This disclosure relates to vehicles and, in particular, suspension systems thereof.
Passenger vehicles include suspension systems, which control transmission of forces, such as from road disturbances, between a vehicle body and wheels of the vehicle. Traditional suspension systems are passive systems that include a spring-damper system of which the spring and the damper have fixed characteristics. Such fixed characteristics, however, may not be suited for passenger comfort given varying road conditions and varying passenger preferences. Newer suspension systems include active suspensions of which various characteristics may be controlled by the user (e.g., a driver of the vehicle) or automatically in response to various detected conditions. For example, air spring suspensions may allow the driver to select a desired vehicle height. Magnetorheological dampers provide damping characteristics that may vary according to detected conditions, such as vehicle acceleration.
In one aspect, a suspension system includes a top mount, a bottom mount, a rigid housing, an air spring, and a linear actuator. The air spring transfers force of a first load path between the top mount and the bottom mount. The air spring includes a pressurized cavity containing pressurized gas that transfers the force of the first load path. The linear actuator transfers force of a second load path between the top mount and the bottom mount in parallel to the first load path. The rigid housing defines at least part of the pressurized cavity and transfers the force of the second load path.
The rigid housing may be coupled to the top mount with an isolator that seals the pressurized cavity and transfers the force of the second load path between the rigid housing and the top mount.
The linear actuator and the rigid housing may form a first piston assembly of the air spring movable relative to the bottom mount, while the top mount may form a second piston assembly of the air spring movable relative to the bottom mount. Effective piston areas of the first piston assembly and the second piston assembly may be approximately equal.
The rigid housing may be coupled to the bottom mount with a flexible membrane that seals the pressurized cavity and permits the first piston assembly to move relative to the bottom mount, and the isolator permits the second piston assembly to move relative to the rigid housing. The pressurized cavity may be defined by the top mount, the isolator, the rigid housing, the flexible membrane, and the bottom mount.
The suspension system may further include a second rigid housing coupled to the bottom mount, wherein the flexible membrane is connected to the rigid housing and the second rigid housing to couple the rigid housing to the bottom mount, and the second rigid housing defines a lower chamber of the pressurized cavity.
The linear actuator may include a motor having a rotor and a stator that are contained in the pressurized cavity.
The stator may be in contact with an inner surface of the rigid housing.
The rigid housing may be a first rigid housing, while the suspension system further includes a second rigid housing that surrounds the first rigid housing, and the first rigid housing is coupled to the second rigid housing with an upper isolator and a lower isolator by which the force of the second load path is transferred therebetween.
Alternatively, the rigid housing may be a first rigid housing, while the suspension system further includes a second rigid housing surrounded by the first rigid housing, and the second rigid housing is coupled to the linear actuator and the first rigid housing to transfer the force of the second load path therebetween.
The pressurized cavity may include an upper chamber and a lower chamber, wherein the pressurized gas flows between the upper chamber and the lower chamber is at least one of around or through the linear actuator.
The rigid housing may be spaced radially apart from and surround the linear actuator to define a circumferential gap therebetween, while the pressurized gas flows between the upper chamber and the lower chamber through the circumferential gap. Instead or additionally, the pressurized gas flows between the upper chamber and the lower chamber through an inner housing of the linear actuator.
The linear actuator may be a ball screw actuator having a ball nut and a shaft, and torque is selectively applied to the ball nut by a motor to apply the force of the second load path to the shaft.
The linear actuator may include a ball spline that prevents rotation of the shaft relative to the rigid housing.
A vehicle may include a vehicle body, one or more unsprung components, and one or more of the suspension systems, the top mount of each of the suspension system being coupled to the vehicle body and the bottom mount of each suspension system being coupled to one of the unsprung components.
The vehicle may include a pressurized air source in fluidic communication with the one or more suspension systems for supplying the pressurized gas to the pressurized cavities thereof, and a control system for controlling the linear actuators of the one or more suspension systems in response to dynamic loading between the vehicle body and the unsprung component coupled thereto.
The vehicle may include four of the unsprung components and four of the suspension systems.
A suspension system includes a spring and a ball-screw actuator. The spring is configured to form a first load path between a vehicle body of a vehicle and an unsprung component of the vehicle. The ball-screw actuator is configured to form a second load path between the vehicle body and the unsprung component in parallel to the first load path. The ball-screw actuator includes a shaft, a housing, a motor, a ball nut, and a ball spline. The motor is coupled to the housing and includes a stator and a rotor. The motor applies torque to the ball nut to transfer force of the second load path between the housing and the shaft. The ball spline applies torque to the shaft to prevent rotation thereof relative to the housing. The housing, the stator, and the ball spline are coupled to each other to form a stationary assembly. The rotor and the ball nut are coupled to each other to form a rotating assembly that is rotatably supported and axially fixed to the stationary assembly with a thrust bearing.
The thrust bearing may be coupled to the ball nut and the housing. The rotating assembly may be further rotatably supported by the housing with another bearing coupled to the housing and the rotor. The other bearing may be spaced apart from and positioned axially above the thrust bearing. The stator may be positioned axially between the thrust bearing and the other bearing. The spring may be one of a coil spring or an air spring. The housing may be an inner housing, while the suspension system further includes an outer housing to which the inner housing is coupled and which surrounds the inner housing, the motor, and the ball nut. The inner housing may be coupled to the outer housing with a first tube isolator positioned above the stator. The inner housing may be coupled to the outer housing with a second tube isolator positioned below at least a portion of the stator.
A ball screw actuator includes a housing, a motor, a shaft, a ball nut, and a ball spline. The motor is position in the housing. The housing surrounds the motor and includes cooling passages for receiving a fluid for cooling the motor. The shaft moves axially within the housing. The motor applies torque to the ball nut for transferring axial force between the housing and the shaft. The ball spline transfers torque between the housing and the shaft to prevent rotation therebetween. The housing is coupled to the ball nut to allow rotation therebetween and prevent axial movement therebetween. The housing is coupled to the ball spline to prevent rotation and axial movement therebetween.
The housing may be coupled to the ball nut with a thrust bearing. A rotor of the motor may be rotatably coupled to the housing with another bearing positioned above the thrust bearing. The housing may extend from above the motor to below the ball nut. The ball spline may be positioned below the ball nut and be coupled to a lower end of the housing.
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
Disclosed herein are various embodiments of a vehicle 100 and functional subsystems thereof, including a suspension system 160. More particularly, the suspension system 160 is an active suspension system, which is configured to control generally vertical motion of the wheels with a linear actuator that can apply upward and downward force to introduce energy into and absorb energy from the wheels.
Referring to
Referring to
The propulsion system 130 generally includes one or more motors 232, one or more gearboxes 234, and drive shafts 236 (e.g., half-shafts) operatively connecting each wheel 104 to one of the gearboxes 234. Broadly speaking, the motors 232 provide torque to the gearboxes 234, the gearboxes 234 alter the output torque (e.g., increase) and output speed (e.g., decrease) of the motors 232, and the drive shafts 236 transfer torque from the gearboxes 234 to the wheels 104. The motors 232 may provide positive torque for propelling the vehicle 100 in a forward direction and for decelerating the vehicle 100 when moving in a rearward direction, and may provide negative torque for propelling the vehicle 100 in a rearward direction and for deceleration the vehicle 100 when moving in a forward direction. The motors 232 may also function as generator, when receiving torque from the wheels 104, and function to recharge a battery (not shown) or other energy storage system of the vehicle 100. As shown, the propulsion system 130 may include a front propulsion system 130f and a rear propulsion system 130r that each include two motors 232 coupled to a single gearbox 234 and associated with one drive shaft 236 and the one wheel 104 coupled thereto. Variations of the propulsion system 130 are contemplated, which may include a different number of driven wheels 104 (e.g., only front or rear wheels being driven), a different number of motors 232 associated with the wheels 104 (e.g., one motor 232 associated with two wheels 104), and a different number of gearboxes 234 associated with the wheels 104 (e.g., one gearbox 234 dedicated for each wheel 104).
The braking system 140 generally provides deceleration torque via friction for decelerating the vehicle 100 when moving in the forward direction and/or when moving in the rearward direction.
The steering system 150 generally includes one or more steering actuators 252 and steering linkages 254 operatively coupling each wheel 104 to one of the steering actuators 252. Broadly speaking, the steering system 150 controls the pivoted position of the wheels 104 about generally vertical axes. The steering actuators 252 move the steering linkages 254 in inboard and outboard directions relative to the vehicle body 102 to, thereby, pivot the wheels 104 about the vertical axes. As shown, the steering system 150 may include a front steering system 150f and a rear steering system 150r that each include one steering actuator 252 that is associated with two steering linkages 254 and the wheels 104 coupled thereto. Variations of the steering system 150 are contemplated, which may include a different number of steering actuators 252 associated with the wheels 104 (e.g., one steering actuator 252 for each wheel 104).
The suspension system 160 generally includes an actuator 262 (e.g., suspension actuator) and a shaft 264 (e.g., suspension shaft) associated with each wheel 104. Mechanical components, including the actuator 262, the shaft 264, and other components discussed below, of the suspension system 160 may be considered an assembly (e.g., suspension assembly). Broadly speaking, the suspension system 160 controls vertical motion of the wheels 104 relative to the vehicle body 102, for example, to ensure contact between the wheels 104 and a surface of the roadway and to limit the influence of roadway conditions on undesirable movements of the vehicle body 102. The suspension system 160 is an active suspension system in which the actuators 262 transfer energy into and absorb energy from the wheels 104 with upward and downward movement relative to the vehicle body 102. As shown, the suspension system 160 may include a front left suspension system 160fl, a front right suspension system 160fr, a rear left suspension system 160rl, and a rear right suspension system 160rr, each of which include one actuator 262 and one shaft 264. Further details of the suspension system 160 are discussed in further detail below.
The sensing system 170 includes sensors for observing external conditions of the vehicle 100 (e.g., location of the roadway and other objects) and conditions of the vehicle 100 (e.g., acceleration and conditions of the various subsystems and their components). The sensing system 170 may include sensors of various types, including dedicated sensors and/or functional components of the various subsystems (e.g., actuators may function as sensors).
The control system 180 includes communication systems and components (i.e., for receiving sensor signals and sending control signals) and processing components (i.e., for processing the sensor signals and determining control operations), such as a controller. The control system 180 may include various control subsystems, for example, associated with (or as part) of one or more of the various other subsystems described herein (e.g., the propulsion system 130, the braking system 140, etc.).
