This disclosure relates generally to the field of circuit protection devices and relates more particularly to an active/passive fuse module that includes both passive and active circuit protection elements.
Fuses are commonly implemented in electrical systems for providing overcurrent protection. Most fuses are “passive” devices that include fuse elements that are configured to carry a rated amount of electrical current during normal operation. If current flowing through a fuse element exceeds the fuse element's rated current, the fuse element will melt, disintegrate, or otherwise separate, thereby arresting the current to prevent or mitigate damage to connected electrical components.
In some cases, it may be desirable to “actively” create a physical opening in an electrical circuit regardless of an amount of electrical current flowing through the circuit. For example, if an automobile is involved in a collision, it may be desirable to physically open an electrical circuit in the automobile to ensure that connected electrical components are deenergized to mitigate the risk of fire and/or electrocution in the aftermath of the collision. To that end, so-called pyrotechnic interrupters (PIs) have been developed which can be selectively actuated upon the occurrence of specified events to interrupt the flow of current in a circuit. For example, in the case of an automobile collision, a controller (e.g., an airbag control unit, battery management system, etc.) may send an initiation signal to a PI, causing a pyrotechnic ignitor within the PI to be detonated. A resultant increase in pressure within the PI rapidly forces a piston or blade to cut through a conductor that extends through the PI. Electrical current flowing through the PI is thereby interrupted, and the piston, which is formed of a dielectric material, provides an electrically insulating barrier between separated portions of the conductor to prevent electrical arcing therebetween.
In certain applications it may be desirable to implement both passive and active circuit protection elements. It may further be desirable to implement such elements in a compact, space-saving form factor that facilitates convenient installation.
It is with respect to these and other considerations that the present improvements may be useful
This Summary is provided to introduce a selection of concepts in a simplified form further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is the summary intended as an aid in determining the scope of the claimed subject matter.
An active/passive fuse module in accordance with a non-limiting embodiment of the present disclosure may include a base, a busbar disposed on a top surface of the base and including a fuse element and first and second terminal portions extending from opposite ends of the fuse element, the fuse element extending over a cavity in the top surface of the base, a pyrotechnic interrupter (PI) disposed atop the base, the PI including a piston disposed within a shaft above the fuse element, a first pyrotechnic ignitor coupled to a controller, the first pyrotechnic ignitor configured to detonate and force the piston through the fuse element upon receiving an initiation signal from the controller, and a second pyrotechnic ignitor coupled to the busbar by a pair of leads, the second pyrotechnic ignitor configured to detonate and force the piston through the fuse element upon an increase in voltage across the leads.
An active/passive fuse module in accordance with another non-limiting embodiment of the present disclosure may include an electrically insulating base, a busbar disposed on a top surface of the base and comprising a fuse element and first and second terminal portions extending from opposite ends of the fuse element, the fuse element extending over a cavity formed in the top surface of the base, a pyrotechnic interrupter (PI) disposed atop the base, the PI including a piston disposed within a shaft above the fuse element, a current sensing module connected to the busbar and configured to measure a current flowing through the busbar, and a pyrotechnic ignitor coupled to a controller and to the current sensing module, wherein the pyrotechnic ignitor is configured to detonate and force the piston through the fuse element upon receiving an initiation signal from at least one of the controller and the current sensing module.
An fuse module in accordance with another non-limiting embodiment of the present disclosure may include a base, a busbar disposed on a top surface of the base and including a fuse element and first and second terminal portions extending from opposite ends of the fuse element, the fuse element extending over a cavity in the top surface of the base, a pyrotechnic interrupter (PI) disposed atop the base, the PI including a piston disposed within a shaft above the fuse element, a first pyrotechnic ignitor coupled to a controller, and a pyrotechnic ignitor coupled to the busbar by a pair of leads, the pyrotechnic ignitor configured to detonate and force the piston through the fuse element upon an increase in voltage across the leads.
An active/passive fuse module in accordance with the present disclosure will now be described more fully with reference to the accompanying drawings, in which preferred embodiments of the active/passive fuse module are presented. It will be understood, however, that the active/passive fuse module may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will convey certain exemplary aspects of the active/passive fuse module to those skilled in the art.
