Actively-engageable movement-restriction mechanism for use with an annuloplasty structure

Information

  • Patent Grant
  • 11202709
  • Patent Number
    11,202,709
  • Date Filed
    Thursday, May 30, 2019
    5 years ago
  • Date Issued
    Tuesday, December 21, 2021
    2 years ago
Abstract
Apparatus includes an implant including a flexible longitudinal member extending along a longitudinal length of the implant and a flexible contracting member extending alongside the longitudinal member and along the longitudinal length of the implant. The contracting member is configured to facilitate reduction of a perimeter of the implant by applying a contracting force to the longitudinal member in response to an application of force to the contracting member. The contracting member is disposed at a radially outer perimeter of the longitudinal member and configured to apply a pushing force to the longitudinal member responsively to the application of the force to the contracting member.
Description
FILED OF THE INVENTION

Some applications of the present invention relate in general to valve repair. More specifically, some applications of the present invention relate to repair of a mitral valve of a patient.


BACKGROUND

Ischemic heart disease causes mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.


Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.


US Patent Application Publications 2004/0260393 to Randert et al. and 2004/0127982 to Machold et al. describe techniques using an implant that is sized and configured to attach in, on, or near the annulus of a dysfunctional heart valve. In use, the implant extends either across the mirror axis of the annulus, or across the major axis of the annulus, or both. The implant is described as restoring to the heart valve annulus and leaflets a more functional anatomic shape and tension. The more functional anatomic shape and tension are conducive to coaptation of the leaflets, which, in turn, reduces retrograde flow or regurgitation. In some embodiments, the implant is configured to rest at or near a heart valve annulus and apply a direct mechanical force along the minor axis of the annulus to inwardly displace tissue toward the center of the annulus. For some applications, the implant is configured to extend significantly above the plane of the valve, while for other applications, the implant is configured to extend a short distance above the plane of the valve.


U.S. Pat. No. 7,500,989 to Solem et al. describes devices and methods for treating mitral regurgitation by reshaping the mitral annulus in a heart. One device for reshaping the mitral annulus is provided as an elongate body having dimensions as to be insertable into a coronary sinus. The elongate body includes a proximal frame having a proximal anchor and a distal frame having a distal anchor. A ratcheting strip is attached to the distal frame and an accepting member is attached to the proximal frame, wherein the accepting member is adapted for engagement with the ratcheting strip. An actuating member is provided for pulling the ratcheting strip relative to the proximal anchor after deployment in the coronary sinus. In one embodiment, the ratcheting strip is pulled through the proximal anchor for pulling the proximal and distal anchors together, thereby reshaping the mitral annulus.


The following patents and patent applications may be of interest:

  • EP Patent EP 06/14342 to Pavcnik et al.
  • EP Patent EP 10/06905 to Organ
  • PCT Publication WO 00/22981 to Cookston et al.
  • PCT Publication WO 01/26586 to Seguin
  • PCT Publication WO 01/56457 to Pruitt
  • PCT Publication WO 05/046488 to Douk et al.
  • PCT Publication WO 06/012013 to Rhee et al.
  • PCT Publication WO 06/086434 to Powell et al.
  • PCT Publication WO 06/097931 to Gross et al.
  • PCT Publication WO 06/105084 to Cartledge et al.
  • PCT Publication WO 96/39963 to Abela et al.
  • PCT Publication WO 96/40344 to Stevens-Wright et al.
  • PCT Publication WO 97/01369 to Taylor et al.
  • PCT Publication WO 98/46149 to Organ
  • U.S. Pat. No. 3,656,185 to Carpentier
  • U.S. Pat. No. 4,961,738 to Mackin
  • U.S. Pat. No. 5,325,845 to Adair
  • U.S. Pat. No. 5,593,424 to Northrup III
  • U.S. Pat. No. 5,716,370 to Williamson, IV et al.
  • U.S. Pat. No. 5,855,614 to Stevens et al.
  • U.S. Pat. No. 6,074,401 to Gardiner et al.
  • U.S. Pat. No. 6,102,945 to Campbell
  • U.S. Pat. No. 6,619,291 to Hlavka et al.
  • U.S. Pat. No. 6,918,917 to Nguyen et al.
  • U.S. Pat. No. 6,926,730 to Nguyen et al.
  • U.S. Pat. No. 7,150,737 to Purdy et al.
  • U.S. Pat. No. 7,172,625 to Shu et al.
  • U.S. Pat. No. 7,175,660 to Cartledge et al.
  • U.S. Pat. No. 7,226,467 to Lucatero et al.
  • US Patent Application Publication 2003/0078465 to Pai et al.
  • US Patent Application Publication 2003/0199974 to Lee et al.
  • US Patent Application Publication 2004/0127983 to Mortier et al.
  • US Patent Application Publication 2004/0148021 to Cartledge et al.
  • US Patent Application Publication 2004/0260394 to Douk et al.
  • US Patent Application Publication 2005/0055038 to Kelleher et al.
  • US Patent Application Publication 2005/0096740 to Langberg et al.
  • US Patent Application Publication 2006/0095009 to Lampropoulos et al.
  • US Patent Application Publication 2006/0195134 to Crittenden
  • US Patent Application Publication 2006/0282161 to Huynh et al.
  • US Patent Application Publication 2006/0247763 to Slater
  • US Patent Application Publication 2008/0027483 to Cartledge et al.
  • US Patent Application Publications 2004/0148019 and 2004/0148020 to Vidlund et al.


The following articles, which are incorporated herein by reference, may be of interest:

  • O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006)
  • Dieter R S, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003)
  • Swain C P et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994)
  • Odell J A et al., “Early Results of a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995)


SUMMARY OF THE INVENTION

In some embodiments of the present invention, systems and methods are provided for contracting an annuloplasty structure in order to repair a dilated mitral valve of a patient. The annuloplasty structure comprises an annuloplasty ring. The annuloplasty structure is compressible at least in part and has a lumen therethrough. A movement-restriction mechanism is disposed within the lumen of the annuloplasty structure and is selectively and actively engageable. The movement-restriction mechanism comprises a strip of flexible metal having first and second ends. The first end of the strip is moveable with respect to the second end of the strip, which is typically fixed to a housing coupled to the annuloplasty structure. At least a portion of the strip, e.g., the portion which is disposed adjacently to the first end, is shaped to provide a plurality of recesses that are engageable by a recess-engaging portion that is coupled to the housing.


Typically, the recess-engaging portion is coupled to a lever arm and the recess-engaging portion and/or the lever arm is reversibly coupled to a mechanical support which maintains a position of the recess-engaging portion with respect to the strip in which the recess-engaging portion does not engage any of the recesses of the strip. When none of the recesses are engaged by the recess-engaging portion, the first end slides freely in either direction with respect to the second end of the strip. Once the mechanical support is actively released from the recess-engaging portion and/or from the lever arm, the recess-engaging portion is positioned within one of the recesses of the strip, thereby locking in place the strip and restricting motion in either direction of the first end of the strip with respect to the second end of the strip.