Referring to
The controller 581 may include a processor 581a, a memory 581b, a storage device 581c, one or more input devices 581d, and one or more output devices 581e. The controller 581 may include a bus 581f or a similar device to interconnect the components for communication. The processor 581a is operable to execute computer program instructions and perform operations described by the computer program instructions. As an example, the processor 581a may be a conventional device such as a central processing unit. The memory 581b may be a volatile, high-speed, short-term information storage device such as a random-access memory module. The storage device 581c may be a non-volatile information storage device such as a hard drive or a solid-state drive. The input devices 581d may include any type of human-machine interface such as buttons, switches, a keyboard, a mouse, a touchscreen input device, a gestural input device, an audio input device, the sensors of the sensing system 170. The output devices 581e may include any type of device operable to provide an indication to a user regarding an operating state, such as a display screen or an audio output, or any other functional output or control, such as the propulsion system 130, the braking system 140, the steering system 150, and/or the suspension system 160.
Referring to
The suspension system 160 generally includes the actuator 262 and the shaft 264, along with a spring 366, which cooperatively function to transfer force axially between the unsprung component 306 and the vehicle body 102 through two load paths (e.g., dual paths). The spring 366 may be a coil spring (e.g., metal coil spring), or may be another suitable type of spring for use in the present suspension system 160 (e.g., an air spring, spring formed of another solid material, such as a composite). The first load path is formed by the spring 366 and carries a gravity preload of the vehicle 100 (i.e., load due to gravity irrespective of any dynamic loading) along with a portion of a dynamic load between the vehicle body 102 and the unsprung component 306. The second load path is formed by the actuator 262 and the shaft 264, which carries another portion of the dynamic load between the vehicle body and the unsprung component 306 and, as compared to the first load path, provides primary damping functions of the suspension system 160.
The suspension system 160 further includes a housing 368, a top mount 370, and a bottom mount 372, along with vibration isolators (e.g., dampers, bushings, etc.) and one or more load sensors 380. The housing 368 is coupled to both the actuator 262 and the spring 366 to transfer the second load path and the first load path, respectively, to and from the top mount 370 (i.e., to the vehicle body 102) and the bottom mount 372 (i.e., to the unsprung component 306). The actuator 262 is generally contained within the housing 368 and is coupled thereto with an upper inner isolator 374 (e.g., first vibration isolator, or upper actuator isolator) and a lower inner isolator 376 (e.g., second vibration isolator, or lower actuator isolator) that transfer axial, radial, and torsional forces there between. The spring 366 is coupled to a lower end of the housing 368 and includes an outer isolator 378 (e.g., third vibration isolator, lower isolator, or coil spring isolator) that transfers axial force there between.
Because the preload (i.e., vehicle weight) is applied to the suspension system 160 via the first load path through the spring 366 and bypasses the actuator 262, the second load path is nominal (e.g., near zero) in static or near static conditions, thereby allowing the upper inner isolator 374 and the lower inner isolator 376 to be significantly less stiff than the outer isolator 378. For example, the upper inner isolator 374 and the lower inner isolator 376, by not transferring the preload, may be configured with spring rate curves, damping coefficients, and other characteristics independent of the corresponding characteristics of the outer isolator 378. Moreover, upper inner isolator 374 and the lower inner isolator 376 may have different such characteristics than each other.
The top mount 370 is coupled to an upper end of the housing 368 and the vehicle body 102 to transfer forces to the vehicle body 102 (i.e., the first and second load paths). The bottom mount 372 is separately coupled to lower ends of the spring 366 and the shaft 264, respectively, to transfer force to the unsprung component 306 (i.e., the first and second load paths).
The actuator 262 is arranged above the spring 366, so as to be supported (e.g., suspended) from thereabove by the vehicle body 102. This orientation may provide several advantages as compared to mounting the actuator 262 below the spring 366 (i.e., as compared to supporting the actuator 262 with the unsprung component 306 from therebelow). For example, the actuator 262, by being supported by the vehicle body 102, is not unsprung mass, and also the actuator 262 is mounted closer to the vehicle body 102 for connection to power, data, and/or cooling lines at locations nearer the vehicle body 102 and less susceptible to damage (e.g., being impacted by debris).
The actuator 262 is a ball screw actuator, which converts rotational motion and torque from an electric motor (not labeled), respectively, into linear motion and force of the shaft 264. A torque output of the motor generally correlates to a linear force output of the actuator 262. Specific details of ball screw aspects of the actuator 262 are not discussed herein.
The actuator 262 functions to transfer energy to the wheel 104 to cause upward and downward motion of the wheel 104 relative to the vehicle body 102. The actuator 262 also functions to absorb energy from the wheel 104 (e.g., functioning as a damper), as the wheel 104 is moved upward and downward relative to the vehicle body 102 from external forces (i.e., external to the actuator 262). Upward movement from external forces is caused by a roadway applying an upward force to the wheel 104 as the vehicle 100 moves therealong. Downward movement from external forces is generally caused by gravity acting on the wheel 104 and/or the spring 366 applying a downward force to the wheel 104.
The actuator 262 includes a primary body 262a relative to which the shaft 264 is moved axially. The primary body 262a may, for example, form or contain a motor (e.g., forming a stator and containing a rotor of the motor) at an upper end thereof and a rotating nut (e.g., a ball nut) at a lower end thereof. As the nut is rotated by the motor, the nut engages the shaft 264 (via recirculating balls) and causes the shaft 264 to translate axially relative to the primary body 262a.
The primary body 262a is mounted within the housing 368 with the upper inner isolator 374 and the lower inner isolator 376, so as to transfer axial, radial, and rotational forces therebetween. The upper inner isolator 374 and the lower inner isolator 376 are configured to dampen and prevent noise and vibrations of the actuator 262 (e.g., from operating the motor and balls moving in a nut of the ball screw mechanism) from reaching the vehicle body 102, while also allowing the actuator 262 to move axially and radially relative to the housing 368.
Each of the upper inner isolator 374 and the lower inner isolator 376 are axially coupled, directly or indirectly, to inner and outer surfaces, respectively, of the housing 368 and the primary body 262a of the actuator 262 to transfer axial forces therebetween (i.e., the second load path). The upper inner isolator 374 and the lower inner isolator 376 are also arranged radially (e.g., concentrically) between the housing 368 and the primary body 262a to transfer radial forces therebetween (e.g., due to bending moments). The upper inner isolator 374 and the lower inner isolator 376 may also be rotationally coupled, directly or indirectly, to the housing 368 and the primary body 262a of the actuator to transfer rotational torque therebetween. The upper inner isolator 374 and the lower inner isolator 376 may, for example, be made of a suitable material (e.g., rubber or polymer) having suitable properties (e.g., damping characteristics and spring rate) due to material properties and/or structural characteristics thereof.
In the axial direction, the upper inner isolator 374 and the lower inner isolator 376 are configured to progressively deflect axially over a stroke (e.g., stroke distance) as axial force increases to a maximum design load. The maximum design load may be a peak (or near peak) load expected during operation of the vehicle 100 (e.g., an extreme condition during normal driving after which the suspension system 160 may be expected to continue operating). The maximum design load may, for example, be 10 kN, while a maximum design deflection (e.g., maximum stroke) may be 10 mm. A restorative spring force of the upper inner isolator 374 and the lower inner isolator 376 are preferably substantially linear over the stroke, for example, with the upper inner isolator 374 and the lower inner isolator 376 cooperatively providing an axial spring rate that is substantially constant (e.g., +/−25%, +/−˜15%, +/−10% or less) over the stroke, such as approximately 1 kn/mm. A substantially constant spring rate may be particularly advantageous for control strategies of the suspension system 160 (e.g., simplifying control strategies).
Alternatively, the restorative spring force may be substantially linear over a majority of the stroke. The spring rate may substantially constant over the first portion of the stroke (e.g., between approximately 75% and 90% of the stroke) and increase gradually over a second portion of the stroke (e.g., between 10% and 25% of the remaining stroke) to a markedly higher spring rate. This markedly higher spring rate in a second portion of the stroke may prevent harsh engagement between two generally rigid components of the suspension system 160 upon experiencing higher loading (e.g., near 10 kN).
In the radial direction, the upper inner isolator 374 and the lower inner isolator 376 are configured to prevent radial engagement of the actuator 262 (e.g., the primary body 262a) with the housing 368. In the radial direction, the upper inner isolator and the lower inner isolator 376 may be significantly less stiff than in the radial direction. Radial engagement between the actuator 262 and the housing 368 might otherwise occur as a bending moment is applied to the suspension system 160. Such a bending moment may, for example, arise from deflection of the unsprung component 306 relative to the vehicle body 102. To this end, the upper inner isolator 374 and the lower inner isolator 376 are, respectively, coupled to the primary body 262a at axially spaced apart locations, which reduces the radial force components of the bending moment experienced by each of the upper inner isolator 374 and the lower inner isolator 376 as the actuator 262 pivots about the other of the upper inner isolator 374 and the lower inner isolator 376. Larger axial spacing may allow the upper inner isolator 374 and the lower inner isolator 376 to be less stiff in the radial direction (i.e., having a lower restorative spring rate) and/or the housing 368 to be in closer proximity (e.g., being smaller) to the primary body 262a.
The top mount 370 permits the suspension system 160 to pivot relative to the vehicle body 102 with little resistance (e.g., freely or with low resistance) to prevent high bending moments from being applied to the actuator 262 from movement of the unsprung component 306. More particularly, the top mount 370 permits the suspension system 160 to pivot with little resistance (e.g., freely or with low resistance) in two rotational degrees of freedom (e.g., free or unrestricted degrees of freedom) about axes perpendicular to a longitudinal axis of the shaft 264. By providing little (e.g., low) resistance to pivoting in the two unrestricted degrees of freedom, the coupling between the suspension system 160 and the vehicle body 102 contributes little to the bending moment otherwise acting the suspension system 160. The top mount 370 may, as shown, be a cardan joint. Alternatively, the top mount 370 may be a ball-and-socket joint having an interference feature (e.g., protrusion in a slot), or be an isolator. As a result of the two free degrees of freedom, the suspension system 160 may pivot relative to the vehicle body 102 in a generally conical region, the peak of which is located generally at the top mount 370.
The top mount 370 may also restrict (e.g., preventing or with high resistance) pivoting in a third rotational degree of freedom (e.g., restricted degree of freedom) about the longitudinal axis (top-to-bottom across the page as shown). By providing high resistance (e.g., preventing movement) in the restricted degree of freedom, the suspension system is prevented from rotating as the actuator 262 is operated (e.g., when the motor is rotated).
As shown schematically in
As referenced above, the outer isolator 378 is arranged axially between the spring 366 and the housing 368 to transfer axial forces of the first load path therebetween. The preload (i.e., due to gravity acting on the vehicle) is transferred through the outer isolator, which as a result is configured to be substantially more stiff (e.g., has a higher restorative spring rate) in the axial direction than the upper inner isolator 374 and the lower inner isolator 376.