Referring to
The fuse module 10 may generally include a base 12, a busbar 14, and a pyrotechnic interrupter (PI) 18. The base 12 may be formed electrically insulating material, such as plastic, polymer, ceramic, etc. The present disclosure is not limited in this regard. The base 12 may include a cavity 20 formed in a top surface thereof.
The busbar 14 may be formed from a single piece or length of conductive material (e.g., stamped from a single sheet of copper or the like) and may include a fuse element 22 and first and second terminal portions 26a, 26b extending from opposite ends of the fuse element 22. The busbar 14 may be disposed on the top surface of the base 12 in a horizontal orientation with the fuse element 22 extending over the cavity 20. The first and second terminal portions 26a, 26b may extend outside of, or beyond, the sides of the base 12 for facilitating connection of the fuse module 10 within a circuit.
The fuse element 22 may be configured to melt, disintegrate, or otherwise open if current flowing through the busbar 14 exceeds a predetermined threshold, or “current rating,” of the fuse module 10. In various examples, the fuse element 22 may include perforations, slots, thinned or narrowed segments, and/or various other features for making the fuse element 22 more susceptible to melting or opening than other portions of the busbar 14. In a non-limiting example, the fuse element 22 may be configured to have a current rating in a range between 30 amps and 1000 amps. The present disclosure is not limited in this regard.
The PI 18 may include a housing 36 having a mounting flange 38 projecting from a lower portion thereof. The housing 36 may be disposed atop the base 12 with mechanical fasteners 40a, 40b extending through the mounting flange 38 and into the base 12 for fastening the components together in a vertically stacked relationship. The housing 36 may include a hollow, vertically oriented shaft 43 extending therethrough. The shaft 43 may have an open bottom end located directly above the fuse element 22 and the cavity 20.
The housing 36 may contain a movable piston or blade 42 (hereinafter “the piston 42”) disposed within a hollow shaft 43 located above the cavity 20 of the base 12. The housing 36 may further contain a first pyrotechnic ignitor 44a disposed within the shaft 43 above the piston 42. The first pyrotechnic ignitor 44a may be coupled to a controller 45 (e.g., an airbag control unit, battery management system, etc. of an automobile). Upon the occurrence of a predefined event, such as an automobile collision (i.e., if the fuse module 10 is implemented in an automobile), the controller 45 may send an initiation signal to the pyrotechnic ignitor 44a, causing the pyrotechnic ignitor 44 to be detonated. A resultant increase in pressure within the shaft 43 rapidly forces the piston 42 downwardly in the shaft 43, through the fuse element 22 of the busbar 14 as shown in
The above-described manner in which the pyrotechnic ignitor 44b is triggered (i.e., via the controller 45 sending an initiation signal to the pyrotechnic ignitor 44b upon occurrence of a collision, etc.) may be referred to as “external triggering” of the pyrotechnic ignitor 44b. In various embodiments, the fuse module 10 may additionally or alternatively include an “arc triggering” capability, wherein a second pyrotechnic ignitor 44b may be disposed within the shaft 43 adjacent the first pyrotechnic ignitor 44a. A pair of leads 52a, 52b may extend from the second pyrotechnic ignitor 44b to the first and second terminal portions 26a, 26b, respectively. In various embodiments, the leads 52a, 52b may extend through/across the shaft 43 below the piston 42. When the fuse element 22 is melted (e.g., upon occurrence of an overcurrent condition), the voltage across the separated first and second terminal portions 26a, 26b may create sufficient current in the leads 52a, 52b to cause the second pyrotechnic ignitor 44b to be detonated. A resultant increase in pressure within the shaft 43 rapidly forces the piston 42 downwardly in the shaft 43, through the fuse element 22 of the busbar 14 (as described above and as shown in
The above-described configuration is not intended to be limiting, and it is contemplated that the leads 52a, 52b may be severed at various locations other than within the shaft 43 and by structures other than the piston 42. For example, instead of extending through the shaft 43, the leads 52a, 52b may extend through the cavity 20 or elsewhere adjacent the shaft 43. In various embodiments, the leads 52a, 52b may be located outside of or away from the path of the piston 43 and, instead of being severed directly by the piston 43, may be severed by a shank or protrusion extending from the piston 43 or by an electrical/mechanical structure or device that may be triggered by movement of the piston 43. The present disclosure is not limited in this regard.
