The presently disclosed invention relates generally to methods and systems for operating a plunger lift system. More particularly, this invention relates to a system, apparatus, and associated methods of unloading liquid in gas wells using a plunger lift system having improved hydrodynamics.
Gaseous hydrocarbon wells may produce and accumulate liquids within the wellbore conduit, resulting in a hydraulic backpressure upon the producing zone, resulting in a reduction in production rate. So long as the production rate and gas velocity up the wellbore are sufficient to carry the fluid with the gas, thereby keeping the wellbore “unloaded,” this accumulation is maintained at an equilibrium level and no artificial lift is required. However, when the liquid production rate exceeds the outflow capacity or rate of the produced gas, liquid buildup or “loading” is encountered, resulting in erratic, impeded, and eventually even ceased gas production will result. Artificial lift is required to remove produced, accumulated liquid that exceeds the capacity of the produced gas to remove, to sustain gas production from the well. This especially may be true late in the lifetime of the life of a gaseous hydrocarbon well (or even with a liquid-producing well also) and/or after the production rate of the wellbore fluid stream within the wellbore conduit decreases below a critical or threshold production rate.
“Plunger Lift” plungers are a form of artificial lift typically powered by reservoir gas pressure (and/or casing gas pressure) and may be utilized to remove the accumulated liquids from the wellbore conduit, thereby improving or increasing the production rate of the wellbore fluid stream from both the formation into the wellbore and from the wellbore to the surface. Historically, plungers either (1) continuously trip (travel) up and down (a “trip” is movement in one direction, while a “cycle” includes both up and down travel) within the wellbore conduit without periods of immobility; or (2) to selectively or intermittently trip or cycle within the wellbore conduit after brief periods of sustained immobility or rest (such as within a wellhead lubricator) at the surface and are released to fall back into the wellbore conduit responsive to surface measurements and controls.
While each of these approaches may be used to remove accumulated liquids from the wellbore conduit under certain conditions, each has distinct limitations. As illustrative, non-exclusive examples, a continuously cycled plunger may generate unnecessary wear of well components and/or constantly may restrict flow of the wellbore fluid stream there-past. As additional illustrative, non-exclusive examples, plungers that are housed within the well's lubricator may rely upon inaccurate surface measurements of well performance and/or may require that the gaseous hydrocarbon well be shut-in to permit the plunger to trip into the wellbore conduit to be used to remove liquids from the wellbore conduit. Rate of fall is another variable has advantages and disadvantages. Generally, more trips equates to more fluid removal from the wellbore, but more trips also may adversely result in more component wear, reliability, durability, and/or affect more production shut-in time.
“Casing” plungers operate under principles somewhat similar to “tubing” plungers, but often without the benefit of a tubing-casing annulus for gas/energy storage. Casing plungers also require some distinct adaptions for operating within a casing string as compared to tubing plungers. For example, to avoid casing wear and to adapt to the larger sealing surfaces, casing plungers typically use elastomer or other seals as opposed to metal seals which are more commonly used with tubing plungers, to avoid causing casing wear.
Another issue or limitation with some casing plungers is regulating the rise or fall speed. Rising velocity or velocity may be controlled by a choke orifice that relies on fluid to slow the device down. Unfortunately, this design has resulted in generally higher maintenance costs for casing plungers as compared to tubing plungers. That issue has also limited it's acceptance in the industry with the popular perception that casing plungers are mostly optimally fit for low production volume or “stripper” wells. Some plunger lift vendors are now beginning to market casing plungers for use in certain gas or hydrocarbon wells and are sometimes even recommending that a tubing string is not installed after completion.
On the advantage side though, casing plungers may be better suited for certain production applications than tubing plungers for some wellbore fluid production installations due to the basic physics of fluid displacement using a “larger piston” than tubing plungers (See
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present technology. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present technology. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Gas production from hydrocarbon reservoirs is often associated with liquid production. The produced liquids may be reservoir formation water or condensed hydrocarbon gas. During the early life of a gas well, the gas production rate is sufficient to carry produced liquid to the surface. As the reservoir pressure is depleted with continuous production, the gas production rate will eventually decrease to a point where the produced liquids can no longer be carried by gas flow out of the wellbore. As a result, the produced liquid starts to accumulate at the bottom of the well, which is called liquid loading.
Liquid loading is a common and challenging problem in gas well operations, particularly in the later life of wells. Removal of liquid, in many instances water, out of the gas well becomes important to maintain gas production and keep the well flowing. This can be accomplished by various kinds of artificial lift methods and systems. Plunger lift methods and systems are generally considered the most cost effective artificial lift approaches in the industry today.