The suspension system 160 may additionally include one or more load sensors 380, which are configured to measure axial loading of the suspension system 160 to the vehicle body 102. The one or more load sensors 380 are, for example, arranged axially between the top mount 370 and the housing 368. The load sensors 380 may also be considered part of the sensing system 170 and be in communication with control system 180.
The control system 180, or a suspension control subsystem thereof, controls the actuator 262 to achieve desired force transfer between the wheel 104 and the vehicle body 102. As referenced above, the actuator 262 is configured to absorb external energy acting on the wheel 104 to, thereby, function as a damper as the wheel 104 moves both up and down relative to the vehicle body 102. Absorbing refers to taking energy out of the suspension system 160, for example, by converting and storing the mechanical energy as electrical energy (e.g., with the motor of the actuator 262 as a motor-generator). The actuator 262 is also configured to input energy to the wheel 104 to, thereby, cause the wheel 104 to move up and down relative to the vehicle body 102.
The control system 180 may, when operating the actuator 262 to achieve a desired axial force transfer between the vehicle body 102 and the wheel 104, adjust an input of the actuator 262 to account for axial compliance introduced by the upper inner isolator 374, the lower inner isolator 376, and, to a lesser extent, the outer isolator 378. For example, compressive states of the upper inner isolator 374, the lower inner isolator 376, and the outer isolator 378 may be accounted for using the load sensors 380 (e.g., based on known or tested spring rates). Based on different measurements by the load sensors 380 received at different times, the input to the actuator 262 (e.g., rotational speed and/or torque of the motor) may be different despite seeking the same output and response from the actuator 262 (i.e., axial force and/or displacement in a given timeframe). For example, assuming a cooperative spring rate of 1 kN/mm of the isolators and a preload of 5 kN (i.e., the first load path), an axial force measurement of 5 kN would represent a 0 kN axial load (i.e., via the second load path) and 0 mm of deflection of the isolators. Thus, to achieve a desired output force of 8 kN in the given time frame, 3 mm of compliance must be accounted for, for example, by initially rotating the motor at a relatively high rate of speed. An axial force measurement of 7 kN would represent a 2 kN axial load and 2 mm of deflection of the isolators. Thus, to achieve the same desired output force of 8 kN in the same given timeframe, 1 mm of compliance must be accounted for, for example, by initially rotating the motor at a relatively low rate of speed.
The suspension system 160 may additionally include position sensors 384 (e.g., displacement sensors), which measure deflection of the various isolators (e.g., by measure a change in position of the primary body 262a of the actuator 262 relative to the housing 368. This displacement information may be used, alone and/or in conjunction with the force information, to determine inputs to the actuator 262 (e.g., rotational speed and/or torque of the motor). For example, material properties of the various isolators may change with temperature and/or aging, which may be accounted for by measuring displacement of the isolators with the position sensors 384. For example, a measured displacement that does not correlate to an expected force value may be accounted for with the inputs to the actuator 262 to achieve a desired axial force or displacement output (e.g., using the example above, a 2 mm measured displacement would not correlate to a 6 kN measured force).
Referring to
The suspension system 660 generally includes an actuator 662, a shaft 664, the spring 366, and an outer housing 668, which may be used as the actuator 262, the shaft 264, the spring 366, and the housing 368, respectively, in the suspension system 160. The suspension system additionally includes the top mount 370 and the bottom mount 372.
As discussed above with reference to the suspension system 160, the suspension system 660 is configured to transfer force axially from the unsprung component 306 to the vehicle body 102 via two parallel load paths. The first load path is formed by the spring 366 and the outer housing 668, which carries the preload (e.g., a portion of the weight of the vehicle 100) and a portion of the dynamic load between the vehicle body 102 and the unsprung component 306. The second load path is formed by the actuator 662, the shaft 664, and the outer housing 668, which carry another portion of the dynamic load between the vehicle body 102 and the unsprung component 306, including providing primary damping functions for road disturbances.
Referring also to
Referring additionally to
Referring additionally to
The ball spline 662e is coupled to the inner housing 662f to prevent relative rotational and axial movement therebetween, for example, being coupled to the lower inner housing portion 662g. As shown, the ball spline 662e and the lower inner housing portion 662g each include radially extending flanges that overlap each other radially. The flanges of the ball spline 662e and the lower inner housing portion 662g are coupled to each other, for example, with threaded fasteners (not shown) extending axially therein and which prevent axial and rotational movement therebetween. The ball spline 662e and the lower inner housing portion 662g may be coupled to each other in other manners to prevent axial and/or rotational movement relative to each other, such as with a male-to-female interference fit to prevent relative rotation and a snap ring or nut to prevent axial movement).
The rotating structure 662′ (i.e., formed by the rotor 662b and the ball nut 662d) is configured to rotate relative to the stationary structure 662″ (i.e., formed by the stator 662c, the ball spline 662e, the lower inner housing portion 662g, and the upper inner housing portion 662h), so as to apply axial force (i.e., the force of the second load path) between the stationary structure and the shaft 664. The axial force applied by the rotating structure 662′ to the shaft 664 is to cause, restrict, prevent, or otherwise control axial movement of the shaft 664 relative to the actuator 662 to control force transmission in the second load path between the unsprung component 306 and the vehicle body 102.
More particularly, the motor 662a receives electrical current, which generates torque between the rotor 662b and the stator 662c. As torque is applied to the rotor 662b, torque is applied to the ball nut 662d, and axial force is applied from the ball nut 662d to the shaft 664. More particularly, the axial force is applied between the ball nut 662d and the shaft 664 via a first set of recirculating balls (not shown; such as ball bearings), as are known in the art of ball screw nuts. The recirculating balls engage an outer helical groove 664a in an outer surface of the shaft 664 and an inner helical groove 662d′ corresponding thereto in an inner surface of the ball nut 662d, so as to apply the axial force between the ball nut 662d and the shaft 664 as torque is applied to the ball nut 662d. By controlling the torque applied by the motor 662a to the ball nut 662d (e.g., by controlling electrical power to the motor 662a), the axial force applied to the shaft 664 by the actuator 662 may be controlled, so as to cause, restrict, prevent, or otherwise control axial movement of the shaft 664 relative to the actuator 662. The actuator 662, thereby, may control transmission of force between the unsprung component 306 and the vehicle body 102, for example, to dissipate energy from road disturbances and/or to maintain contact of the wheels connected to the unsprung component 306 with a road surface therebeneath. For example, the actuator 662 may function as a damper. The ball nut 662d may also be referred to as a ball screw nut.
The stationary structure 662″ is additionally configured to prevent rotation of the shaft 664 relative thereto. The torque applied by the motor 662a to the ball nut 662d, in addition to applying an axial force to the shaft 664, applies torque to the shaft 664 due to the inclination of the helical grooves 664a of the shaft 664 and the helical grooves 662d′ of the ball nut 662d. The stationary structure 662″ and, in particular, the ball spline 662e resists this torque applied to the shaft 664 by the motor 662a. As a result, torque is not transferred to the unsprung component 306 from the actuator 662, which might otherwise cause undesired lateral movement of the unsprung component 306 (e.g., if a control arm intended to pivot vertically relative to the vehicle body 102). Such lateral movement may, for example, induce wear on pivot joints and/or bushings by which the unsprung component 306 is mounted to the vehicle body 102 and/or may induce unwanted forces into the steering system 150.
The ball spline 662e engages the shaft 664 to prevent such torque from causing rotation of the shaft 664 relative to the actuator 662. More particularly, a second set of recirculating balls (not shown; such as ball bearings) engage an outer axial groove 664b in the outer surface of the shaft 664 and an inner axial groove 662e′ of the ball spline 662e. For example, the shaft 664 may include two outer axial grooves 664b spaced 180 degrees apart, while the ball spline 662e includes two inner axial grooves 662e′ spaced 180 degrees apart and corresponding thereto. Tangential force arising from the torque applied by the ball nut 662d to the shaft 664 is transferred via the second set of recirculating balls through the ball spline 662e, so as to prevent rotation of the shaft 664 relative to the stationary structure 662″ of the actuator 662. As an alternative to the ball spline 662e, the shaft 664 may instead include key ways in which sliding or rolling keys ride and bear tangentially to transfer torque between the shaft 664 and the stationary structure 662″ to prevent rotation therebetween.
The rotating structure 662′ (i.e., the assembly of the rotor 662b and the ball nut 662d) is rotatably and axially supported by the stationary structure 662″ (i.e., by the assembly of the stator 662c, the ball spline 662e, the lower inner housing portion 662g, and the upper inner housing portion 662h). For example, as shown, the rotating structure 662′ is rotatably coupled to the stationary structure 662″ with a lower bearing assembly 676 and an upper bearing assembly 678. Each of the lower bearing assembly 676 and the upper bearing assembly 678 prevent radial movement between the rotating structure 662′ and the stationary structure 662″. Each of the lower bearing assembly 676 and the upper bearing assembly 678 may be a ball, roller, or needle bearing assembly or similar having an inner race and an outer race that rotate relative to each other with roller elements therebetween (e.g., balls, roller, needles, or the like; not shown). One or both of the lower bearing assembly 676 and the upper bearing assembly 678 may additionally be configured to prevent axial movement between the rotating structure 662′ and the stationary structure 662″, for example, being configured as a thrust bearing. For example, as shown, the lower bearing assembly 676 may be a thrust bearing.
The lower bearing assembly 676 may be positioned radially between the ball nut 662d and the lower inner housing portion 662g. An inner race of the lower bearing assembly 676 is rotationally and axially fixed with the ball nut 662d, so as to rotate therewith, and may be considered part of the rotating structure 662′. For example, the inner race engages an outer radial surface of the ball nut 662d, so as to be rotationally and radially coupled thereto. The inner race is additionally held axially between an upper flange of the ball nut 662d, which extends radially outward of the outer radial surface thereof, and a nut 680 or other fastener (e.g., a snap or lock ring) engaged with the outer radial surface at an intermediate height of the ball nut 662d.
The outer race of the lower bearing assembly 676 is rotationally and axially fixed with the inner housing 662f, and may be considered part of the stationary structure 662″. For example, the outer race engages an inner radial surface of the lower inner housing portion 662g, so as to be rotationally and radially coupled thereto. The outer race is additionally held axially between a flange of the lower inner housing 662f, which extends radially inward from the inner radial surface, and a snap ring 682 or other fastener (e.g., an externally threaded nut) engaged with the inner radial surface of the lower inner housing portion 662g.
The upper bearing assembly 678 may be positioned radially between the rotor 662b and the inner housing 662f. An inner race of the upper bearing assembly 678 is engaged with the outer radial surface of the spindle 662b″ of the rotor (e.g., being press-fit thereto), so as to prevent radial and rotational movement therebetween. The inner race may be considered part of the rotating structure 662′. An outer race of the upper bearing assembly 678 is engaged with an inner radial surface of the upper inner housing portion 662h to prevent radial and rotational movement therebetween (e.g., being press-fit thereto), while allowing the inner race to move rotationally but not radially relative thereto. The outer race may be considered part of the stationary structure 662″.