The annuloplasty structure is shaped to provide a primary, outer body portion having at least a first portion comprising a material, e.g., a coil, that is longitudinally-compressible. The annuloplasty structure comprises a secondary body portion comprising a compressible element, e.g., a tubular coil, that is disposed within a lumen provided by the primary body portion. Portions of the secondary body portion are coupled to a surface of a portion of the strip of the movement-restriction mechanism. Typically, the system comprises a flexible member, e.g., a wire, that functions to compress and contract the annuloplasty structure. The flexible member is typically disposed within a lumen provided by the secondary compressible element. When the annuloplasty structure comprises an annuloplasty ring, the secondary compressible element is coupled to an outer surface of the ring-shaped strip. The secondary compressible element ensures that the flexible member is maintained at an outer perimeter of the ring-shaped strip.


The first end of the strip passively slides in a first direction with respect to the second end of the strip, in response to active pulling on first and second ends of the flexible member. That is, the first end of the strip is not pulled by the flexible member, but rather is passively pushed in response to the contracting of the flexible member. As the first end of the strip slides in the first direction with respect to the second end, and the strip contracts to assume a smaller perimeter than in its resting state, the compressible element of the primary body portion of the annuloplasty structure contacts to assume a smaller perimeter, in turn. When the flexible member is released and is allowed to relax, the first end slides in a second direction with respect to the second end, and in turn, the perimeter of the strip is enlarged and the compressible element of the body portion expands.


Thus, the selectively-engageable movement-restriction mechanism facilitates unobstructed contraction and expansion of the annuloplasty structure, and thereby unobstructed adjustment of a perimeter thereof. When a desired perimeter of the annuloplasty structure is achieved, the mechanical structure is actively released which releases recess-engaging portion such that it engages a recess of the strip, thereby locking in place the strip and restricting further contraction and expansion of the annuloplasty structure.


There is therefore provided, in accordance with some applications of the present invention, apparatus, including:


a locking mechanism;


an implant shaped so as to define a lumen therethrough; and


a flexible strip disposed at least in part within the lumen, the strip shaped so as to define:

    • a first end,
    • a second end, and
    • a plurality of recesses,
    • the first and second ends coupled to the locking mechanism such that the strip defines a closed loop and a perimeter thereof which (a) shortens when the first end is advanced through the locking mechanism in a first direction thereof and (b) expands when the first end is advanced in a second direction opposite the first direction,


and the locking mechanism includes:


a moveable recess-engaging portion;


a mechanical support, removably coupled to the recess-engaging portion; and


a force applicator which maintains the recess-engaging portion in a position in which the recess-engaging portion is not disposed in any of the recesses and which, upon decoupling of the mechanical support from the recess-engaging portion, restricts motion of the plurality of recesses of the strip with respect to the second end of the strip, by facilitating positioning of the recess-engaging portion in one of the plurality of recesses.


In some applications, the force applicator includes a spring.


In some applications, for each one of the recesses, the strip is shaped to provide first and second opposing walls which define the recess, the first wall having a dimension that is substantially the same as a dimension of the second wall.


In some applications, the implant includes expanded polytetrafluoroethylene (ePTFE).


In some applications, the implant is coated with polytetrafluoroethylene.


In some applications, the apparatus is configured to be implanted along an annulus of a mitral valve of a patient, and the apparatus is configured to be transcatheterally advanced toward the annulus.


In some applications the apparatus includes a flexible member disposed within the lumen of the implant and alongside the strip, the flexible member being configured push against the strip to contract the strip and facilitate passive advancement of the first end of the strip through the locking mechanism.


In some applications:


the implant is configured to be implanted along an annulus of a mitral valve of a patient,


the flexible member is configured to contract the implant when the flexible member is pulled, and


the implant is configured to contract the annulus in response to the contraction thereof.


In some applications:


the implant includes an outer body portion shaped to define the lumen,


when formed into the closed loop, the flexible strip is shaped to provide an inner surface and an outer surface, and


the apparatus further includes an inner body portion coupled at at least a portion thereof to the outer surface of the strip, the inner body portion being shaped so as to define an inner body lumen therethrough.


In some applications the apparatus includes a flexible member configured for slidable advancement through the inner body lumen, the flexible member being configured to push against the strip to contract the strip and to facilitate passive advancement of the first end of the strip with respect to the second end of the strip.


In some applications, the inner body portion is compressible.


In some applications, the inner body portion includes expanded polytetrafluoroethylene (ePTFE).


In some applications:


the apparatus is configured to be implanted along an annulus of a mitral valve of a heart of a patient,


a first section of the implant is flexible and longitudinally-compressible, and


a second section in series with the first section of the implant, the second section being flexible and less longitudinally-compressible than the first section.


In some applications, the second section is not longitudinally-compressible.


In some applications, a radius of curvature at a center of the first section is smaller than a radius of curvature at a center of the second section, when no external force is applied to the implant.


In some applications, the second section of the implant has first and second ends thereof and a body portion disposed between the first and second ends, the second section of the implant being configured to be disposed along a portion of the annulus in a manner in which:


the first end of the second section is configured to be coupled to the annulus in a vicinity of a left trigone of the heart that is adjacent to the mitral valve of the patient,


the second end of the second section is configured to be coupled to the annulus in a vicinity of a right trigone of the heart that is adjacent to the mitral valve, and


the body portion is configured to be disposed along the annulus in a vicinity of the annulus that is between the left and right trigones.


In some applications, the body portion disposed between the first and second ends of the second section of the implant has a length of 10-50 mm.


There is further provided, in accordance with some applications of the present invention, a method, including:


providing an implant shaped so as to define a lumen therethrough and a flexible strip disposed at least in part within the lumen of the implant, the strip having:

    • a first end,
    • a second end, and
    • a plurality of recesses, and
    • a locking mechanism to which the first and second ends of the strip are coupled such that the strip defines a closed loop and a perimeter thereof which (a) shortens when the first end is advanced through the locking mechanism in a first direction thereof and (b) expands when the first end is advanced in a second direction opposite the first direction;


advancing the first end of the strip in first and second opposing directions with respect to the second end of the strip;


maintaining a recess-engaging portion in a position in which the recess-engaging portion is not disposed in any of the plurality of recesses during the advancing; and


restricting the advancing by facilitating active positioning of the recess-engaging portion in one of the plurality of recesses.


In some applications the method includes, coupling the implant along an annulus of a mitral valve of a patient.


In some applications the method includes, advancing the implant transcatheterally toward an annulus of a patient.


In some applications, advancing the portion of the strip in first and second opposing directions with respect to the second end of the strip includes contacting and expanding the implant, respectively.


In some applications the method includes, coupling the implant along an annulus of a mitral valve of a patient, and contacting and expanding the implant includes contacting and expanding the annulus, respectively.


