The system of the present application relates to airbags for a vehicle. In particular, the system of the present application relates to a vent system for use with external airbags for an aircraft.
Conventional airbag systems typically don't have a means for resealing after venting during a crash. As such, the airbag vents through a blow-away valve, or the like. Other conventional airbag systems may rely upon a designated actuator system for controlling airflow and/or sealing an airbag vent passage. A designated actuator system adds complexity and weight to the aircraft.
Although the developments in airbag systems have produced significant improvements, considerable shortcomings remain.
The novel features believed characteristic of the system of the present application are set forth in the appended claims. However, the system itself, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, in which the leftmost significant digit(s) in the reference numerals denote(s) the first figure in which the respective reference numerals appear, wherein:
While the system of the present application is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the method to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the application as defined by the appended claims.
Illustrative embodiments of the system of the present application are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
The inflatable crash attenuation system of the present application includes one or more airbags that are inflated prior to impact so as to reduce occupant injury and aircraft structure damage and vented during impact so as to prevent an undesired secondary impact. The system is configured to be selectively re-inflated after venting. The system can be used on a number of different types of aircraft, for example, helicopter, fixed wing aircraft, and other aircraft, and in particular those that are rotorcraft.
A malfunction with rotor system 103, the drive system, or any other flight critical component, may necessitate a descent from altitude at a higher rate of speed than is desirable. If the rate is an excessively high value at impact with the ground or water, the occupants of rotorcraft 101 may be injured. Further, such an impact may cause rotorcraft 101 to be severely damaged by the decelerative forces exerted on rotorcraft 101. To reduce these forces, an external airbag system comprising inflatable, non-porous airbags 107 and 109 is installed under fuselage 111. Though not shown in the drawings, airbags 107 and 109 are stored in an un-inflated condition and are inflated under the control of a crash attenuation control system.
It should be appreciated that the quantity and geometry of airbags 107 and 109 may take on a variety of configurations. Each airbag, such as airbag 107, preferably has a relatively non-porous bladder. In a preferred embodiment, the bladder is formed of a fabric that comprises resilient material such as Kevlar and/or Vectran. A vent may communicate with the interior of the bladder, allowing for gas to controllably escape from within the airbag 107.
The sensor system 123 is shown in
The gas generators 305a-305e may be of wide variety of configurations and various types, such as gas-generating chemical devices, combustive systems, and compressed air, to name a few, for providing gas for inflation of airbags 107 and 109. For example, gas generators 305a-305e may be individual gas generators, such that each gas generator is independently operable to selectively provide pressurized gas to the interior of airbag 107 or actuator duct 313. Further, gas generators 305a-305e may be a plurality of ports, each port being connected to a singular gas generator that is configured to selectively operate and direct pressurized gas to one or more ports.
Re-inflation of airbag 107 is particularly advantageous when rotorcraft 101 has an impact on a fluid surface, such as a lake, river, ocean, and the like. Re-inflation of airbag 107 allows airbag 107 to serve as a flotation device, in addition to initially providing crash attenuation. By configuring airbag 107 to serve dual purposes of crash attenuation and subsequent flotation, system 301 is more efficient and lightweight than having two separate and distinct crash attenuation and flotation systems.
Actuator door 315 is preferably hinged so that it rotates about the hinge during deployment. Prior to deployment, actuator door 315 is held open by a shear pin 331. Shear pin 331 is configured to shear off when actuator airbag 317 builds with pressure, thereby releasing actuator door 315. It should be appreciate that actuator door 315 may take on a wide variety of configurations.
Referring now to
Actuator door 315 preferably sits against a stop 333, or frame that facilitates sealing contact between actuator door 315 and the interior of vent passage 303. Furthermore, a compliant seal may be used between stop 333 and actuator door 315 to facilitate sealing contact therebetween.
With airbag 107 re-inflated, airbag 107 functions to supplement flotation of rotorcraft 101. It should be appreciated that other flotation bags may be used to augment the flotation provided by airbag 107. For example, one or more outrigger flotation airbags may be deployed at the outboard portions of the rotorcraft 101 in order to contribute to flotation and stability.
The system of the present application provides significant advantages, including: (1) allowing the crash attenuation airbag to function as a flotation airbag subsequent an impact; (2) providing an actuator system that is actuated by the gas generator system that is used to initially inflate the crash attenuation airbag; and (3) allowing the gas generator system to function as to close the actuator door, in addition to inflating and re-inflating the airbag.