The lower bearing assembly 676 and the upper bearing assembly 678 are spaced apart axially, so as to resist any of the bending moments between the rotating structure 662′ and the stationary structure 662″ of the actuator 662. For example, the lower bearing assembly 676 may be positioned below the motor (e.g., below the magnets 662b′ of the rotor 662b and the stator 662c) and resist radial loading between the rotating structure 662′ and the stationary structure 662″, such as between the ball nut 662d and the lower inner housing portion 662g, which may arise from the bending moment. The upper bearing assembly 678 may be positioned above the motor (e.g., above the magnets 662b′ of the rotor 662b and the stator 662c) and resist radial loading between the rotor 662b (e.g., the spindle 662b″ thereof) and the upper inner housing portion 662h, which may arise from the bending moment.
The ball nut 662d and the ball spline 662e are spaced apart axially, so as to resist any bending moments between the shaft 664 and the actuator 662. More particularly, as a result of the rotating structure 662′ being fixed axially to the stationary structure 662″ (e.g., via the lower bearing assembly 676 being configured as a thrust bearing), the ball nut 662d and the ball spline 662e are fixed axially relative to each other with the ball nut 662d being arranged above the ball spline 662e. As a bending moment is applied between the shaft 664 and the actuator 662, the ball nut 662d and the ball spline 662e apply radial force to the shaft 664 at different axial positions on the shaft 664 to resist the bending moment applied thereto.
As referenced above, the outer housing 668 transfers force in the first load path (i.e., with the spring 366) and the second load path (i.e., with the actuator 662 and the shaft 664) between the unsprung component 306 and the vehicle body 102. The outer housing 668 may, as shown, be configured as a multi-piece assembly. The outer housing 668 includes an upper outer housing 668a, an intermediate outer housing 668b, and a lower outer housing 668c, which are generally annular structures that surround portions of the actuator 662 and/or the shaft 664.
The upper outer housing 668a is coupled to the top mount 370 to transfer loading thereto. Various electronic circuitry and components (e.g., rotor encoder, position sensors, load cells; not shown) may be contained in a portion of an inner cavity of the outer housing 668, which is defined by the upper outer housing 668a. The upper inner isolator 374 may also be coupled to the upper outer housing 668a and the upper inner housing portion 662h (e.g., being positioned radially therebetween).
The intermediate outer housing 668b is coupled to (e.g., via threaded fasteners) and extends downward from the upper outer housing 668a. The intermediate outer housing 668b defines a main portion of the inner cavity of the outer housing 668, which generally contains the upper inner housing portion 662h and the motor 662a (i.e., the rotor 662b and the stator 662c). The lower inner isolator 376 may be coupled to the intermediate outer housing 668b and the lower inner housing portion 662g (e.g., being positioned radially therebetween).
The lower outer housing 668c is coupled to (e.g., via male-to-female threaded engagement) and extends downward from the intermediate outer housing 668b. The lower outer housing 668c defines a portion of the cavity of the outer housing 668, which contains portions of the lower inner housing portion 662g and the ball nut 662d, either of which may protrude axially below a bottom end of the lower outer housing 668c. The lower outer housing 668c may also function as a spring seat that receives the spring 366 therein and/or thereagainst (e.g., with an isolator therebetween) for transferring loading of the first load path thereto. The lower outer housing 668c may be axially adjustable relative to the intermediate outer housing 668b, for example, via the threaded engagement therebetween, so as to form an adjustable spring seat.
As referenced above and as shown, the actuator 662 is coupled to the outer housing 668 via the upper inner isolator 374 and the lower inner isolator 376, which may be configured to function as described previously for coupling and transferring loading between the actuator 262 and the housing 368. Each of the isolators may be tube isolators having inner and outer rigid ring members and an intermediate compliant ring member therebetween. The inner and outer ring members are, respectively coupled to the inner housing (e.g., to the lower inner housing portion 662g or the upper inner housing portion 662h) and the outer housing 668, while the intermediate compliant ring member provides compliance therebetween. The upper inner isolator 374 and the lower inner isolator 376 function to transfer axial loading of the second load path between the actuator 662 and the outer housing 668, while dampening vibrations or other disturbances generated by the actuator 662 (e.g., due to operation of the motor, movement of the recirculating balls within the ball nut 662d and the ball spline 662e, other friction) and/or vibrations or other disturbances arising external to the actuator (e.g., from road disturbances acting on the unsprung component 306). Additionally, the upper inner isolator 374 and the lower inner isolator 376 are spaced apart axially, so as to resist bending moment between the actuator 662 and the outer housing 668.
As shown in
Referring to
The suspension system 760 generally includes the actuator 662 and the shaft 664 and forms an air spring 766. As discussed in further detail below, the air spring 766 forms the first load path between the unsprung component 306 and the vehicle body 102, which is parallel to the second load path formed by the actuator 662, the shaft 664, and an upper housing 768. The air spring 766, as with the first load path described previously, transfers the preload (i.e., the weight of the vehicle 100) between the unsprung component 306 and the vehicle body 102. The actuator 662 and the shaft 664 may be configured substantially as described previously to form the second load path between the unsprung component 306 and the vehicle body 102.
The suspension system 760 includes components of the actuator 662, the shaft 664, the upper housing 768, a lower housing 770, and a membrane 772, as well as a top mount 774, and a bottom mount 778.
The upper housing 768 is a generally rigid and annular structure, which extends downward from the top mount 774 to surround all or a portion of the actuator 662. As discussed in further detail below, the upper housing 768 may define an upper chamber 766b of a pressurized cavity 766a of the air spring 766. The upper housing 768 is coupled to the top mount 774 and extends downward therefrom to terminate at a bottom end thereof positioned below the ball nut 662d, for example, at least partially overlapping the ball spline 662e. The upper housing 768 may also reduce in diameter moving downward from the top mount 774, for example, reducing in diameter in a stepped or gradual manner below the stator 662c of the motor 662a. The upper housing 768 may, as shown, be a unitary component but may be formed as an assembly of multiple components (e.g., similar to the upper outer housing 668a and the intermediate outer housing 668b).
The upper housing 768 additionally includes a port 768a by which the air spring 766 receives pressurized gas (e.g., pressurize air) from an air source (not shown) to increase the amount of air in the pressurized cavity 766a to raise the vehicle 100. Air may also be released from the air spring 766 through the port 768a to lessen the amount of air in the pressurized cavity 766a to lower the vehicle 100.
The upper housing 768 is coupled to the top mount 774 with an isolator 776, which forms a compliant coupling therebetween, while limiting rotational, radial, and axial movement therebetween. The isolator 776 may, for example, be a tube isolator having rigid inner and outer ring members coupled to and separated by a compliant intermediate ring member. The isolator 776 may be positioned radially between and be rigidly coupled to an inner radial portion of the upper housing 768 (e.g., an inner surface thereof) and an outer radial portion of the top mount 774 (e.g., a downward extending annular flange thereof). The isolator 776 transfers force of the second load path between the upper housing 768 and the top mount 774. The isolator 776 additionally functions to seal the upper housing 768 to the top mount 774, so as to seal the pressurized cavity 766a with the top mount 774.
The top mount 774 is a structure that functions to both seal the pressurized cavity 766a and mechanically connect the suspension system 760 the vehicle body 102. The top mount 774 may include one or more structures and/or components that are coupled to each other to form the top mount 774 as an assembly. For example, the top mount 774 may include, among other components, a lower structure that functions, in part, to seal the pressurized cavity 766a and an upper structure that functions to couple the suspension system 760 to the vehicle body 102. The top mount 774 may include further components and/or functions, such as including a load cell, which measures force transfer between the suspension system 760 and the vehicle body 102.
The lower housing 770 is generally rigid and annular structure, which is coupled to and extends upward from a bottom mount 778 to terminate at an upper end thereof. As the vehicle body 102 and the unsprung component 306 and, thereby, the top mount 774 and the bottom mount 778 move toward and away from each other, the upper end of the lower housing 770 changes axial position relative to the lower end of the upper housing 768. In some positions, the lower housing 770 axially overlaps the upper housing 768. The upper end of the lower housing 770 has a larger diameter than the lower end of the upper housing 768, such that the upper housing 768 may be received within the lower housing 770. A circumferential gap 766d is defined between the upper end of the lower housing 770 and the lower end of the upper housing 768. The lower housing 770 may be formed, as shown, as a unitary component formed integrally with a portion of the bottom mount 778, or may be formed as an assembly of multiple components (e.g., being formed separately from and coupled to the bottom mount 778).
The bottom mount 778 is a structure that functions to both seal the pressurized cavity 766a and mechanically connect the suspension system 760 the unsprung component 306. The bottom mount 778 may include one or more structures and/or components that are coupled to each other to form the bottom mount 778 as an assembly. For example, the bottom mount 778 may include, among other components, an upper structure that functions, in part, to seal the pressurized cavity 766a and connect to the shaft 664, and include a lower structure that functions to couple the suspension system 760 to the unsprung component 306. The shaft 664 is coupled to the bottom mount 778 for transferring force of the second load path therebetween.
The membrane 772 extends radially between the upper end of the lower housing 770 and the lower end of the upper housing 768 to seal the circumferential gap 766d therebetween. The membrane 772 thereby seals the pressurized cavity 766a. The membrane 772 may be formed of a polymeric (e.g., rubber) material or any other suitable flexible material.
The membrane 772 is configured to form the air spring 766 as a rolling lobe air spring as is understood in the art. The membrane 772 includes an inner membrane portion 772a coupled to the lower end of the upper housing 768 and an outer membrane portion 772b coupled to the upper end of the lower housing 770. As the vehicle body 102 and the unsprung component 306 and, thereby, the upper housing 768 and the lower housing 770 move toward and away from each other, the inner membrane portion 772a and the outer membrane portion 772b translate axially relative to each other.
The actuator 662 is coupled to the upper housing 768 to prevent rotational and axial movement therebetween. For example, the actuator may be coupled to the upper housing 768 with one or more support structures 780 that extend radially between the actuator 662 and the upper housing 768. The one or more support structures 780 may, for example, couple the upper inner housing portion 662h to the upper housing 768. The support structures 780 may be positioned above the motor 662a (e.g., above the stator 662c and/or the upper bearing assembly 678). The one or more support structures 780 additionally allow air flow between an upper chamber 766b and a lower chamber 766c of the pressurized cavity 766a as discussed in further detail below (e.g., being configured as spokes). As a result, forces of the second load path are transferred between the actuator 662 and the upper housing 768 with the support structures 780. Thus, the second load path transfers force between the unsprung component 306 to the vehicle body 102 from the bottom mount 778 to the shaft 664 to the actuator 662 to the upper housing 768 to the isolator 776 and to the top mount 774.