Many conventional plunger lift systems consist of a plunger, well production tubing, a bottom hole assembly that includes tubing stopper and bumper spring, and wellhead equipment that includes plunger catcher, lubricator, flow outlet, valves, and control device. The plunger is a cylindrical device used in the tubing and it is designed to seal against the interior of the tubing while it moves freely inside the tubing string. In a typical plunger lift operation, the well is shut-in so that the plunger can descend to the bottom of the well below the accumulated continuous liquid column; after sufficient wellbore pressure has built up, the well valve is opened; the wellbore pressure pushes the plunger and, consequently, the column of liquid on top of plunger up the well all the way to surface; when reaching the surface, the plunger is held at the wellhead to allow the gas to flow for as long as the well permits; then the plunger is released into the well again for a new cycle of plunger lift operation.
The well shut-in requirement during plunger descent is one of the major disadvantages for conventional plunger lift technology. This limitation restricts the use of the technology for high rate wells because of the unaffordable production loss. Because of the hourly, periodic wellbore operation switches, a wellhead surface control system, usually comprising an electronic control panel, a power supply (for remote wells, a solar panel is very common), and pneumatic flow-control valves, becomes essential.
Continuous flow plungers such as those described in U.S. Pat. No. 6,209,637, U.S. Pat. No. 6,644,399, and U.S. Pat. No. 7,243,730 attempt to address the well shut-in time problem. However, each of the devices and methods disclosed in these patents requires a surface control device. Surface control devices keep the cost high for plunger operations. While providing flexibility or options for optimizing plunger lift operations, the surface control system typically accounts for more than 80% of the total capital expense of a plunger lift system installation. In addition, none of the current plungers are applicable in high rate gas producing wells and none of them appear to utilize improved hydrodynamics.
Field experiences have shown that continuous flow plungers have difficulty reaching the tubing bottom in high flow rate wells. This may be due to a lack of sufficient mass, an inability to overcome hydrodynamic forces such as pressure and drag caused by continuous water, or another design limitation.
What is needed are more efficient and effective plunger lift systems and methods for artificially lifting liquids out of gas wells that can operate with or without surface control equipment and operate in high rate gas producing wells. The plunger lift industry remains in need of more effective, longer-lasting, and longer-lasting-sealing mechanisms than is currently known in the casing plunger art. Need exists for improvements in casing plunger reliability and operational flexibility and for application expansion and enhancements. The art today also needs improved selectively-actuated plungers and for systems and methods that include selectively actuated plungers.
One exemplary embodiment of the present invention discloses a method of removing a liquid from a wellbore conduit with a plunger, the method comprising: providing the plunger within the wellbore, the plunder including a plunger body and an actuatable external seal assembly operatively provided on or within an outer surface of the plunger body, the actuatable external seal assembly having a deployed position and a retracted position; flowing a wellbore fluid stream in fluid contact with the plunger and in an uphole direction within the wellbore conduit, wherein the plunger is located within a target region of the wellbore conduit; maintaining the plunger in a low fluid drag state with the actuatable external seal assembly in the retracted position while a variable associated with the wellbore fluid stream is outside a threshold range, wherein the maintaining permits the plunger to remain within the target region of the wellbore conduit during the flowing; transitioning the plunger to a high fluid drag state responsive to the variable associated with the wellbore fluid stream being within the threshold range, wherein the transitioning includes increasing a resistance to fluid flow past the plunger to an increased fluid drag state within the wellbore conduit by actuating the actuatable external seal assembly from a retracted position to a deployed position; and subsequent to the transitioning, conveying the plunger in the uphole direction within the wellbore conduit with the wellbore fluid stream.
In another embodiment, the present disclosure describes a plunger configured to remove wellbore material from a wellbore, the plunger comprising: a drag-regulating structure comprising an actuatable external seal assembly operatively provided on or within an outer surface of the plunger body, the actuatable external seal assembly having a deployed position and a retracted position, the drag-regulating structure configured to regulate a fluid drag past an exterior surface of the plunger when the plunger is located within a wellbore conduit that is defined by a conduit body and a wellbore fluid stream flows past the plunger; and a controller that is programmed to: maintain the drag-regulating structure in a low fluid drag state while a variable associated with the wellbore fluid stream is outside a threshold range; and transitioning the drag-regulating structure from a retracted position having a low fluid drag state to a deployed position having a high fluid drag state responsive to the variable associated with the wellbore fluid stream being within the threshold range.
The disclosure also includes embodiments wherein the controller is further programmed to adjust the drag-regulating structure to adjust the fluid drag on the plunger when the plunger is being conveyed within the wellbore conduit.
The foregoing and other advantages of the present techniques may become apparent upon reviewing the following detailed description and drawings in which:
In the following detailed description section, specific embodiments of the present invention are described in connection with preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present invention, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
Various terms as used herein are defined below. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent.