The particular embodiments disclosed above are illustrative only, as the application may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the application. Accordingly, the protection sought herein is as set forth in the claims below. It is apparent that a system with significant advantages has been described and illustrated. Although the system of the present application is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/062300 | 12/29/2010 | WO | 00 | 10/15/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/091700 | 7/5/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2131528 | Soyer | Sep 1938 | A |
2713466 | Fletcher et al. | Jul 1955 | A |
3602661 | Liedberg | Aug 1971 | A |
3603535 | DePolo | Sep 1971 | A |
3727716 | Jenkins | Apr 1973 | A |
3738597 | Earl et al. | Jun 1973 | A |
3964698 | Earl | Jun 1976 | A |
3981462 | Berezhnoi et al. | Sep 1976 | A |
3990658 | Letsinger | Nov 1976 | A |
4004761 | McAvoy | Jan 1977 | A |
4032088 | McAvoy | Jun 1977 | A |
4068606 | Van Veldhuizen | Jan 1978 | A |
4657516 | Tassy | Apr 1987 | A |
5259574 | Carrot | Nov 1993 | A |
5356097 | Chalupa | Oct 1994 | A |
5407150 | Sadleir | Apr 1995 | A |
5560568 | Schmittle | Oct 1996 | A |
5725244 | Cundill | Mar 1998 | A |
5765778 | Otsuka | Jun 1998 | A |
5836544 | Gentile | Nov 1998 | A |
5992794 | Rotman et al. | Nov 1999 | A |
6070546 | Downey et al. | Jun 2000 | A |
6158691 | Menne et al. | Dec 2000 | A |
6227325 | Shah | May 2001 | B1 |
6273463 | Peterson et al. | Aug 2001 | B1 |
6338456 | Cairo-Iocco et al. | Jan 2002 | B1 |
6439256 | Koelsch et al. | Aug 2002 | B2 |
6497389 | Rawdon et al. | Dec 2002 | B1 |
6497429 | Matsumoto | Dec 2002 | B2 |
6648371 | Vendely et al. | Nov 2003 | B2 |
6820898 | Dinsdale et al. | Nov 2004 | B2 |
6886776 | Wagner et al. | May 2005 | B2 |
7104566 | Pinsenschaum et al. | Sep 2006 | B2 |
7232001 | Hakki et al. | Jun 2007 | B2 |
7690681 | Hall et al. | Apr 2010 | B2 |
7775554 | Smydra et al. | Aug 2010 | B2 |
7954752 | Smith et al. | Jun 2011 | B2 |
8348192 | Tho et al. | Jan 2013 | B2 |
8418957 | Smith et al. | Apr 2013 | B2 |
8474753 | Hill et al. | Jul 2013 | B2 |
20030062443 | Wagner et al. | Apr 2003 | A1 |
20030192730 | Kikuchi et al. | Oct 2003 | A1 |
20050077426 | Simard | Apr 2005 | A1 |
20070246922 | Manssart | Oct 2007 | A1 |
20080087511 | Taylor et al. | Apr 2008 | A1 |
20100044507 | Smith et al. | Feb 2010 | A1 |
20100206983 | Tho et al. | Aug 2010 | A1 |
20110204181 | Hill et al. | Aug 2011 | A1 |
20110226898 | Smith et al. | Sep 2011 | A1 |
20130032665 | Lu et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
3024551 | Jan 1982 | DE |
411830 | Dec 1992 | DE |
1403180 | Mar 2004 | EP |
5322496 | Dec 1993 | JP |
8192797 | Jul 1996 | JP |
11268605 | Oct 1999 | JP |
2006046038 | May 2006 | WO |
WO 2006046038 | May 2006 | WO |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority mailed by ISA/USA, U.S. Patent and Trademark Office on Feb. 28, 2011 for International Patent Application No. PCT/US10/062300, 9 pages. |
Extended European Search Report in related European patent application No. 10861426, mailed Feb. 3, 2014, 5 pages. |
“CABS Cockpit Air Bag System.” Armor Holdings Aerospace & Defense Group, Jan. 2006. |
Akif Bolukbasi, “ActiveCrash Protection Systems for UAVs,” American Helicopter Society Annual Forum 63 Proceedings, Virginia Beach, VA, May 1-3, 2007. |
Akif Bolukbasi, “Active Crash Protection Systems for Rotorcraft,” Center for Rotorcraft Innovation/National Rotorcraft Technology Center Program 2007 Year End Review, Phoenix, AZ, Feb. 19-20, 2008. |