As referenced above, the air spring 766 forms the first load path between vehicle body 102 and the unsprung component 306, while the actuator 662, the shaft 664, and the upper housing 768 form the second load path in parallel to the first load path. Referring first to the first load path, the air spring 766 includes the pressurized cavity 766a, which is a sealed chamber containing pressurized gas or air. The cavity 766a is generally defined by the upper housing 768, the lower housing 770, and the membrane 772 sealed therebetween. The cavity 766a may also extend from the top mount 774 to the bottom mount 778, and may be defined therebetween. Force of the first load path is transferred by the pressurized gas acting on an upper end and a lower end of the pressurized cavity 766a, for example, formed by the top mount 774 and the bottom mount 778, respectively. Referring to
As the vehicle body 102 and the unsprung component 306 move relative to each other, the volume of the pressurized cavity 766a changes to further compress or decompress a given amount of air therein, such that the suspension system 760 exerts more or less force, respectively, between the vehicle body 102 and the unsprung component 306. Further, for a given pressure, air may be selectively added to or removed from the pressurized cavity 766a, so as to increase the volume of the pressurized cavity 766a and, thereby, change a length of the suspension system 760 and a distance between the vehicle body 102 and the unsprung component 306. As the length of the suspension system changes (e.g., from different forces applied between the vehicle body 102 and the unsprung component, from forces applied by the actuator 662 between the bottom mount 778 and the top mount 774, and/or as air is added to or removed from the cavity 666a), the upper housing 768 and the lower housing 770 move axially relative to each other, for example, with the upper housing 768 being received and/or sliding within the lower housing 770.
As referenced above, the pressurized cavity 766a includes the upper chamber 766b and the lower chamber 766c, which are in fluidic communication with each other. The upper chamber 766b is generally defined by the upper housing 768. The lower chamber 766c is generally defined by the lower housing 770 and the membrane 772. The actuator 662 and the upper housing 768 generally form an assembly (e.g., a first piston assembly of the air spring 766) that is movable relative to the bottom mount 778, which is permitted or allowed to move due to the membrane 772 being flexible. The top mount 774 generally forms another assembly (e.g., a second piston assembly of the air spring 766) that is movable relative to the housing 768, which is permitted or allowed to move due to the isolator 776 having compliance. The first piston assembly and the second piston assembly may have effective piston areas that are approximately equal, for example, being defined generally as the areas within, respectively, a mid-point between the inner housing 662g and the lower housing 770 (e.g., a mid-point of the flexible membrane) and within a mid-point of the intermediate compliant ring of the isolator 776. By having effective piston areas that are approximately equal may allow for an axial static load on the actuator 662 to be approximately zero (e.g., from the common pressure in the upper chamber 776b and the lower chamber 766c applying approximately equal upward and downward forces to the first piston assembly that includes the actuator 662. The effective piston areas may be approximately equal by, for example, being within 25%, 15%, 10%, 5%, or 2% of each other. Approximate equal piston areas may be applied to the further suspension systems 860, 960, 1060, and 1160 described below.
The upper chamber 766b and the lower chamber 766c are in fluidic communication with each other, so as to maintain a generally even pressure therein. As shown in
As the suspension system 760 changes in length, the volume of the pressurized cavity 766a changes and, in particular, the volume of the lower chamber 766c changes, while the volume of the upper chamber 766b stays generally constant. Thus, as the volume of the pressurized cavity 766a increases or decreases for a given amount of air, the air flows, respectively, from the lower chamber 766c to the upper chamber 766b, or from the lower chamber 766c to the upper chamber 766b, to maintain generally even air pressure therebetween. It should be noted, however, that pressure slight variances between the upper chamber 766b and the lower chamber 766c may occur as the air flows therebetween and is restricted within the circumferential gap 766d.
Referring to the second load path, the second load path is formed by the actuator 662, the shaft 664, and the upper housing 768 and is in parallel to the first load path between the top mount 774 and the bottom mount 778 and, thereby, between the vehicle body 102 and the unsprung component 306. More particularly, force is transferred between the top mount 774 and the upper housing 768 via the isolator 776, between upper housing 768 and the actuator 662 via the support structures 780, and between the actuator 662 (i.e., the ball nut 662d thereof) and the bottom mount 778 via the shaft 664.
As mentioned above, the first load path supports the weight of the vehicle body 102 on the unsprung component 306, as well as a portion of the dynamic loading to the vehicle body 102 (e.g., from weight transfer as the vehicle 100 goes around a corner or accelerates, or as masses move within the vehicle 100) or dynamic loading to the unsprung component 306 (e.g., as a wheel goes over a bump or through a pothole). The force in the first load path is generally a function of a spring constant of the air spring 766 and the length (e.g., displacement) of the suspension system 760 (e.g., the distance between the vehicle body 102 and the unsprung component 306). The spring constant of the air spring 766 may be controlled with addition or removal of air from the pressurized cavity 766a, but may be controlled in a relatively small range (e.g., +/−20%) and at a relatively low speed (e.g., bandwidth) that is limited by the rate of air supply to or release from the pressurized cavity 766a.
The second load path is configured control force transfer between the vehicle body 102 and the unsprung component 306 due to the dynamic loading, for example, functioning as a damper. The force in the second load path is controlled directly by the actuator 662 (i.e., by the motor 662a applying a torque to the ball nut 662d that in turn applies an axial force to the shaft 664), which may be controlled in a large range (e.g., 0 kN+/−a force capacity) and at a relatively high speed (e.g., bandwidth), as compared to first load path by the air spring 766. As a result, the actuator 662 may be operated to selectively apply axial force to the shaft 664 (i.e., by selectively applying torque from the motor 662a to the ball nut 662d) to control force transmission from the unsprung component 306 to the vehicle body 102 in response to or anticipation of dynamic loading (e.g., in response to or in anticipation of road disturbances), while the air spring 766 may or may not be controlled in response to or in anticipation of dynamic loading.
As referenced above, the pressurized cavity 766a of the air spring 766 extends from an upper end to a lower end of the suspension system 760 (e.g., between the top mount 774 and the bottom mount 778), and may also contain a least a portion of the actuator 662 (e.g., one, or more, or all of the motor 662a, including both the rotor 662b and the stator 662c, the ball nut 662d, and the ball spline 662e) and the shaft 664. Various advantages may be offered by this configuration, as opposed to an air spring instead being arranged entirely below the actuator 662. For example, the usable volume of the pressurized cavity 766a may be larger and/or allow for narrower packaging of the air spring 766, as compared to an air spring mounted below the actuator 662. Additionally, an air spring mounted below the actuator 662 might otherwise need to be sealed to and move along the shaft 664, which may be difficult to perform given the grooves 664a, 664b in the outer surface thereof. Still further, the actuator 662 is protected from the outside environment by being located in the pressurized cavity 766a without the need for a protective shroud (e.g., a bellows).
As shown in
Referring to
The actuator 862 is configured similar to the actuator 662 (e.g., by including the motor 662a, the ball nut 662d, the ball spline 662e, and the inner housing 662f) with variations for mounting to the upper housing 868 and for communicating air between an upper chamber 866b and a lower chamber 866c of the pressurized cavity 866a. The shaft 664 is configured as describe previously. The air spring 866 is configured similar to the actuator 662 (e.g., by being defined by the upper housing 868, the lower housing 770, and the membrane 772) with variations to the configuration of the upper chamber 866b of the pressurized cavity 866a and in communicating air between the upper chamber 866b and the lower chamber 866c. The upper housing 868 is configured similar to the upper housing 768 with variations for mounting the actuator 862 thereto, in defining the upper chamber 866b, and in connecting to the top mount 774. The lower housing 770 and the membrane 772 are configured as described previously. These variations are described in further detail below.
The actuator 862 is mounted to the upper housing 868 and/or to the top mount 774 with an upper isolator 876a and a lower isolator 876b. Each of the upper isolator 876a and the lower isolator 876b are configured similar to the isolator 776 described previously by including inner and outer rigid rings between which is an intermediate compliant ring. The upper isolator 876a is positioned radially between and is rigidly coupled to the upper housing 868 and/or the top mount 774 and to the actuator 862. For example, the outer rigid ring of the upper isolator 776a may be rigidly coupled to an inner surface of the upper housing 868 and/or to the top mount 774a, while the inner rigid ring of the upper isolator 776a may be rigidly coupled to an outer radial surface of the inner housing 662f, such as to the upper inner housing portion 662h). The upper isolator 876a is positioned axially above the motor 662a, such as above the stator 662c and/or the rotor 662b).
The lower isolator 876b is positioned radially between and is rigidly coupled to the upper housing 868 and to the actuator 862. For example, the outer rigid ring of the lower isolator 876b may be rigidly coupled to an inner radial surface of the upper housing 868, while the inner rigid ring of the lower isolator 876b may be rigidly coupled to an outer radial surface of the inner housing 662f, such as to the lower inner housing portion 662g. The lower isolator 876b is spaced axially apart from the upper isolator 876a. For example, the lower isolator 876b is positioned below a majority of an axial length of the motor 662a (e.g., below a majority of the stator 662c), such as being coupled to the lower inner housing portion 662g. By being spaced apart axially, the upper isolator 876a and the lower isolator 876b cooperatively resist a bending moment applied to the suspension system 860, for example, between the actuator 862a and the upper housing 868.
The actuator 862 is additionally configured to allow air to flow therethrough between the upper chamber 866b and the lower chamber 866c of the pressurized cavity 866a of the air spring 866. Referring to
The cavity 866a is generally defined by the actuator 862 (e.g., the inner housing 662f thereof), the upper housing 868, the lower housing 770, the membrane 772, as well as between the top mount 774 and the bottom mount 778. The upper chamber 866b of the cavity is generally positioned within the upper housing 868, but is not defined or formed thereby, and is instead defined or formed by the inner housing 662f of the actuator 862, such that the upper housing 868 is isolated from the upper chamber 866b (e.g., is not in fluidic communication therewith or under pressure). As shown, the upper isolator 876a and the lower isolator 876b form a seal between the actuator 862 (e.g., the inner housing 662f thereof) and the upper housing 868, such that an annular cavity 868e defined radially between the actuator 862 and the upper housing 868 and axially between the upper isolator 876a and the lower isolator 876b is not in fluidic communication with the pressurized cavity 866a (e.g., the upper chamber 866b or otherwise) of the air spring 866. As a result, an upper portion of the upper housing 868 is not subject to the air pressure within the pressurized cavity 866a.