Various additional or alternative devices, configurations, and/or arrangements for ensuring electrical isolation between the first and second terminal portions 26a, 26b after detonation of the second pyrotechnic ignitor 44b may be implemented without departing from the scope of the present disclosure.
Since the fuse element 22 begins to separate (e.g., melts) before the pyrotechnic ignitor 44b detonates and drives the piston 42, the fuse element 22 is weakened (e.g. partially melted) before the piston 42 is driven therethrough, making it easier for the piston 42 to cut through the fuse element 22. Thus, the fuse element 22 may be thicker/larger (and therefore capable of handling higher currents) than would be possible if the piston 42 were required to break through an unweakened portion of the busbar 14 (i.e., a portion of the busbar 14 other than the partially melted fuse element 22) as in conventional fuse modules incorporating pyrotechnic interrupters.
While the above-described fuse module 10 includes a first pyrotechnic ignitor 44a coupled to the controller 45 and a second pyrotechnic ignitor 44b coupled to the first and second terminal portions 26a, 26b of the busbar 14, respectively, embodiments of the present disclosure are contemplated in which the first pyrotechnic ignitor 44a and the controller 45 are omitted, and wherein the fuse module 10 includes only a single pyrotechnic ignitor connected to the busbar 14 and configured to be detonated upon separation of the fuse element 22 (as described above with respect to the second pyrotechnic ignitor 44b).
Referring to
During normal operation of the fuse module 10, current may flow through the busbar 14, between the first and second terminal portions 26a, 26b. Upon the occurrence of an overcurrent condition, wherein current flowing through the fuse module 10 exceeds the current rating of the fuse element 22, the fuse element 22 may melt or otherwise separate. The current may then be diverted to flow through the only available alternate path, i.e., through the PTC element 60. Since the current can flow through this alternate path, electrical potential is not able to accumulate between the separated ends of the melted fuse element 22, thereby precluding the formation and propagation of an electrical arc therebetween.
Referring to
In view of the foregoing description, it will be appreciated that the active/passive fuse modules of the present disclosure facilitate the implementation of both passive and active circuit protection elements (e.g., conventional fuse elements and a pyrotechnic interrupter) in single, compact, space-saving form factor that facilitates convenient installation for various applications.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
While the present disclosure makes reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present disclosure, as defined in the appended claim(s). Accordingly, it is intended that the present disclosure not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application claims the benefit of U.S. Provisional Patent Application No. 62/948,728, filed Dec. 16, 2019 and U.S. Provisional Patent Application No. 63/036,613, filed Jun. 9, 2020, both of which applications are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5900572 | Aaroe | May 1999 | A |
6483420 | Takahashi | Nov 2002 | B1 |
9324522 | Nakamura | Apr 2016 | B2 |
20140061161 | Nakamura | Mar 2014 | A1 |
20160189897 | Hasunuma et al. | Jun 2016 | A1 |
20170076890 | Hori | Mar 2017 | A1 |
20180147941 | Kube | May 2018 | A1 |
20190108957 | Volkmann | Apr 2019 | A1 |
20190244778 | Dariavach | Aug 2019 | A1 |
20190287751 | Gonthier | Sep 2019 | A1 |
20200279711 | Mathieu | Sep 2020 | A1 |
20210350994 | Channakesavelu | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
10049071 | Apr 2002 | DE |
2015106793 | Jan 2016 | DE |
3014594 | Jun 2015 | FR |
Entry |
---|
“Schmelzsicherung”, Jan. 14, 2016, Kromberg & Schubert GmbH, Entire Document (Translation of DE 202015106793) (of record, cited in the IDS, including Original Copy). (Year: 2016). |
Extended European Search Report dated May 11, 2021 for European Patent Application No. 20214274.1. |
Number | Date | Country | |
---|---|---|---|
20210183607 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
63036613 | Jun 2020 | US | |
62948723 | Dec 2019 | US |