The terms “a” and “an,” as used herein, mean one or more when applied to any feature in embodiments of the present inventions described in the specification and claims. The use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated.
The term “about” is intended to allow some leeway in mathematical exactness to account for tolerances that are acceptable in the trade. Accordingly, any deviations upward or downward from the value modified by the term “about” in the range of 1% to 10% or less should be considered to be explicitly within the scope of the stated value.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
The term “continuous water” or “water slug” refers to a volume of water encountered in a well sufficient to impart at least a “liquid load” on a plunger falling through the well. Note that the water will generally be water produced from a subterranean formation and may include some production fluids, drilling fluids, gases, and other materials that a person of ordinary skill in the art would expect to find in a well.
The term “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
The terms “preferred” and “preferably” refer to embodiments of the inventions that afford certain benefits under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the inventions.
The term “releasably connected,” as used herein, means two parts or physical elements that are capable of a connected mode of operation and a disconnected or separate mode of operation. In the connected mode, the two parts or elements are sufficiently connected to operate as a single physical element. The two parts or elements are releasable in that they can be released from each other or disconnected without damaging either of the two elements such that they can be reconnected without having to be remanufactured in any way. Examples of releasable connections include clips, magnetic attachments, threaded attachments, pressure connections, spring-loaded connections, and the like. Examples of “permanent connections” that would not be considered “releasable” include welded connections, bolted connections, and the like.
The term “streamlined profile,” as used herein, means a shape that is longest in the direction of travel and tapered on both ends such as to promote streamlined flow of fluids around the profile or shape and specifically excludes substantially spheroid shapes.
The terms “substantial” or “substantially,” as used herein, mean a relative amount of a material or characteristic that is sufficient to provide the intended effect. The exact degree of deviation allowable may in some cases depend on the specific context.
The definite article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used.
The term “continuous water” or “water slug” refers to a volume of water encountered in a well sufficient to impart at least a “liquid load” on a plunger falling through the well. Note that the water will generally be water produced from a subterranean formation and may include some production fluids, drilling fluids, gases, and other materials that a person of ordinary skill in the art would expect to find in a well.
The term “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
The terms “preferred” and “preferably” refer to embodiments of the inventions that afford certain benefits under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the inventions.
The term “releasably connected,” as used herein, means two parts or physical elements that are capable of a connected mode of operation and a disconnected or separate mode of operation. In the connected mode, the two parts or elements are sufficiently connected to operate as a single physical element. The two parts or elements are releasable in that they can be released from each other or disconnected without damaging either of the two elements such that they can be reconnected without having to be remanufactured in any way.
Examples of releasable connections include clips, magnetic attachments, threaded attachments, pressure connections, spring-loaded connections, and the like. Examples of “permanent connections” that would not be considered “releasable” include welded connections, bolted connections, and the like.
The term “streamlined profile,” as used herein, means a shape that is longest in the direction of travel and tapered on both ends such as to promote streamlined flow of fluids around the profile or shape and specifically excludes substantially spheroid shapes.
The terms “substantial” or “substantially,” as used herein, mean a relative amount of a material or characteristic that is sufficient to provide the intended effect. The exact degree of deviation allowable may in some cases depend on the specific context.
The definite article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used.
In the present disclosure, several of the illustrative, non-exclusive examples have been discussed and/or presented in the context of flow diagrams, or flow charts, in which the methods are shown and described as a series of blocks, or steps. Unless specifically set forth in the accompanying description, it is within the scope of the present disclosure that the order of the blocks may vary from the illustrated order in the flow diagram, including with two or more of the blocks (or steps) occurring in a different order and/or concurrently. It is also within the scope of the present disclosure that the blocks, or steps, may be implemented as logic, which also may be described as implementing the blocks, or steps, as logics. In some applications, the blocks, or steps, may represent expressions and/or actions to be performed by functionally equivalent circuits or other logic devices. The illustrated blocks may, but are not required to, represent executable instructions that cause a computer, processor, and/or other logic device to respond, to perform an action, to change states, to generate an output or display, and/or to make decisions.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.
In the event that any patents, patent applications, or other references are incorporated by reference herein and (1) define a term in a manner that is inconsistent with and/or (2) are otherwise inconsistent with, either the non-incorporated portion of the present disclosure or any of the other incorporated references, the non-incorporated portion of the present disclosure shall control, and the term or incorporated disclosure therein shall only control with respect to the reference in which the term is defined and/or the incorporated disclosure was present originally.
As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.