Rejection Notice for Japanese Application No. 2008-542336, dated Feb. 23, 2011, 1 page. |
REAPS Rotorcraft Protection, Brochure by Rafael Armament Development Authority, Ltd., Ordnance Systems Division, Haifa, Israel. |
Kevin Coyne, F-111 Crew Module Escape and Survival Systems, pp. 1-10, http://www.f-111.net/ejection.htm. |
Specification for PCT/US09/51821 filed on Jul. 27, 2009. |
Response to Invitation to Correct Defects for PCT/US09/51821 dated Sep. 16, 2009. |
International Search Report for PCT/US09/51821 dated Sep. 11, 2009. |
Specification for PCT/US07/82140 filed on Oct. 22, 2007. |
International Search Report for PCT/US07/82140 dated Apr. 18, 2008. |
Article 34 Amendments for PCT/US07/82140 filed on Aug. 18, 2008. |
International Publication of PCT/US07/82140 published on Apr. 30, 2009. |
Article 34 Amendments for PCT/US07/82140 filed on Oct. 13, 2009. |
Office Action from Corresponding Canadian Application No. 2,628,380, dated Dec. 23, 2009. |
Office Action for U.S. Appl. No. 12/089,884, dated Aug. 6, 2010. |
Office Acton for U.S. Appl. No. 12/089,884, dated Dec. 8, 2010. |
Notice of Allowance for U.S. Appl. No. 12/089,884, dated Jan. 26, 2011. |
Office Action from Corresponding Canadian Application No. 2,628,380, dated Feb. 8, 2011. |
First Examination Report from Corresponding Mexican Application No. Mx/2008/0060008, dated Mar. 22, 2011; Received in Office Apr. 6, 2011. |
International Search Report for PCT/US06/43706 dated Jul. 18, 2008. |
International Preliminary Report on Patentability for PCT/US06/43706 dated Mar. 19, 2009. |
First Office Action in Chinese Application No. 200680041870.7 by the Chinese Patent Office, dated Apr. 29, 2011. |
Notification of the Decision to Grant a Patent Right For Patent for Invention issued by the Patent Office of the People's Republic of China for related Chinese Patent Application No. 200680041870.7 on Jan. 21, 2012. |
First Office Action from application 200780102216. Issued from the Chinese Patent Office dated Apr. 27, 2012, 5 pages. |
Extended European Search Report dated Aug. 6, 2012 from related European Patent Application No. 07844510.3 |
Specification for PCT/US06/43706 filed Nov. 8, 2006. |
Response to Invitation to Correct Defects for PCT/US06/43706 dated Apr. 7, 2008. |
Publication of PCT/US06/43706 dated May 8, 2008. |
International Preliminary Report on Patentability mailed by IPEA/US on Sep. 28, 2011 for International Patent Application No. PCT/US09/51815, 4 pages. |
International Search Report and the Written Opinion of the International Searching Authority mailed by ISA/USA, U.S. Patent and Trademark Office on Apr. 25, 2011 for International Patent Application No. PCT/US11/025857, 8 pages. |
International Search Report and the Written Opinion of the International Searching Authority mailed by ISA/USA, U.S. Patent and Trademark Office on Jun. 13, 2011 for International Patent Application No. PCT/US11/030514, 8 pages. |
International Publication of related PCT Application No. PCT/US/09/051821 filed Jul. 27, 2009; Publication No. WO 2011/014153 A1. |
Office Action Issued from the Canadian Intellectual Property Office dated Jul. 25, 2014 from corresponding application No. 2,821,326. |
Office Action dated Aug. 6, 2014 from counterpart EP App. No. 11859409.2. |
Number | Date | Country | |
---|---|---|---|
20130032665 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13380925 | US | |
Child | 13641426 | US | |
Parent | 13641426 | US | |
Child | 13641426 | US | |
Parent | 13125884 | US | |
Child | 13641426 | US |