There is also provided, in accordance with some applications of the present invention, apparatus, including:


an implant including a flexible longitudinal member having first and second ends that are opposable to form the longitudinal member into a closed loop having a perimeter thereof which (a) shortens when the first end is advanced in a first direction with respect to the second end in a first direction thereof and (b) expands when the first end is advanced with respect to the second end in a second direction opposite to the first direction, and


when formed into the closed loop, the longitudinal member is shaped to provide an inner surface and an outer surface with respect to a center of the closed loop;


a body portion coupled at at least a portion thereof to the outer surface of the longitudinal member, body portion being shaped so as to define a lumen therethrough; and


a flexible contracting member being disposed within and slidably advanceable through the lumen to facilitate a modulation of a perimeter of the body portion, which, in turn facilitates a modulation of a perimeter of the longitudinal member.


In some applications the apparatus includes, a tubular structure shaped so as to define a tubular structure lumen therethrough, and:


the flexible longitudinal member is disposed at least in part within the tubular structure lumen, and


the longitudinal member is configured to facilitate a modulation of a perimeter of the tubular structure in response to the modulation of the perimeter of the longitudinal member.


In some applications, the implant includes an annuloplasty ring.


The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of an annuloplasty ring structure, in accordance with some embodiments of the present invention;



FIGS. 2A-C are schematic illustrations of an inner compressible element disposed within a lumen of the ring structure of FIG. 1, in accordance with some embodiments of the present invention;



FIG. 3 is a schematic illustration of a movement-restriction mechanism comprising a strip coupled to the compressible element of FIGS. 2A-C, in accordance with some embodiments of the present invention;



FIG. 4 is a schematic illustration of a locking mechanism to lock a configuration of the strip of FIG. 3, in accordance with some embodiments of the present invention;



FIG. 5 is a schematic illustration of the locking mechanism in a locked state, in accordance with some embodiments of the present invention; and



FIG. 6 is a schematic illustration of the annuloplasty ring structure of FIG. 1 being coupled to a delivery tool, in accordance with some embodiments of the present invention.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Reference is now made to FIGS. 1-3, which are schematic illustrations of an annuloplasty structure 20 comprising an annuloplasty ring 22 having a tubular outer body portion 55 and a tubular inner body portion 50, and a movement-restriction mechanism comprising a flexible strip 28, in accordance with some embodiments of the present invention. Typically, strip 28 comprises a flexible longitudinal member comprising a flat band or ribbon. Outer body portion 55 comprises a compressible portion 24 and one or more less-compressible portions 25. For example, compressible portion may comprise a coiled element, as shown by way of illustration and not limitation. For some applications, compressible portion 24 may comprise stent-like struts, or a braided mesh. Typically, structure 20 comprises a tubular structure defining a substantially longitudinal lumen which houses a flexible contracting member 40 and strip 28 of the movement-restriction mechanism. Typically, body portion 55 is surrounded by a braided mesh. Compressible portion 24 and the braided mesh surrounding body portion 55 are configured for the advancement therethrough of tissue anchors and/or sutures which anchor, suture, or otherwise couple structure 20 to the native annulus of the heart valve.


At least a portion of strip 28 is configured for slidable advancement within the lumen of structure 20 in response to the pulling or pushing of flexible member 40. When flexible member 40 is tightened, or pulled, the portion of strip 28 is made to slide in a first direction, and, consequently, a perimeter of strip 28 is reduced, or shortened, thereby compressing and contracting structure 20 such that a perimeter thereof is, in turn, reduced. When flexible member 40 is loosened, the portion of strip 28 is made to slide in a second direction opposite the first, and, consequently, a perimeter of strip 28 is enlarged thereby expanding structure 20 such that a perimeter thereof is, in turn, enlarged.


In addition to facilitating a modulation of the perimeter of structure 20, strip 28 functions to (a) provide a scaffold for stabilizing and maintaining the spatial configuration of structure 20 and for supporting the lumen provided by outer body portion 55, and (b) prevent crushing or collapsing of ring 22. Additionally, since strip 28 comprises nitinol (by way of illustration and not limitation), strip 28 is flexible and has elastic shape-memory to form structure 20 into a D-shaped closed configuration. It is to be noted that ring 22 may be shaped to define any suitable configuration, e.g., a saddle shape, an oval shape, an elliptical shape, etc.


Typically, a filler material (e.g., polyester, polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), or expanded polytetrafluoroethylene (ePTFE)) is packed within at least a portion, e.g., 50%, 75%, or 100%, of the lumen of outer body portion 55. The filler material functions to prevent (1) formation within the lumen provided by outer body portion 55 of clots or (2) introduction of foreign material into the lumen which could obstruct the sliding movement of strip 28 and flexible member 40.


Compressible portion 24 is compressible along a longitudinal axis of the lumen defined by structure 20. Structure 20 has first and second ends 21 and 23 which are coupled to a locking mechanism 43. Locking mechanism 43 comprises a housing 30 having first and second coupling members 31 and 33 to which are coupled, e.g., welded or otherwise fastened, to first and second ends 21 and 23, respectively, of structure 20. Housing 30 facilitates (a) the advancement, in either direction, of a first end of strip 28 with respect to a second end of strip 28, and (b) selective, active locking of strip 28 with respect to housing 30.


Flexible member 40 comprises a flexible and/or superelastic material, e.g., nitinol, polyester, stainless steel, or cobalt chrome, and is configured to reside permanently within structure 20. In some embodiments, flexible member 40 comprises a braided polyester suture (e.g., Ticron). In some embodiments, flexible member 40 is coated with polytetrafluoroethylene (PTFE). In some embodiments, flexible member 40 comprises a plurality of wires that are intertwined to form a rope structure.



FIG. 1 shows an assembly of components shown in FIGS. 2A-C and 3. As shown in FIG. 1, structure 20 comprises compressible portion 24 and less-compressible portion 25, which is less longitudinally-compressible than portion 24, e.g., not longitudinally-compressible. Typically, compressible portion 24 and less-compressible portion 25 are surrounded by a braided mesh 26 (for clarity of illustration, portions of ring 22 are shown as not being surrounded by mesh 26). Typically, braided mesh 26 comprises a flexible material, e.g., metal or fabric such as polyester, and is longitudinally-compressible.


Typically, compressible portion 24 and less-compressible portion 25 comprise a flexible, biocompatible material, e.g., nitinol, stainless steel, platinum iridium, titanium, expanded polytetrafluoroethylene (ePTFE), or cobalt chrome. For some applications, portions 24 and 25 are coated with PTFE (Polytetrafluoroethylene). In some embodiments, compressible portion 24 comprises accordion-like compressible structures (configuration not shown) which facilitate proper cinching of the annulus when structure 20 is contracted. Longitudinal compression of compressible portion 24 enables portions of annuloplasty ring 22 to contract and independently conform to the configuration of the annulus of the mitral valve of a given patient. Thus, since structure 20 is sutured or otherwise anchored to the annulus, the compression of compressible portion 24 facilitates the contraction of structure 20, and responsively thereto, the contraction of the annulus.