The upper housing 868 may be rigidly coupled to the top mount 774. For example, the upper housing 868 may be coupled directly to the upper housing 868 and/or to the outer rigid ring of the isolator 776 that is in turn rigidly coupled to the top mount 774.
A port 868a may be a variation of the port 768a and be configured to communicate air to and from the upper chamber 866b without communicating air to the region between sealed and unpressurized region between the upper housing 868 and the inner housing 662f of the actuator 662.
The suspension system 860 achieves various advantages of the suspension system 760. For example, the pressurized cavity 866a of the air spring 866 extends from an upper end to a lower end of the suspension system 860 (e.g., between the top mount 774 and the bottom mount 778), so as to provide a relatively large volume and/or narrow packaging as compared to an air spring instead mounted below the actuator 662. The actuator 862, by being contained within upper housing 868 is protected from the outside environment, while the motor 662a (e.g., the rotor 662b and the stator 662c) subject to the air pressure of the pressurized cavity 866a). Further, by containing the shaft 664 within the pressurized cavity 866a, a moving seal does not need to be formed therewith, which may be difficult to perform reliably with the grooves 664a, 664b thereon.
As referenced above, the first load path is formed by the air spring 866, whereby pressurized gas in the cavity 866a transfers force of the first load path between the top mount 774 and the bottom mount 778. The second load path is in parallel to the first load path and is formed by the actuator 862, whereby force of the second load path is transferred between the top mount 774 and the bottom mount 778 by the shaft 664, the ball nut 662d, the inner housing 662f of the actuator 662, the isolators 876a, 876b (e.g., by the compliant intermediate ring thereof), and the housing 868. The housing 868 may function to both define the pressurized cavity 866a, while also transferring force of the second load path. The isolator 876a may function to both seal the pressurized cavity 866a of the air spring 866, while also transferring force of the second load path. The pressurized cavity 866a may be cooperatively defined by the top mount 774, the isolator 776, the housing 868, the flexible membrane 772, and the bottom mount 778, and may be further defined by the lower housing 770.
Refer to the discussions above of the suspension systems 160, 660, 760 for further description of other parts and features of the suspension system 860, including those identified in
Referring to
The suspension system 960 differs from the suspension system 860 in that an annular cavity 968e, which is defined radially between the upper housing 968 and the actuator 862 (similar to the annular cavity 868e), is in communication with an upper chamber 966b of the cavity. As a result, the pressurized cavity 966a of the air spring 966 is defined or otherwise formed by the upper housing 968, which retains the air pressure within the pressurized cavity 966a. The actuator 862 and, in particular, the inner housing 662f thereof does not seal the pressurized cavity 866a, but is still contained within the pressurized cavity 866a and subject to the pressure therein.
Refer to the descriptions above of the suspension systems 160, 660, 760, 860 for further description of other parts and features of the suspension system 960, including those identified in
Referring to
The suspension system 1060 differs from the suspension systems 760, 860, 960 in that the upper housing 1068 does not form part of the second load path from the actuator 862 to the top mount 774. The upper isolator 876a and the lower isolator 876b are omitted. Rather, an upper end of the actuator 862 is coupled to the top mount 774 with an intermediate top mount 1076 being arranged therebetween. The intermediate top mount 1076 transfers forces of the second load path between the actuator 862 (e.g., the inner housing 862g thereof). The intermediate top mount 1076 may also provide similar damping functions of the upper isolator 876a and/or the lower isolator 876b by restraining motion between the actuator 862 and the top mount 774 (e.g., in rotational, radial, and axial directions) damping vibrations therebetween (e.g., from operation of the actuator 862 and/or from road disturbances).
Refer to the descriptions above of the suspension systems 160, 660, 760, 860, 960 for further description of other parts and features of the suspension system 1060, including those identified in
Referring to
A primary difference between the suspension system 1160 and the suspension system 860 is the omission of the upper housing 868. Without the upper housing 868, the pressurized cavity 1166a is formed by a housing 1162f of the actuator 1162, the lower housing 770, and the membrane 772 that seals lower housing 770 to the housing 1162f of the actuator 1162. The omission of the upper housing 868 may comparatively simplify and reduce weight of the suspension system 1160. The cavity 1166a is identified by cross-hatching in
The actuator 1162 is a variation of the actuator 862. The actuator 1162, includes the motor 662a (i.e., including the rotor 662b and the stator 662c), the ball nut 662d, and the ball spline 662e, and a housing 1162f The housing 1162f is a variation of the inner housing 662f, which extends further downward relative to the actuator 1162 than the inner housing 662f relative to the actuator 662.
The housing 1162f is a rigid annular structure that generally includes an upper housing portion 1162g and a lower housing portion 1162h, which are coupled to each other or integrally formed with each other as described previously. The housing 1162f may include more or fewer components than the upper housing portion 1162g and the lower housing portion 1162h.
The housing 1162f may be configured similar to the upper inner housing portion 662h, for example, by surrounding the motor 662a (e.g., being fixedly coupled to the stator 662c and/or rotatably supporting the rotor 662b with the upper bearing assembly 678) and including cooling passages (shown; not labeled).
An upper end of the actuator 1162 (e.g., an upper end of the upper housing portion 1162g) is coupled to the top mount 774 with an isolator 1176. The isolator 1176 may be configured as a tube isolator or bushing similar to the isolator 776, for example, by having inner and outer rigid rings coupled to and separated by an intermediate compliant ring. The isolator 1176 is rigidly coupled to each of the actuator 1162 and the top mount 774, for example, with the outer rigid ring being coupled to the top mount 774 and the inner rigid ring being coupled to the actuator 1162 (e.g., to the housing 1162f, such as the upper housing portion 1162g on an outer radial surface thereof).
In an alternative arrangement, the outer rigid ring of the isolator 1176 may be coupled to the housing 1162f of the actuator 1162 (e.g., to an inner surface thereof), while the inner rigid ring of the isolator 1176 is coupled to the top mount 774 (e.g., to an axially extending portion, such as the annular flange described above with respect to the suspension system 760 or a load cell of the top mount 774). Various packaging advantages may be provided by providing the isolator 1176 radially inward of the housing 1162f, for example, by allowing the load cell of the top mount 774 to be smaller and/or positioned within the isolator 1176. The housing 1162f of the actuator 1162 may be considered an outer housing of the suspension system 1160.
The upper housing portion 1162g defines an upper chamber 1166b of the pressurized cavity 1166a. The isolator 1176 functions to seal the housing 1162f of the actuator 1162 to the top mount 774 to define a portion of the pressurized cavity 1166a of the air spring 1166. The upper chamber 1166b, similar to the upper chambers 766b, 866b described previously, may contain therein the motor 662a (e.g., the rotor 662b and the stator 662c), which is subject the pressurized air.
The upper housing portion 1162g additionally includes a port 1168a by which air is communicated into and out of the pressurized cavity 1166a. For example, as described above, air may be added to or removed from the pressurized cavity 1166a to raise or lower a ride height of the vehicle (e.g., by displacing the vehicle body 102 relative to the unsprung component 306).
The lower housing portion 1162h may be configured, in various aspects, similar to the lower inner housing portion 662g, for example, by including an inner annular portion 1162j that surrounds the ball nut 662d and/or the ball spline 662e (e.g., being fixedly coupled to the ball spline 662e and/or rotatably supporting the ball nut 662d with a bearing assembly 676, such as a thrust bearing).
The lower housing portion 1162h is sealingly coupled to the lower housing 770 with the membrane 772, such that the lower housing portion 1162h, the housing 770, and the membrane 772 cooperatively define a lower chamber 1166c of the pressurized cavity 1166a of the air spring. For example, the lower housing portion 1162h includes an outer annular portion 1162k to which the membrane 772 is coupled. As the suspension system 1160 changes length, the outer annular portion 1162k of the lower housing portion 1162h and the lower housing 770 translate relative to each other (e.g., the lower housing 770 receiving the housing 1162f therein), while inner and outer portions of the membrane 772 translate past each other (as described previously).
The outer annular portion 1162k may be positioned radially outward of the inner annular portion 1162j, so as to define an annular channel 1162l therebetween. As the length of the suspension system 1160 changes or air is added to or removed from the pressurized cavity 1166a, air passes through the annular channel 1162l between the upper chamber 1166b and the lower chamber 1166c of the pressurized cavity 1166a.
The actuator 1162 is configured similar to the actuator 862 to allow air to pass therethrough between the upper chamber 1166b and the lower chamber 1166c, such as through axial channels in the housing 1162f, channels and/or gaps between the housing 1162f and the stator 662c and/or between the rotor 662b and the stator 662c, such channels and/or gaps being illustrated schematically in
As referenced above, the first load path is formed by the air spring 1166, whereby pressurized gas in the cavity 1166a transfers force of the first load path between the top mount 774 and the bottom mount 778. The second load path is in parallel to the first load path and is formed by the actuator 1162, whereby force of the second load path is transferred between the top mount 774 and the bottom mount 778 by the shaft 664, the ball nut 662d, the housing 1162f, and the isolator 1176 (e.g., by the compliant intermediate ring thereof). The housing 1162f may function to both define the pressurized cavity 1166a, while also transferring force of the second load path. The isolator 1176 may function to both seal the pressurized cavity 1166a of the air spring 1166, while also transferring force of the second load path. The pressurized cavity 1166a may be cooperatively defined by the top mount 1174, the isolator 1176, the housing 1162f of the actuator 1162, the flexible membrane 772, and the bottom mount 774, and may be further defined by another housing coupled to the bottom mount 774. The housing 1162f of the actuator 1162 may form an outer housing of the suspension system 1160.
