111 Yamashita et al. Nov 2010 B2
7862056 Zeid et al. Jan 2011 B2
7954593 Dornhege et al. Jun 2011 B2
8050825 Ikeda et al. Nov 2011 B2
8055409 Tsuchiya Nov 2011 B2
8073592 Nishimori et al. Dec 2011 B2
8115429 Ueda et al. Feb 2012 B2
8116945 Nozawa Feb 2012 B2
8209089 Tanaka et al. Jun 2012 B2
8219283 Recker et al. Jul 2012 B2
20020033300 Takeuchi et al. Mar 2002 A1
20020059824 Ono et al. May 2002 A1
20040245041 Fukuda et al. Dec 2004 A1
20050087390 Furumi et al. Apr 2005 A1
20050119810 Kasbarian et al. Jun 2005 A1
20050192727 Shostak et al. Sep 2005 A1
20050206234 Tseng et al. Sep 2005 A1
20050236894 Lu et al. Oct 2005 A1
20050257992 Shiino et al. Nov 2005 A1
20060001392 Ajima et al. Jan 2006 A1
20060066270 Kumagai et al. Mar 2006 A1
20070107978 Aoki et al. May 2007 A1
20070118262 Nishizaki et al. May 2007 A1
20070198153 Oya et al. Aug 2007 A1
20070201704 Ishii et al. Aug 2007 A1
20080262678 Nishimura et al. Oct 2008 A1
20080297077 Kovudhikulrungsri et al. Dec 2008 A1
20090294206 Oblizajek et al. Dec 2009 A1
20110029200 Shah Feb 2011 A1
20110043144 Ueda et al. Feb 2011 A1
20120006612 Wilson-Jones et al. Jan 2012 A1
20120013173 Leiber et al. Jan 2012 A1
20120041660 Killian et al. Feb 2012 A1
20120061169 Oblizajek et al. Mar 2012 A1
20120081234 Shaffer et al. Apr 2012 A1
20120150388 Boissonnier et al. Jun 2012 A1
20120150389 Oblizajek et al. Jun 2012 A1
Foreign Referenced Citations (3)
Number Date Country
10325623 Dec 2004 DE
102005047142 Apr 2007 DE
102008033896 Apr 2009 DE
Non-Patent Literature Citations (3)
Entry
J Klaps, “Steering drift and wheel movement during braking: static and dynamic measurements,” Proc. IMechE. vol. 219 Part D; J. Automobile Engineering, Jan. 2005.
International Search Report dated Nov. 30, 2011 for International Application No. PCT/US2011/047726, International Filing Date Aug. 15, 2011.
Written Opinion dated Nov. 30, 2011 for International Application No. PCT/US2011/047726, International Filing Date Aug. 15, 2011.
Related Publications (1)
Number Date Country
20120041660 A1 Feb 2012 US