Structure 20 defines a substantially ring-shaped configuration, e.g., a “D”-shaped configuration, as shown, which conforms to the shape of the annulus of a mitral valve of the patient. Prior to the contracting of structure 20, compressible portion 24 is relaxed and structure 20 defines a first perimeter thereof. Portion 25 is configured to be disposed along the fibrous portion of the annulus that is between the trigones of the mitral valve of the heart when structure 20 is anchored, sutured, fastened or otherwise coupled to the annulus of the mitral valve. Less-compressible portion 25 imparts rigidity to structure 20 in the portion thereof that is disposed between the fibrous trigones such that structure 20 mimics the conformation and functionality of the mitral valve. Typically, portion 25 has a length of 10-50 mm. Additionally, during contraction of structure 20 responsively to the pulling of flexible member 40, less-compressible portion 25 minimizes the need for additional compression forces on the portions of structure 20 which lie adjacently to portions of the native annulus which do not need to be and/or cannot be contracted.


Thus, structure 20 defines a compressible portion and a less-compressible portion. Typically, a radius of curvature at a center of compressible portion 24 is less than a radius of curvature at a center of less-compressible portion 25, when no external force is applied to annuloplasty structure 20.


It is to be noted that compressible portion 24 and less-compressible portion 25 comprise coiled elements by way of illustration and not limitation. For example, compressible portion 24 and less-compressible portion 25 may comprise stent-like struts, or a braided mesh. In either configuration, portion 25 is permanently longitudinally compressed when ring 22 is in a resting state.


Reference is now made to FIGS. 2A and 3. FIG. 2A shows inner body portion 50 and strip 28 of structure 20, in accordance with some embodiments of the present invention. For clarity of illustration, structure 20 is shown without surrounding outer body portion 55 (as illustrated hereinabove with reference to FIG. 1). Typically, inner body portion 50 and strip 28 are disposed within the lumen provided by outer body portion 55. Strip 28 comprises a flexible material, e.g. nitinol, and has first and second ends 51 and 53 which are opposable to form strip 28 into a substantially closed loop, ring-shaped configuration. Typically, second end 53 of strip 28 is coupled to locking mechanism 43 by being fixed to housing 30, while first end 51 of strip 28 is dynamic and is advanceable in either direction with respect to second end 53. That is, first end 51 is reversibly coupled to locking mechanism 43. When both first and second ends 51 and 53 are coupled to locking mechanism 43, strip 28 is formed into a closed loop. Strip 28 is shaped to provide a recesses portion 129 which is shaped to define a plurality of recesses 29. Typically, recesses portion 129 is provided adjacent to first end 51 of strip 28, as shown by way of illustration and not limitation. It is to be noted that recesses portion 129 may be provided at any suitable location along strip 28. As shown in FIG. 3, the opposing walls on either side of each recess 29 (i.e., the walls that define recess 29) have substantially the same height and angle, i.e., 90 degrees with respect to the longitudinal axis of structure 20, as shown.


Reference is again made to FIG. 2A. A portion of flexible member 40 surrounds strip 28 along an outer perimeter of the strip. Housing 30 of locking mechanism 43 is shaped to define at least one opening through which first and second portions of flexible member 40 emerge from structure 20. Typically, the first and second portions of flexible member 40 extend to a site outside the body of the patient. In response to a pulling force applied to one or both of first and second portions of flexible member 40, the portion of flexible member 40 that surrounds strip 28 contracts. In response to the contraction, flexible member 40 applies a force to and pushes against strip 28, thereby contracting strip 28. As the force is applied to strip 28 by flexible member 40, first end 51 of strip 28 slides with respect to second end 53 of strip 28, as indicated by an arrow 1, thereby reducing a perimeter of strip 28 and ring 22. As the perimeter of ring 22 is reduced, compressible portion 24 contracts longitudinally and facilitates radial contraction of ring 22.


Strip 28, when formed into a substantially ring-shaped configuration, provides an inner surface 27 and an outer surface 41 with respect to a center of the ring-shaped, closed-loop configuration of strip 28 and ring 22. Inner body portion 50 is typically welded, or otherwise coupled, at respective locations to outer surface 41 of strip 28 (as shown in FIGS. 2A-C). Inner body portion 50 comprises a compressible material, e.g., nitinol, stainless steel, platinum iridium, titanium, expanded polytetrafluoroethylene (ePTFE), or cobalt chrome. In some embodiments, inner body portion 50 is coated with PTFE (polytetrafluoroethylene). Inner body portion 50 is shaped to define a plurality of coils, by way of illustration and not limitation. For some applications, inner body portion 50 may comprise accordion-like compressible structures (configuration not shown). In some embodiments, outer and inner body portions 55 and 50 are shaped to define a tubular structure comprising a compressible material, e.g., ePTFE. In response to the contracting of outer body portion 55 of structure 20: (1) the perimeter of outer body portion 55 is reduced such that outer body portion 55 pushes against strip 28, (2) in response to the pushing of strip 28, the first end of the strip slides in with respect to the second end of the strip such that the perimeter of strip is reduced, and (3) in response to the contracting of the strip, the inner body portion 50 contracts.



FIG. 2C shows a portion of strip 28, inner body portion 50, and flexible member 40 at a cross-section of strip 28, inner body portion 50, and flexible member 40, as shown in FIG. 2B. As shown in FIG. 2C, inner body portion 50 is shaped to provide a lumen for slidable advancement therethrough of a portion of flexible member 40. Because flexible member 40 is housed in the lumen of inner body portion 50, the flexible member remains disposed along outer surface 41, i.e., at an outer perimeter of strip 28, and is restricted from sliding above or below strip 28 and toward inner surface 27, i.e., an inner perimeter of strip 28. Such a configuration ensures that flexible member 40 remains disposed along outer surface 41 of strip 28 such that flexible member 40, in response to a pulling force applied thereto, appropriately applies a contraction force to strip 28.


Flexible member 40, by being disposed within and slidably advanceable through the lumen of inner body portion 50, facilitates a modulation of a perimeter of inner body portion 50, which, in turn facilitates a modulation of a perimeter of strip 28, and ultimately, outer body portion 55.


Reference is now made to FIG. 4, which shows locking mechanism 43 of structure 20 comprising housing 30 and a motion restrictor 60 which is actively engageable by a mechanical support 34, in accordance with some embodiments of the present invention. Motion restrictor 60 comprises a recess-engaging portion 32 that is coupled to a lever arm, which, in turn, is coupled to housing 30 by a force applicator 62. Typically, force applicator 62 comprises a mechanical spring, by way of illustration and not limitation, which causes motion of recess-engaging portion 32 with respect to housing 30. Force applicator 62 creates a tendency for the lever arm and recess-engaging portion 32 to assume a position in which recess-engaging portion 32 engages one of recesses 29 of strip 28. In order to restrict such a tendency, locking mechanism 43 comprises a mechanical support 34 which maintains recess-engaging portion 32 in a position in which recess-engaging portion 32 does not engage any of recesses 29. Mechanical support 34 comprises a flexible rod or string which is (a) removably coupled at a first end thereof to housing 30, and (b) accessible by an operating physician at a second end thereof. Support 34 comprises a portion adjacent to the first end of the support which functions to block recess-engaging portion 32 from engaging any of recesses 29. That is, recess-engaging portion 32 rests against the portion of support 34.


