1. Field of the Invention
The present invention relates generally to agricultural equipment, and, more particularly to an agricultural product delivery system for an agricultural product such as seed, herbicide, insecticide and/or fertilizer entrained in an air stream, and to a method for equipment operation at near maximum product delivery rate while minimizing the likelihood of delivery system blockage.
2. Description of the Related Art
Pneumatic agricultural product delivery systems utilize a flow of air to assist in the delivery and movement of particulate material or product such as fertilizer, seed, insecticide or herbicide from a product supply chamber to a growing medium, such as soil. Such pneumatic agricultural particulate material delivery systems are commonly employed in planters, air drills and a variety of other agricultural implements. Special purpose implements such as fertilizer application equipment, planters or air seeders may also employ pneumatic delivery systems. Known pneumatic agricultural product delivery systems typically use air in motion to transport the product through an interior passage provided by a series of elongate tubes which extend from the product supply chamber or hopper to an outlet adjacent to the soil. Various conditions may lead to product blockage in the tubes resulting in lost time and effort to remove the blockage and resume the agricultural process.
What is needed in the art is an air distribution system which minimizes blockage problems and can allow the equipment to run at near maximum delivery capacity.
The present invention provides an agricultural product air distribution system which minimizes the likelihood of product blockage while maintaining product flow rate near maximum.
The invention in one form is directed to an agricultural implement for pneumatically distributing an agricultural particulate material, such as a fertilizer or seeds, as part of a crop production process. The implement has a transport unit movable on an agricultural field in a longitudinal direction and supporting a product supply chamber. There is a pair of product delivering booms extendable transversely to either side, each including a plurality of transversely extending conduits (conducts or tubes) of varying lengths terminating in product distributing outlet nozzles. A mixing chamber receives air from an air flow source (fan) and product from the supply chamber to provide an air entrained flow of particles to each transversely extending conduit. A controller monitors product delivery and controls implement operation. Each conduit includes a pressure tap near the outlet nozzle for providing the controller with a pressure differential indication for the conduit. The controller initiates a corrective action modifying the operation of the implement when a predetermined pressure differential threshold indicative of imminent conduit blockage is reached. The corrective action may be a slowing of the ground speed of the transport unit by reducing engine speed or varying the implement transmission ratio either manually or using a specified protocol (ISOBUS protocol for example). The corrective action may also be an increase in the air flow volume (volume per unit time or air mass flow rate) from the air flow source (fan), introduction of an additional burst of compressed air into the conduit near the mixing chamber (various pressure variation patterns are possible), or a temporary increase in air flow from the air flow source.
The invention in another form is directed to a process of monitoring an air/particle mixture movement through an elongated agricultural product delivery system conduit to optimize the rate of product delivery. The process includes measuring the pressure differential along the conduit and comparing that measured pressure differential with a predetermined threshold pressure differential. A corrective action is initiated when the comparison indicates imminent conduit blockage. The corrective action modifies the delivery system operation by reducing the rate of agricultural product flow through the conduit or temporarily augmenting the air flow in the conduit. The corrective action maintains product flow near maximum at all times without allowing the conduit to become blocked.
An advantage of the present invention is reduced down-time due to product clogging in delivery tubes.
Another advantage is maintenance of a near maximum product flow rate while distributing product.
Yet another advantage is optimum utilization of an agricultural implement having an air product distribution system.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
As shown in
In a preferred embodiment, the system has both a fan and an air compressor. The pneumatic source (air compressor) 70 produces an air flow at a higher pressure than the fan 42. The fan runs continuously and the air boost from the compressor air accumulator runs on demand at near plugging conditions using various air pressure patterns. The system can also speed up the fan to provide in general a larger air flow rate, but the response time is slower than with the compressed air to break up a wad of near-stopped particles.
The controller 66 operation is summarized in
Exemplary air blast patterns are shown in
The controller 66 is further operative to optimize the rate of product delivery by measuring 90 the pressure differential along the conduit and comparing 98 the measured pressure differential to a predetermined threshold pressure differential. When that threshold is reached indicating imminent conduit blockage, a corrective action 100 is initiated. The corrective action comprises modifying the delivery system operation by any suitable technique as by reducing the rate of agricultural product flow through the conduit, for example, by reducing the implement ground speed 102. Implement ground speed may be reduced by slowing the engine 12, or by varying the implement or traction unit transmission ratio either manually or utilizing any suitable protocol like ISOBUS. The corrective action may also include temporarily augmenting the air flow in the conduit as by increasing air flow 104 from the fan 42, or providing a short air blast 106 from pneumatic source 70. The fan 42 may temporarily provide the function of pneumatic pressure source 70 employing one or more solenoids to release air into all or selected ones of the air boosters, but an air compressor is preferred for its quick response time. The corrective action is intended to maintain product flow near maximum at all times without allowing the conduit to become blocked.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3482735 | Goulter | Dec 1969 | A |
3985263 | Rohrbach et al. | Oct 1976 | A |
5260875 | Tofte et al. | Nov 1993 | A |
5485962 | Moss | Jan 1996 | A |
5601209 | Barsi et al. | Feb 1997 | A |
5765492 | Sirkkala | Jun 1998 | A |
5831542 | Thomas | Nov 1998 | A |
6164560 | Lehrke et al. | Dec 2000 | A |
6644225 | Keaton | Nov 2003 | B2 |
6935256 | Meyer | Aug 2005 | B1 |
7140310 | Mayerle | Nov 2006 | B2 |
7490563 | Eastin et al. | Feb 2009 | B2 |
7490565 | Holly | Feb 2009 | B2 |
8350689 | Mariman | Jan 2013 | B2 |
8504310 | Landphair | Aug 2013 | B2 |
8651927 | Roberge et al. | Feb 2014 | B1 |
20100282141 | Wollenhaupt et al. | Nov 2010 | A1 |
20100313801 | Peterson | Dec 2010 | A1 |
20120227647 | Gelinske | Sep 2012 | A1 |
20120316736 | Hubalek | Dec 2012 | A1 |
20130061790 | Binsirawanich | Mar 2013 | A1 |
20130211628 | Thurow | Aug 2013 | A1 |
20130294848 | Fulkerson et al. | Nov 2013 | A1 |
20140049395 | Hui | Feb 2014 | A1 |
Entry |
---|
A brochure entitled “Safeguard Blockage Monitor”, Micro-Trak Systems, Inc., Eagle Lake, MN (4 pages). |
Number | Date | Country | |
---|---|---|---|
20150366127 A1 | Dec 2015 | US |