Refer to the descriptions above of the suspension systems 160, 660, 760, 860, 960, 1060 for further description of other parts and features of the suspension system 1160, including those identified in
While the disclosure has been described in connection with certain embodiments, it is to be understood that the disclosure is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application is a national stage application of International Application No. PCT/US2018/029753, filed Apr. 27, 2018, which claims priority to and the benefit of U.S. Provisional Application No. 62/503,093, filed May 8, 2017, the entire disclosures of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/029753 | 4/27/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/208510 | 11/15/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2757938 | Crowder | Aug 1956 | A |
2901239 | Sethna | Aug 1959 | A |
2913252 | Norrie | Nov 1959 | A |
3089710 | Fiala | May 1963 | A |
3236334 | Wallerstein, Jr. | Feb 1966 | A |
3322379 | Flannelly | May 1967 | A |
3368824 | Julien | Feb 1968 | A |
3441238 | Flannelly | Apr 1969 | A |
3781032 | Jones | Dec 1973 | A |
3970162 | Le Salver et al. | Jul 1976 | A |
4206935 | Sheppard et al. | Jun 1980 | A |
4379572 | Hedenberg | Apr 1983 | A |
4530514 | Ito | Jul 1985 | A |
4537420 | Ito et al. | Aug 1985 | A |
4589678 | Lund | May 1986 | A |
4613152 | Booher | Sep 1986 | A |
4614359 | Lundin et al. | Sep 1986 | A |
4634142 | Woods et al. | Jan 1987 | A |
4637628 | Perkins | Jan 1987 | A |
4643270 | Beer | Feb 1987 | A |
4659106 | Fujita et al. | Apr 1987 | A |
4784378 | Ford | Nov 1988 | A |
4834416 | Shimoe et al. | May 1989 | A |
4893832 | Booher | Jan 1990 | A |
4922159 | Phillips et al. | May 1990 | A |
4960290 | Bose | Oct 1990 | A |
4981309 | Froeschle et al. | Jan 1991 | A |
4991698 | Hanson | Feb 1991 | A |
5027048 | Masrur | Jun 1991 | A |
5033028 | Browning | Jul 1991 | A |
5060959 | Davis et al. | Oct 1991 | A |
5172930 | Boye et al. | Dec 1992 | A |
5244053 | Kashiwagi | Sep 1993 | A |
5251926 | Aulerich et al. | Oct 1993 | A |
5364081 | Hartl | Nov 1994 | A |
5401053 | Sahm et al. | Mar 1995 | A |
5409254 | Minor et al. | Apr 1995 | A |
5468055 | Simon et al. | Nov 1995 | A |
5507518 | Nakahara et al. | Apr 1996 | A |
5517414 | Hrovat | May 1996 | A |
5645250 | Gevers | Jul 1997 | A |
5678847 | Izawa et al. | Oct 1997 | A |
5785345 | Barlas et al. | Jul 1998 | A |
5810335 | Wirtz et al. | Sep 1998 | A |
5829764 | Griffiths | Nov 1998 | A |
5880542 | Leary et al. | Mar 1999 | A |
6032770 | Alcone et al. | Mar 2000 | A |
6113119 | Laurent et al. | Sep 2000 | A |
6142494 | Higuchi | Nov 2000 | A |
6170838 | Laurent et al. | Jan 2001 | B1 |
6233510 | Platner et al. | May 2001 | B1 |
6249728 | Streiter | Jun 2001 | B1 |
6276710 | Sutton | Aug 2001 | B1 |
6314353 | Ohsaku et al. | Nov 2001 | B1 |
6357770 | Carpiaux et al. | Mar 2002 | B1 |
6364078 | Parison et al. | Apr 2002 | B1 |
6443436 | Schel | Sep 2002 | B1 |
6470248 | Shank et al. | Oct 2002 | B2 |
6502837 | Hamilton et al. | Jan 2003 | B1 |
6513819 | Oliver et al. | Feb 2003 | B1 |
6634445 | Dix et al. | Oct 2003 | B2 |
6637561 | Collins et al. | Oct 2003 | B1 |
6873891 | Moser et al. | Mar 2005 | B2 |
6926288 | Bender | Aug 2005 | B2 |
6940248 | Maresca et al. | Sep 2005 | B2 |
6945541 | Brown | Sep 2005 | B2 |
7017690 | Burke | Mar 2006 | B2 |
7032723 | Quaglia et al. | Apr 2006 | B2 |
7051851 | Svartz et al. | May 2006 | B2 |
7140601 | Nesbitt et al. | Nov 2006 | B2 |
7195250 | Knox et al. | Mar 2007 | B2 |
7202577 | Parison et al. | Apr 2007 | B2 |
7302825 | Knox | Dec 2007 | B2 |
7308351 | Knoop et al. | Dec 2007 | B2 |
7392997 | Sanville et al. | Jul 2008 | B2 |
7401794 | Laurent et al. | Jul 2008 | B2 |
7421954 | Bose | Sep 2008 | B2 |
7427072 | Brown | Sep 2008 | B2 |
7484744 | Galazin et al. | Feb 2009 | B2 |
7502589 | Howard et al. | Mar 2009 | B2 |
7543825 | Yamada | Jun 2009 | B2 |
7551749 | Rosen et al. | Jun 2009 | B2 |
7641010 | Mizutani et al. | Jan 2010 | B2 |
7644938 | Yamada | Jan 2010 | B2 |
7654540 | Parison et al. | Feb 2010 | B2 |
7818109 | Scully | Oct 2010 | B2 |
7823891 | Bushko et al. | Nov 2010 | B2 |
7932684 | O'Day et al. | Apr 2011 | B2 |
7962261 | Bushko et al. | Jun 2011 | B2 |
7963529 | Oteman et al. | Jun 2011 | B2 |
7976038 | Gregg | Jul 2011 | B2 |
8047551 | Morris et al. | Nov 2011 | B2 |
8067863 | Giovanardi | Nov 2011 | B2 |
8095268 | Parison et al. | Jan 2012 | B2 |
8099213 | Zhang et al. | Jan 2012 | B2 |
8109371 | Kondo et al. | Feb 2012 | B2 |
8112198 | Parison, Jr. et al. | Feb 2012 | B2 |
8113522 | Oteman et al. | Feb 2012 | B2 |
8127900 | Inoue | Mar 2012 | B2 |
8157036 | Yogo et al. | Apr 2012 | B2 |
8191874 | Inoue | Jun 2012 | B2 |
8282149 | Kniffin et al. | Oct 2012 | B2 |
8336319 | Johnston et al. | Dec 2012 | B2 |
8356861 | Kniffin et al. | Jan 2013 | B2 |
8360387 | Breen et al. | Jan 2013 | B2 |
8370022 | Inoue | Feb 2013 | B2 |
8387762 | Kondo et al. | Mar 2013 | B2 |
8417417 | Chen et al. | Apr 2013 | B2 |
8428305 | Zhang et al. | Apr 2013 | B2 |
8466639 | Parison, Jr. et al. | Jun 2013 | B2 |
8490761 | Kondo | Jul 2013 | B2 |
8499903 | Sakuta et al. | Aug 2013 | B2 |
8525453 | Ogawa | Sep 2013 | B2 |
8548678 | Ummethala et al. | Oct 2013 | B2 |
8579311 | Butlin, Jr. et al. | Nov 2013 | B2 |
8598831 | Ogawa | Dec 2013 | B2 |
8632078 | Ehrlich et al. | Jan 2014 | B2 |
8641052 | Kondo et al. | Feb 2014 | B2 |
8641053 | Pare | Feb 2014 | B2 |
8668060 | Kondo et al. | Mar 2014 | B2 |
8682530 | Nakamura | Mar 2014 | B2 |
8701845 | Kondo | Apr 2014 | B2 |
8725351 | Selden et al. | May 2014 | B1 |
8744680 | Rieger et al. | Jun 2014 | B2 |
8744694 | Ystueta | Jun 2014 | B2 |
8757309 | Schmitt et al. | Jun 2014 | B2 |
8783430 | Brown | Jul 2014 | B2 |
8890461 | Knox | Nov 2014 | B2 |
8930074 | Lin | Jan 2015 | B1 |
8938333 | Bose et al. | Jan 2015 | B2 |
9062983 | Zych | Jun 2015 | B2 |
9079473 | Lee et al. | Jul 2015 | B2 |
9102209 | Giovanardi et al. | Aug 2015 | B2 |
9291300 | Parker et al. | Mar 2016 | B2 |
9316667 | Ummethala et al. | Apr 2016 | B2 |
9349304 | Sangermano, II et al. | May 2016 | B2 |
9399384 | Lee et al. | Jul 2016 | B2 |
9428029 | Job | Aug 2016 | B2 |
9533539 | Eng et al. | Jan 2017 | B2 |
9550495 | Tatourian et al. | Jan 2017 | B2 |
9625902 | Knox | Apr 2017 | B2 |
9643467 | Selden et al. | May 2017 | B2 |
9702349 | Anderson et al. | Jul 2017 | B2 |
9855887 | Potter et al. | Jan 2018 | B1 |
9868332 | Anderson et al. | Jan 2018 | B2 |
9975391 | Tseng et al. | May 2018 | B2 |
10065474 | Trangbaek | Sep 2018 | B2 |
10081408 | Yoshida | Sep 2018 | B2 |
10093145 | Vaughan et al. | Oct 2018 | B1 |
10245984 | Parker et al. | Apr 2019 | B2 |
10300760 | Aikin et al. | May 2019 | B1 |
10315481 | Lu et al. | Jun 2019 | B2 |
10377371 | Anderson et al. | Aug 2019 | B2 |
10513161 | Anderson et al. | Dec 2019 | B2 |
20010045719 | Smith | Nov 2001 | A1 |
20020190486 | Phillis et al. | Dec 2002 | A1 |
20030030241 | Lawson | Feb 2003 | A1 |
20030080526 | Conover | May 2003 | A1 |
20040054455 | Voight et al. | Mar 2004 | A1 |
20040074720 | Thieltges | Apr 2004 | A1 |
20040094912 | Niwa et al. | May 2004 | A1 |
20040226788 | Tanner | Nov 2004 | A1 |
20040245732 | Kotulla et al. | Dec 2004 | A1 |
20050051986 | Galazin et al. | Mar 2005 | A1 |
20050096171 | Brown et al. | May 2005 | A1 |
20050199457 | Beck | Sep 2005 | A1 |
20050206231 | Lu et al. | Sep 2005 | A1 |
20050211516 | Kondo | Sep 2005 | A1 |
20050247496 | Nagaya | Nov 2005 | A1 |
20060043804 | Kondou | Mar 2006 | A1 |
20060076828 | Lu et al. | Apr 2006 | A1 |
20060119064 | Mizuno et al. | Jun 2006 | A1 |
20060181034 | Wilde et al. | Aug 2006 | A1 |
20060266599 | Denys et al. | Nov 2006 | A1 |
20060273530 | Zuber | Dec 2006 | A1 |
20070069496 | Rinehart et al. | Mar 2007 | A1 |
20070107959 | Suzuki et al. | May 2007 | A1 |
20070114706 | Myers | May 2007 | A1 |
20070199750 | Suzuki et al. | Aug 2007 | A1 |
20070210539 | Hakui et al. | Sep 2007 | A1 |
20080017462 | Mizutani et al. | Jan 2008 | A1 |
20080100020 | Gashi et al. | May 2008 | A1 |