Typically, recesses portion 129 of strip 28 is narrower than the rest of the portions of strip 28. That is, strip 28 has a width W1 of 1.6-1.9 mm, e.g., 1.6 mm while recesses portion 129 has a width W2 of within the lumen provided by primary body portion 55 1.2-1.5 mm, e.g., 1.3 mm. Width W2 of recesses portion 129 allows recesses portion 129 to slide along inner surface 27 of a portion of strip 28 adjacent to second end 53, while not being obstructed by the inner wall of outer body portion 55 which surrounds the lumen of outer body portion 55.


In such a configuration, first end 51 of strip 28 may be advanced bidirectionally with respect to second end 53 of strip 28 and housing 30, and thereby facilitates contraction and expansion of structure 20 in order to control the perimeter of structure 20. Once the physician achieves a desired perimeter length of structure 20, the physician actively and selectively engages locking mechanism 43. By pulling on mechanical support 34 from a site outside the body of the patient, the first end of support 34 is disengaged and removed from housing 30, thereby allowing recess-engaging portion 32 to engage one of recesses 29, as shown in FIG. 5.


As shown in FIGS. 2A, 3, 4, and 5, second end 53 of strip 28 is fixed to housing 30 in a vicinity of recess-engaging portion 32. In some embodiments, a flexible, curved secondary scaffold portion (not shown) is coupled to housing 30 in a vicinity of housing 30 that is opposite to second end 53 of strip 28 (i.e., the side of housing 30 through which first end 51 of strip 28 is introduced within housing 30 and slides therethrough) and extends away from housing 30. The secondary scaffold portion is disposed within outer body portion 55 and has a dimension of between 50 and 120 degrees of structure 20 in its closed loop configuration. In some embodiments, the secondary scaffold portion has a dimension that is substantially equal to or less than the dimension of recesses portion 129. The secondary scaffold portion may be shaped to define a strip, a tube, or a rod, and comprises a flexible material, e.g., nitinol, which provides a balancing force to structure 20 as first end 51 of strip 28 is advanced beyond housing 30 and away from the secondary scaffold portion.


In some embodiments of the present invention, the contraction of strip 28 and thereby structure 20 is reversible. In other words, releasing flexible member 40 following its tightening, slackens the portion of flexible member 40 surrounding strip 28. Responsively, annuloplasty structure 20 gradually relaxes (i.e., with respect to its contracted state) as the compressible portions of outer body portion 55 and inner body portion 50 gradually expand. As the compressible portions expand, first end 51 of strip 28 slides with respect to second end 53 in the direction opposite that in which it is slid during contraction of structure 20.


It is to be noted that for some embodiments, second end 53 of strip 28 is not fixed to ring 22. For example, both first and second ends 51 and 53 of strip 28 may be configured for slidable advancement through the lumen of structure 20. That is, first and second ends 51 and 53 of strip 28 may be advanceable with respect to each other in opposite directions.



FIG. 5 shows locking mechanism 43 locking strip 28 in place, in accordance with some embodiments of the present invention. The lower illustration of FIG. 5 shows a 90 degree flip along a y-axis of the upper image of FIG. 5. Once the physician determines that the annuloplasty ring structure has assumed a desired perimeter, the physician pulls on mechanical support 34, as described hereinabove with reference to FIG. 4. Mechanical support 34 is pulled away from housing 30 of locking mechanism 43 which allows for the lever arm of motion restrictor 60 to pivot along force applicator 62 such that motion restrictor 60 assumes a configuration in which (1) the lever arm of motion restrictor 60 lies in parallel with a longitudinal axis of housing 30, and (2) recess-engaging portion 32 is disposed within one of recesses 29 of strip 28, as shown in FIG. 5.


Once recess-engaging portion 32 is disposed within recess 29, motion of the first end 51 of strip 28 with respect to the second end 53 of strip 28 is restricted and a perimeter of ring 22 is locked in place and maintained.


In an embodiment of the present invention, following initial implantation and adjustment of the perimeter of ring 22, the perimeter of ring 22 may be later adjusted by a tool which lifts the lever arm of motion restrictor 60 such that recess-engaging portion 32 is no longer disposed within recess 29 and, thereby locking mechanism 43 is unlocked. Once recess 29 is free of recess-engaging portion 32, a portion of strip 28 adjacent to first end 51 thereof is allowed to slide with respect to housing 30. In some embodiments, a string is permanently coupled to recess-engaging portion 32 or to the lever arm of motion restrictor 60. Following initial implantation and adjustment of ring 22, a portion of the string is accessible from outside of ring 22, and by pulling on the string, the lever arm of motion restrictor 60 is lifted, thereby unlocking locking mechanism 43 by lifting recess-engaging portion 32 away from recess 29.


Reference is now made to FIG. 6, which is a schematic illustration of structure 20, in which ring 22 is removably coupled to a delivery tool 70, in accordance with some embodiments of the present invention. Delivery tool 70 is shaped to provide a body portion 71 having a lumen for slidable advancement therethrough of the first and second portions of flexible member 40 and of mechanical support 34. Respective ends of flexible member 40 and of mechanical support 34 are accessible from a proximal end of tool 70, i.e., the handle portion of tool 70. In some embodiments, the ends of flexible member 40 and of mechanical support 34 are exposed at the proximal end of tool 70. In some embodiments, respective ends of flexible member 40 and of mechanical support 34 are coupled to mechanical manipulators, e.g., knobs and gears, at the proximal end of tool 70. The mechanical manipulators facilitate the pulling and/or relaxing of flexible member 40 and of mechanical support 34.


A distal portion of the body portion of tool 70 is coupled to a grasper tube 72. Grasper tube 72 comprises a flexible resilient material, e.g., nitinol. Grasper tube 72 is shaped to define respective slits 78 on opposing surfaces of tube 72 which run in parallel with a longitudinal axis of tool 70, and perpendicular with respect to a plane of ring 22 coupled to tool 70. Both slits 78 on the opposing surfaces of grasper tube 72 define first and second opposing distal portions 80 and 82 of tube 72. Each of first and second distal portions 80 and 82 of tube 72 is shaped to define a curved distal surface 74 which comes in contact with an external surface of housing 30 of locking mechanism 43. It is to be noted, however, that tube 72 may be coupled to any portion along ring 22. Curved surfaces 74 are shaped such that they cup housing 30 at respective surface thereof. Tube 72 is shown in a resting state thereof in which surfaces 74 cup housing 30 of locking mechanism 43 and the distal opposing portions 80 and 82 of tube 72 are aligned along the longitudinal axis of tool 70.


During decoupling of tool 70 from structure 20, the physician pulls on tool 70 such that surfaces 74 of portions 80 and 82 slide along the external convex surfaces provided by housing 30 and are thereby pushed radially away from housing 30. In other words, during decoupling of tool 70, the distal opposing portions are pushed angularly away from the longitudinal axis of tool 70 as tool 70 is pulled proximally away from ring 22. In response to the radial expanding of the distal portions of tube 72, tool 70 is decoupled from ring 22.


Tube 72 is shaped to define respective openings 76 at the proximal end of slits 78. Openings 76 facilitate radial angular displacement and expansion of the first and second distal portions 80 and 82 of tube 72.


The length and flexibility of tool 70 depends on the procedure used to implant ring 22 along the annulus. For embodiments in which ring 22 is positioned using open-heart or minimally-invasive procedures, the delivery tool may be shorter and more rigid than a delivery tool used to facilitate advancement and implantation of ring 22 in transcatheter procedures.


Following the adjustment of structure 20 and the contraction of the valve annulus, tool 70 is removed and flexible member 40 is pulled from within the lumen of inner body portion 50 and away from ring 22 leaving ring 22 implanted along the annulus and independent of flexible member 40.


For some applications, distal portions 80 and 82 are radially-expandable. During delivery of structure 20 toward the native heart valve, distal portions 80 and 82 are disposed within a slidable overtube that compresses distal portions 80 and 82. Following the adjustment of structure 20 and the contraction of the valve annulus, the overtube is slid proximally to expose distal portions 80 and 82. Responsively, distal portions 80 and 82 expand radially, and thereby decouple tool 70 from structure 20.


It is to be noted that housing 30 of locking mechanism 43 is shown in a vicinity of less-compressible portion 25 by way of illustration and not limitation. For example, housing 30 of locking mechanism 43 may be coupled to ring 22 along any suitable location thereof, e.g., in a vicinity of compressible portion 24 of outer body portion 55. For embodiments in which housing 30 is coupled to ring 22 in a vicinity of compressible portion 24 of outer body portion 55, following implantation of ring 22, housing 30 will be disposed with respect to the annulus of the patient along a portion thereof that is not between the trigones.


Reference is now made to FIGS. 1-6. Systems and annuloplasty structures described herein may be use in surgical procedures such as open-heart, minimally-invasive, or transcatheter procedures. For embodiments in which the annuloplasty structure is advanced toward the annulus in a transcatheter procedure, the annuloplasty structure may be folded, or otherwise compressed within a catheter used to advance the annuloplasty structure toward the valve. During open-heart, minimally-invasive, or transcatheter procedures, prior to advancement of the annuloplasty structure to the annulus, a plurality of sutures are sutured (e.g., during open-heart procedures), anchored, or otherwise coupled to the annulus. The sutures are then threaded through portions of the annuloplasty structure and facilitate advancement of the annuloplasty structure along the sutures and toward the annulus. Once positioned on the annulus, the sutures are locked in place, e.g., by a bead or by being tied, with respect to the annuloplasty structure, thereby locking in place the annuloplasty structure with respect to the annulus. For embodiments in which the annuloplasty structure is coupled to the annulus during an open-heart procedure, the structure may be first positioned along the annulus prior to being anchored thereto, e.g., by suturing the structure to the annulus, or by advancing anchors with respect to the structure and into tissue of the annulus.


Reference is again made to FIGS. 1-6. It is to be noted that, in some embodiments, ring 22 does not comprise less-compressible portion 25. For example, ring 22 may comprise only compressible material as described hereinabove with reference to FIG. 1 with respect to compressible portion 24.


Reference is yet again made to FIGS. 1-6. It is to be noted that strip 28 is used by way of illustration and not limitation. Alternatively to a strip, a tubular longitudinal element may be used and is shaped to provide a plurality of recesses that are engageable by locking mechanism 43.


Reference is again made to FIGS. 1-6. It is to be noted that inner body portion 50 is shown as comprising an elongate coil by way of illustration and not limitation. Alternatively, a plurality of short distinct tubular elements may be welded or otherwise coupled at respective portions thereof to outer surface 41 of strip 28, and each tubular element is shaped so as to provide a lumen for passage therethrough of flexible member 40. Further alternatively, a plurality of rings may be welded to the outer surface of strip 28 and function as a guide to support flexible member 40 at outer surface 41 of strip 28. It is to be noted that inner body portion 50 may be shaped to define any suitable shape in cross-section, e.g., circular, rectangular, square, oval, elliptical, triangular, semi-circular, partially-elliptical.


It is to be further noted that systems described herein for treatment of dilated mitral valves may be used to treat valves other than the mitral valve, mutatis mutandis. For example, structure 20 may be used to treat an aortic valve, a pulmonary valve, or a tricuspid valve of the patient. In some embodiments, systems described herein for use with a dilated annulus may be applied in order to treat dilated venous valves.


It is to be still further noted that systems described herein for treatment of mitral valves may be used to treat other annular muscles within the body of the patient. For example, the systems described herein may be used in order to treat a sphincter muscle within a stomach of the patient.


The techniques described herein may be performed in combination with techniques described in U.S. patent application Ser. No. 11/950,930 to Gross et al., filed Dec. 5, 2007, entitled, “Segmented ring placement,” which issued as U.S. Pat. No. 8,926,695, and which is assigned to the assignee of the present patent application and is incorporated herein by reference.


Additionally, techniques described herein may be performed in combination with techniques described in one or more of the following patent application, all of which are incorporated herein by reference:

    • PCT Publication WO 06/097931 to Gross et al., entitled, “Mitral Valve treatment techniques,” filed Mar. 15, 2006;
    • U.S. Provisional Patent Application 60/873,075 to Gross et al., entitled, “Mitral valve closure techniques,” filed Dec. 5, 2006;
    • U.S. Provisional Patent Application 60/902,146 to Gross et al., entitled, “Mitral valve closure techniques,” filed on Feb. 16, 2007;
    • U.S. Provisional Patent Application 61/001,013 to Gross et al., entitled, “Segmented ring placement,” filed Oct. 29, 2007;
    • PCT Patent Application PCT/IL07/001503 to Gross et al., entitled, “Segmented ring placement,” filed on Dec. 5, 2007, which published as WO 08/068756;
    • U.S. patent application Ser. No. 11/950,930 to Gross et al., entitled, “Segmented ring placement,” filed on Dec. 5, 2007, which published as US Patent Application Publication 2008/0262609, and which issued as U.S. Pat. No. 8,926,695;
    • U.S. Provisional Patent Application 61/132,295 to Gross et al., entitled, “Annuloplasty devices and methods of delivery therefor,” filed on Jun. 16, 2008;
    • U.S. patent application Ser. No. 12/341,960 to Cabiri, entitled, “Adjustable partial annuloplasty ring and mechanism therefor,” filed on Dec. 22, 2008, which issued as U.S. Pat. No. 8,241,351;
    • U.S. Provisional Patent Application 61/207,908 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2009;
    • U.S. patent application Ser. No. 12/435,291 to Maisano et al., entitled, “Adjustable repair chords and spool mechanism therefor,” filed on May 4, 2009, which issued as U.S. Pat. No. 8,147,542;
    • U.S. patent application Ser. No. 12/437,103 to Zipory et al., entitled, “Annuloplasty ring with intra-ring anchoring,” filed on May 7, 2009, which issued as U.S. Pat. No. 8,715,342;
    • PCT Patent Application PCT/IL2009/000593 to Gross et al., entitled, “Annuloplasty devices and methods of delivery therefor,” filed on Jun. 15, 2009, which published as WO 10/004546;
    • U.S. patent application Ser. No. 12/548,991 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on Aug. 27, 2009, which published as U.S. Pat. No. 8,808,368;
    • U.S. patent application Ser. No. 12/608,316 to Miller et al., entitled, “Tissue anchor for annuloplasty ring,” filed on Oct. 29, 2009, which issued as U.S. Pat. No. 8,277,502;
    • U.S. Provisional Patent Application 61/265,936 to Miller et al., entitled, “Delivery tool for implantation of spool assembly coupled to a helical anchor,” filed Dec. 2, 2009;
    • PCT Patent Application PCT/IL2009/001209 to Cabiri et al., entitled, “Adjustable annuloplasty devices and mechanisms therefor,” filed on Dec. 22, 2009, which published as WO 10/073246;
    • U.S. patent application Ser. No. 12/689,635 to Zipory et al., entitled, “Over-wire rotation tool,” filed on Jan. 19, 2010, which issued as U.S. Pat. No. 8,545,553; and/or
    • U.S. patent application Ser. No. 12/689,693 to Hammer et al., entitled, “Application Deployment techniques for annuloplasty ring,” filed on Jan. 19, 2010, which issued as U.S. Pat. No. 8,911,494.


All of these applications are incorporated herein by reference. Techniques described herein can be practiced in combination with techniques described in one or more of these applications.


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. Apparatus, comprising: an implant comprising: a flexible longitudinal member extending along a longitudinal length of the implant the longitudinal member forming a curve, such that the longitudinal member has a convex outer surface along the outside of the curve; anda flexible contracting member disposed radially outward from the longitudinal member by extending along the convex outer surface of the longitudinal member, the contracting member configured to reduce a perimeter of the implant by squeezing radially inwards against the convex outer surface of the longitudinal member, in response to an application of a force to the contracting member.
  • 2. The apparatus according to claim 1, wherein the longitudinal member has first and second ends, the first end being movable with respect to the second end responsively to the applying of the contracting force to the longitudinal member by the contracting member.
  • 3. The apparatus according to claim 1, wherein the implant comprises a primary body portion having a lumen, and wherein the contracting member and the longitudinal member are disposed within the lumen of the primary body portion.
  • 4. The apparatus according to claim 1, wherein the implant comprises an annuloplasty ring.
  • 5. The apparatus according to claim 1, wherein the implant comprises a contracting-member body portion coupled to the convex outer surface of the longitudinal member, the contracting-member body portion housing the contracting member and being configured to maintain the contracting member a along the convex outer surface of the longitudinal member during the application of the force to the contracting member.
  • 6. The apparatus according to claim 5, wherein the implant comprises a primary body portion having a lumen, and wherein the contracting member, the contracting-member body portion, and the longitudinal member are disposed within the lumen of the primary body portion.
  • 7. The apparatus according to claim 5, wherein the contracting-member body portion is shaped so as to define a tubular structure having a contracting-member body portion lumen.
  • 8. The apparatus according to claim 5, wherein the contracting-member body portion is shaped so as to define a plurality of coils.
  • 9. The apparatus according to claim 5, wherein the contracting-member body portion comprises accordion-like compressible structures.
  • 10. A method, comprising: advancing into a heart of a patient an implant including: a flexible longitudinal member extending along a longitudinal length of the implant, the longitudinal member forming a curve, such that the longitudinal member has a convex outer surface along the outside of the curve; anda flexible contracting member disposed radially outward from the longitudinal member by extending along the convex outer surface of the longitudinal member, the contracting member configured to reduce a perimeter of the implant by squeezing radially inwards against the convex outer surface of the longitudinal member, in response to an application of a force to the contracting memberreducing the perimeter of the implant by applying the force to the contracting member, such that the contracting member squeezes radially inwards against the convex outer surface of the longitudinal member.
  • 11. The method according to claim 10, wherein the longitudinal member has first and second ends, and wherein applying the contracting force to the longitudinal member comprises moving the first end of the longitudinal member with respect to the second end of the longitudinal member.
  • 12. The method according to claim 10, wherein the implant includes a primary body portion having a lumen, and wherein the contracting member and the longitudinal member are disposed within the lumen of the primary body portion, and wherein applying the contracting force to the longitudinal member by the contracting member comprises facilitating movement of at least a portion of the longitudinal member within the lumen of the primary body portion.
  • 13. The method according to claim 10, wherein the implant includes an annuloplasty ring.
  • 14. The method according to claim 10, wherein the implant includes a contracting-member body portion coupled to the convex outer surface of the longitudinal member, the contracting-member body portion housing the contracting member, and wherein the method further comprises maintaining the contracting member at the convex outer surface of the longitudinal member by the contracting-member body portion during the applying of the force to the contracting member.
  • 15. The method according to claim 14, wherein the implant includes a primary body portion having a lumen, and wherein the contracting member, the contracting-member body portion, and the longitudinal member are disposed within the lumen of the primary body portion, and wherein applying the contracting force to the longitudinal member by the contracting member comprises facilitating movement of the contracting member, the contracting-member body portion, and the longitudinal member within the lumen of the primary body portion.
  • 16. The method according to claim 14, wherein the contracting-member body portion is shaped so as to define a tubular structure having a contracting-member body portion lumen.
  • 17. The method according to claim 14, wherein the contracting-member body portion is shaped so as to define a plurality of coils.
  • 18. The method according to claim 14, wherein the contracting-member body portion includes accordion-like compressible structures.
  • 19. The apparatus according to claim 1, wherein the force is a pulling force that tightens the contracting member, and wherein the contracting member is configured to reduce the perimeter of the implant in response to the pulling force.
  • 20. The apparatus according to claim 19, wherein: the contracting member defines a first end portion extending away from the longitudinal member, and a second end portion extending away from the longitudinal member, andthe contracting member is configured to reduce the perimeter of the implant in response to application of the pulling force to both the first end portion and the second end portion.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a continuation application of U.S. Ser. No. 15/388,779 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Dec. 22, 2016, which is a continuation application of U.S. Ser. No. 13/740,582 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Jan. 14, 2013, which issued as U.S. Pat. No. 9,561,104, and which is a divisional application of U.S. Ser. No. 12/706,868 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2010, which issued as U.S. Pat. No. 8,353,956 and which claims the priority from U.S. Provisional Patent Application 61/207,908 to Miller et al., entitled, “Actively-engageable movement-restriction mechanism for use with an annuloplasty structure,” filed on Feb. 17, 2009. These applications and patent are assigned to the assignee of the present application and incorporated herein by reference.