20080111334 | Inoue | May 2008 | A1 |
20080164111 | Inoue | Jul 2008 | A1 |
20080185807 | Takenaka | Aug 2008 | A1 |
20080283315 | Suzuki et al. | Nov 2008 | A1 |
20090033055 | Morris et al. | Feb 2009 | A1 |
20090064808 | Parison et al. | Mar 2009 | A1 |
20090095584 | Kondo et al. | Apr 2009 | A1 |
20090120745 | Kondo et al. | May 2009 | A1 |
20090121398 | Inoue | May 2009 | A1 |
20090173585 | Kappagantu | Jul 2009 | A1 |
20090174158 | Anderson et al. | Jul 2009 | A1 |
20090198419 | Clark | Aug 2009 | A1 |
20090218867 | Clark | Sep 2009 | A1 |
20090243402 | O'Day et al. | Oct 2009 | A1 |
20090243598 | O'Day | Oct 2009 | A1 |
20090273147 | Inoue et al. | Nov 2009 | A1 |
20090286910 | Bloomfield | Nov 2009 | A1 |
20090302559 | Doerfel | Dec 2009 | A1 |
20090321201 | Sakuta et al. | Dec 2009 | A1 |
20100044977 | Hughes et al. | Feb 2010 | A1 |
20100059959 | Kim | Mar 2010 | A1 |
20100200343 | Kondo | Aug 2010 | A1 |
20100207344 | Nakamura | Aug 2010 | A1 |
20100222960 | Oida et al. | Sep 2010 | A1 |
20100230876 | Inoue | Sep 2010 | A1 |
20100252376 | Chern et al. | Oct 2010 | A1 |
20100253019 | Ogawa | Oct 2010 | A1 |
20110115183 | Alesso et al. | May 2011 | A1 |
20120013277 | Ogawa | Jan 2012 | A1 |
20120059547 | Chen et al. | Mar 2012 | A1 |
20120109483 | O'Dea et al. | May 2012 | A1 |
20120153718 | Rawlinson et al. | Jun 2012 | A1 |
20120181757 | Oteman et al. | Jul 2012 | A1 |
20120187640 | Kondo | Jul 2012 | A1 |
20120193847 | Muragishi et al. | Aug 2012 | A1 |
20120305348 | Katayama et al. | Dec 2012 | A1 |
20120306170 | Serbu et al. | Dec 2012 | A1 |
20130060422 | Ogawa et al. | Mar 2013 | A1 |
20130060423 | Jolly | Mar 2013 | A1 |
20130106074 | Koku et al. | May 2013 | A1 |
20130221625 | Pare | Aug 2013 | A1 |
20130229074 | Haferman et al. | Sep 2013 | A1 |
20130233632 | Kim et al. | Sep 2013 | A1 |
20130253764 | Kikuchi et al. | Sep 2013 | A1 |
20130341143 | Brown | Dec 2013 | A1 |
20140005888 | Bose et al. | Jan 2014 | A1 |
20140145498 | Yamakado et al. | May 2014 | A1 |
20140156143 | Evangelou et al. | Jun 2014 | A1 |
20140260233 | Giovanardi et al. | Sep 2014 | A1 |
20140312580 | Gale | Oct 2014 | A1 |
20140358378 | Howard et al. | Dec 2014 | A1 |
20150123370 | Lee et al. | May 2015 | A1 |
20150197130 | Smith et al. | Jul 2015 | A1 |
20150224845 | Anderson et al. | Aug 2015 | A1 |
20150231942 | Trangbaek et al. | Aug 2015 | A1 |
20150343876 | Yoshizawa et al. | Dec 2015 | A1 |
20160059658 | Kuriki | Mar 2016 | A1 |
20160096458 | Parker et al. | Apr 2016 | A1 |
20160159187 | Mohamed | Jun 2016 | A1 |
20160167743 | Melcher | Jun 2016 | A1 |
20160200164 | Tabata et al. | Jul 2016 | A1 |
20160291574 | Parison | Oct 2016 | A1 |
20160339823 | Smith et al. | Nov 2016 | A1 |
20160347143 | Hrovat et al. | Dec 2016 | A1 |
20170047823 | Sangermano, III et al. | Feb 2017 | A1 |
20170100980 | Tsuda | Apr 2017 | A1 |
20170129367 | Hein | May 2017 | A1 |
20170129371 | Knox | May 2017 | A1 |
20170129372 | Hein et al. | May 2017 | A1 |
20170129373 | Knox et al. | May 2017 | A1 |
20170137023 | Anderson et al. | May 2017 | A1 |
20170144501 | Wall | May 2017 | A1 |
20170203673 | Parker et al. | Jul 2017 | A1 |
20170240018 | Mettrick et al. | Aug 2017 | A1 |
20170241504 | Delorenzis et al. | Aug 2017 | A1 |
20170253101 | Kuriki | Sep 2017 | A1 |
20170253155 | Knox et al. | Sep 2017 | A1 |
20180015801 | Mohamed et al. | Jan 2018 | A1 |
20180022178 | Xi | Jan 2018 | A1 |
20180029585 | Tanimoto | Feb 2018 | A1 |
20180056748 | Grimes | Mar 2018 | A1 |
20180065438 | Ogawa | Mar 2018 | A1 |
20180079272 | Aikin | Mar 2018 | A1 |
20180089901 | Rober et al. | Mar 2018 | A1 |
20180105082 | Knox | Apr 2018 | A1 |
20180126816 | Kondo et al. | May 2018 | A1 |
20180134111 | Toyohira et al. | May 2018 | A1 |
20180162186 | Anderson et al. | Jun 2018 | A1 |
20180162187 | Trangbaek | Jun 2018 | A1 |
20180195570 | Churchill et al. | Jul 2018 | A1 |
20180208009 | McGuire et al. | Jul 2018 | A1 |
20180222274 | Davis et al. | Aug 2018 | A1 |
20180297587 | Kasaiezadeh Mahabadi et al. | Oct 2018 | A1 |
20180345747 | Boon et al. | Dec 2018 | A1 |
20180370314 | Higle | Dec 2018 | A1 |
20190023094 | Panagis et al. | Jan 2019 | A1 |
20190118604 | Suplin et al. | Apr 2019 | A1 |
20190248203 | Krehmer | Aug 2019 | A1 |
20190308484 | Belter et al. | Oct 2019 | A1 |
20200088214 | Woodard et al. | Mar 2020 | A1 |
20200171907 | Hall et al. | Jun 2020 | A1 |
20200180386 | Tabata et al. | Jun 2020 | A1 |
20200216128 | Doerksen | Jul 2020 | A1 |
20210061046 | Simon et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
108215946 | Jun 2018 | CN |
208439009 | Jan 2019 | CN |
19853876 | May 2000 | DE |
19850169 | Jul 2000 | DE |
102009060213 | Jun 2011 | DE |
102010041404 | Mar 2012 | DE |
202012002846 | Jul 2012 | DE |
102015003530 | Sep 2016 | DE |
102016000686 | Jul 2017 | DE |
102018208774 | Dec 2019 | DE |
1693233 | Apr 2009 | EP |
2072855 | Jun 2009 | EP |
2233330 | Feb 2013 | EP |
3088230 | Nov 2016 | EP |
2220625 | Jan 1990 | GB |
2437633 | Oct 2007 | GB |
2004155258 | Jun 2004 | JP |
2006200734 | Aug 2006 | JP |
2012002300 | Jan 2012 | JP |
2012167757 | Sep 2012 | JP |
2013244841 | Dec 2013 | JP |
5796315 | Oct 2015 | JP |
101509600 | Apr 2015 | KR |
20170095073 | Aug 2017 | KR |
9304883 | Mar 1993 | WO |
2011148792 | Dec 2011 | WO |
2012028228 | Mar 2012 | WO |
2014004118 | Jan 2014 | WO |
2014004119 | Jan 2014 | WO |
2014094934 | Jun 2014 | WO |
2015153811 | Oct 2015 | WO |
2015169530 | Nov 2015 | WO |
2016120044 | Aug 2016 | WO |
2017055151 | Apr 2017 | WO |
Entry |
---|
Cosford, J., “Is it a fair fight? Hydraulics vs. electrics”, https://www.mobilehydraulictips.com/fair-fight-hydraulics-vs-electrics/, Mar. 28, 2014 (10 pp). |
Monroe Intelligent Suspension, “CVSA2/KINETIC: Low Energy for High Performance”, www.monroeintelligentsuspension.com/products/cvsa2-kinetic/, Date Unknown, Downloaded Mar. 2, 2017, 2 pp. |
Tenneco, “Integrated Kinetic, H2 CES System, Ride Control Innovation, Accelerated”, Rev. Sep. 2011, 4 pp. |
porsche.com, “Porsche AG: Porsche 918 RSR—Racing Laboratory With Even Higher-Performance Hybrid Drive—Porsche USA”, Current Press Releases dated Jan. 10, 2011, Downloaded Mar. 13, 2017, www. porsche.com/usa/aboutporsche/pressreleases/pag/?pool=international-de&id-2011-01-10, 6 pp. |
autoblog.com, “Porsche (finally) Unleashes Full, Official Details in 918 Spyder—Autoblog”, Sep. 9, 2013, www.autoblog.com/2013/09/09/porsche-official-detials-918-spyder-frankfurt/, Downloaded Mar. 13, 2017, 26 pp. |
press.porsche.com, “Introducing the Porsche 918 Spyder”, Date Unknown, http://press.porsche.com/news/release.php?id-787, Downloaded Mar. 13, 2017, 7 pp. |
Edren, Johannes, “Motion Modelling and Control Strategies of Over-Actuated Vehicles”, Doctoral Thesis, Stockholm 2014 (56 pp). |
Bolognesi, P ., et al., “FEM Modeling and Analysis of a Novel Rotary-Linear Isotropic Brushless Machine”, XIX International Conference of Electrical Machines—ICEM 2010, Rome (6 pp). |
Xu, Lei, et al., “Design and Analysis of a Double-Stator Linear-Rotary Permanent-Magnet Motor”, IEEE Transactions on Applied Superconductivity, vol. 26, No. 4, Jun. 2016, (4 pp). |
SAE International, “Michelin re-invents the wheel”, Oct. 14, 2008, Downloaded Sep. 7, 2017, http://articles.sae.org/4604/ (2 pp). |
daimler.com, “Suspension: The world's first suspension system with ‘eyes’”, https://media.daimler.com/marsMediaSite/en/instance/ko/Suspension-The-worlds-first-suspension-system-with-eyes.xhtml?oid=9904306, May 15, 2013 (6 pp). |
youtube.com., KSSofficial, “Miniature Ball Screw With Ball Spline / English”, Published on May 10, 2013, https://www.youtube.com/watch?v=vkcxmM0iC8U (2 pp). |
Nippon Bearing, “Ball Screw Spline SPBR/SPBF”, Product Description, Date Unknown, Downloaded Jun. 28, 2019, https://www.nbcorporation.com/shop/ball-spline/spbr-spbf/ (2 pp). |
Wikipedia, “Trailing-arm suspension”, https://en.wikipedia.org/wiki/Trailing-arm_suspension, downloaded Sep. 3, 2019 (2 pp). |
Number | Date | Country | |
---|---|---|---|
20200171907 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62503093 | May 2017 | US |