US Referenced Citations (842)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4917698 Carpentier et al. Apr 1990 A
4935027 Yoon Jun 1990 A
4961738 Mackin Oct 1990 A
5042707 Taheri Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke et al. Apr 1994 A
5325845 Adair Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5383852 Stevens-Wright Jan 1995 A
5449368 Kuzmak Sep 1995 A
5450860 O'Connor Sep 1995 A
5464404 Abela et al. Nov 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5643317 Pavcnik et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5676653 Taylor et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5749371 Zadini et al. May 1998 A
5782844 Yoon et al. Jul 1998 A
5810882 Bolduc et al. Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
6042554 Rosenman et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6074341 Anderson et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6086582 Altman et al. Jul 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6174332 Loch et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6210347 Forsell Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6228032 Eaton et al. May 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319281 Patel Nov 2001 B1
6328746 Gambale Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6461336 Larre Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec, Jr. et al. Jan 2003 B1
6524338 Gundry Feb 2003 B1
6527780 Wallace et al. Mar 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sheris et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6547801 Dargent et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730121 Ortiz et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908478 Alferness et al. Jun 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007798 Happonen et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7377941 Rhee et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7780726 Seguin Aug 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7981152 Webler et al. Jul 2011 B1
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8100964 Spence Jan 2012 B2
8123801 Milo Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8262725 Subramanian Sep 2012 B2
8265758 Policker et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8419825 Burgler et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8449573 Chu May 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8475525 Maisano et al. Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734699 Heideman et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8889861 Skead et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9138316 Bielefeld Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9226825 Starksen et al. Jan 2016 B2
9265608 Miller et al. Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9579090 Simms et al. Feb 2017 B1
9693865 Gilmore et al. Jul 2017 B2
9724084 Groothuis et al. Aug 2017 B2
9730793 Reich et al. Aug 2017 B2
9788941 Hacohen Oct 2017 B2
9801720 Gilmore et al. Oct 2017 B2
9907547 Gilmore et al. Mar 2018 B2
10368852 Gerhardt et al. Aug 2019 B2
20010021874 Carpentier et al. Sep 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020120292 Morgan Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020188350 Arru et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171760 Gambale Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204193 Gabriel et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040068273 Fariss et al. Apr 2004 A1
20040111095 Gordon et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260344 Lyons et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090834 Chiang et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187568 Klenk et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060142694 Bednarek et al. Jun 2006 A1
20060149280 Harvie et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070010800 Weitzner et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070032823 Tegg Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038296 Navia et al. Feb 2007 A1
20070039425 Wang Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070083235 Jervis et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173931 Tremulis et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070239208 Crawford Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Macoviak et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080103572 Gerber May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080177380 Starksen et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234729 Page et al. Sep 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281353 Aranyi et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080287862 Weitzner et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20090024110 Heideman et al. Jan 2009 A1
20090028670 Garcia et al. Jan 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054723 Khairkhahan et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090082797 Fung et al. Mar 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090125102 Cartledge et al. May 2009 A1
20090166913 Guo et al. Jul 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100063542 van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100106141 Osypka et al. Apr 2010 A1
20100114180 Rock et al. May 2010 A1
20100121349 Meier et al. May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130989 Bourque et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100161047 Cabiri Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100286628 Gross Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110009956 Cartledge et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110026208 Utsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20120053628 Sojka et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120089125 Scheibe et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120158023 Mitelberg et al. Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130053884 Roorda Feb 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190863 Call et al. Jul 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231701 Voss et al. Sep 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130331930 Rowe et al. Dec 2013 A1
20140067054 Chau et al. Mar 2014 A1
20140081394 Keranen et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140088646 Wales et al. Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140114390 Tobis et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140251042 Asselin et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140350660 Cocks et al. Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150094800 Chawla Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150133997 Deitch et al. May 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150230919 Chau et al. Aug 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120642 Shaolian et al. May 2016 A1
20160120645 Alon May 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160361058 Bolduc et al. Dec 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170042670 Shaolian et al. Feb 2017 A1
20170224489 Starksen et al. Aug 2017 A1
20170245993 Gross et al. Aug 2017 A1
20180008409 Kutzik et al. Jan 2018 A1
20180049875 Iflah et al. Feb 2018 A1
20180168803 Pesce et al. Jun 2018 A1
20180228608 Sheps et al. Aug 2018 A1
20180256334 Sheps et al. Sep 2018 A1
20180289480 D'ambra et al. Oct 2018 A1
20180318080 Quill et al. Nov 2018 A1
20180318083 Bolling et al. Nov 2018 A1
20190029498 Mankowski et al. Jan 2019 A1
20190038411 Alon Feb 2019 A1
20190111239 Bolduc et al. Apr 2019 A1
20190117400 Medema et al. Apr 2019 A1
20190125325 Sheps et al. May 2019 A1
20190151093 Keidar et al. May 2019 A1
20190175346 Schaffner et al. Jun 2019 A1
20190183648 Trapp et al. Jun 2019 A1
20190290260 Caffes et al. Sep 2019 A1
20190290431 Genovese et al. Sep 2019 A1
20190321049 Herman et al. Oct 2019 A1
20190343633 Garvin et al. Nov 2019 A1
20200015971 Brauon et al. Jan 2020 A1
20200289267 Peleg et al. Sep 2020 A1
20200337840 Reich Oct 2020 A1
20210015475 Lau Jan 2021 A1
20210093453 Peleg et al. Apr 2021 A1
Foreign Referenced Citations (17)
Number Date Country
1034753 Sep 2000 EP
3531975 Sep 2019 EP
9205093 Apr 1992 WO
9846149 Oct 1998 WO
02085250 Feb 2003 WO
03047467 Jun 2003 WO
2010000454 Jan 2010 WO
2012176195 Mar 2013 WO
2014064964 May 2014 WO
2019145941 Aug 2019 WO
2019145947 Aug 2019 WO
2019182645 Sep 2019 WO
2019224814 Nov 2019 WO
2020240282 Dec 2020 WO
2021014440 Jan 2021 WO
2021038559 Mar 2021 WO
2021038560 Mar 2021 WO
Non-Patent Literature Citations (29)
Entry
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spillner, and Th Johannessen, “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success—midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Dict.ionary.com definition of “lock”, Jul. 29, 2013.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52,6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484.
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Related Publications (1)
Number Date Country
20190274830 A1 Sep 2019 US
Provisional Applications (1)
Number Date Country
61207908 Feb 2009 US
Divisions (1)
Number Date Country
Parent 12706868 Feb 2010 US
Child 13740582 US
Continuations (2)
Number Date Country
Parent 15388779 Dec 2016 US
Child 16427220 US
Parent 13740582 Jan 2013 US
Child 15388779 US