Embodiments of the disclosed plunger technology may comprise a cylindrical tubular body that possesses sealing means at its outer perimeter surface, the sealing means being selectively expandable into a deployed position during a liquid lifting or ascending traverse of the wellbore and retractable to a retracted position during a falling or descending, non-lifting traverse of the wellbore. The disclosed plunger may also include a valve element used to open, close, or regulate fluid flow through the internal throughbore or flow path of the plunger body. The valve may comprise a plug mechanism, such as illustrated in
The presently disclosed combination of the selectively actuatable external seal(s) and the throughbore valve element each create a continuous interface between the liquid load above the plunger and pressured gas below the plunger when the plunger ascends in the wellbore. During descending, the plug or valve is in the open position and the external seals are in the retracted or nested position within or against the plunger body.
The disclosed plunger may also include a locking mechanism that prevents accidental engagement or actuation of either the valve member or actuatable seals, outside of the selected window of operational design parameters. Exemplary locking mechanisms are presented herein, illustrating various mechanical concepts that may be utilized for such purposes.
The cylindrical tubular body of any of the disclosed plungers is adapted to travel within wellbore such as casing strings and/or production tubing strings of gas producing wells, including such wells that produce both gas and liquid. The disclosed plunger system is typically utilized to remove liquid accumulated within the wellbore that is undesirably creating hydrostatic backpressure upon the producing formation. The cylindrical tubular body of any of the disclosed plungers is also adapted to travel within pipeline tubular strings.
The cylindrical tubular body of any of the disclosed plungers may be of any size suitable for travel within the wellbore tubular strings designated for lifting the liquid. The presently disclosed plunger apparatus and method are particularly suited for use as what is commonly known within the artificial lift industry as a “casing plunger,” although the presently disclosed technology may certainly be utilized in tubulars designated as “production tubing.” One of the drawbacks of using a casing string as the production string is concern for casing wear due to repetitive seal contact from plunger seals as the plunger traverses the tubular in both directions. However, one of the desirable benefits for using a casing string as the production string is the larger diameter creates a larger cross-sectional flow area and reduced friction drop and increase flowing capacity. The presently disclosed technology provides a long-needed solution for utilizing a casing string as the wellbore production string, while reducing wear concerns by only deploying the external seals during the lifting upstroke traverse of the plunger within the wellbore.
For example, the present plungers may be installed in tubing strings having inner diameters ranging between about 1 inch and about 6 inches. Common production tubulars range between about 1.05 inches and about 4.5 inches and having corresponding inner diameters somewhat smaller than these outer dimensions, with tubulars being sized at virtually any incremental size within those ranges, such as 2⅜ inches, 2⅞ inches, 3½ inches, 4½ inches, etc. The presently disclosed plungers may be deployed in casing strings ranging, for example, from 3½ inches to 15 inches. Utilization of the presently disclosed technology may also be applicable to yet larger tubulars, such as may be used for either casing strings, or even for pipeline, such as for use in pigging or other pipeline servicing operations. The cylindrical tubular body of any of the disclosed plungers also may be of any size suitable for travel within any of the wellbore production casing strings in which the plunger may be utilized, including but not limited to production casings in a range of from 3½ to 15 inches. The plungers, apparatus, methods, and systems provided herein may also be useful in non-wellbore tubular operations for conveying gasses that may experience periodic liquid accumulation, such as but not limited to gaseous pipeline operations. Pipeline sizes may commonly be significantly larger than the commonly used casing sizes. It is understood that for brevity, the term “wellbore” should be interpreted broadly to encompass other such tubular operations. While the sizes are expressed here in inches, it should be understood that corresponding metric dimensions may be used and denominated depending on the application.
Regardless of the inner diameter size of the tubular string in which the plunger travels, the tubular plunger body is configured to provide a substantially annular cross-section and to have an outer diameter sized to fit the tubular strings. For example, the outer diameter of the plunger body may be less than the inner diameter of the tubular string. As will be understood, the outer diameter of the plunger body should be less than the inner diameter of the tubular string to reduce the contact friction forces between the plunger body and the tubular string. Exemplary clearances between the plunger body outer diameter and the tubular string inner diameter may be within the range from about 1.0 inch such as in larger tubular applications, such as with a casing plunger application, to about 0.001 inches in a production tubing application. In an exemplary implementation having 2⅜ inch tubing with 1.995 inch nominal inner diameter and a drift inner diameter of 1.901 inches, a recommended plunger body outer diameter may be between about 1.89 inches and about 1.90 inches. In some implementations, the outer diameter of the plunger body may be less than the inner diameter of the tubular string, wherein less is limited only by the manufacturing tolerances of the components where the outer diameter is sized to prevent binding. Additionally or alternatively, the outer diameter may be selected based at least in part on fluid dynamics considerations, such as described further below. In such implementations, the outer diameter and the configuration of the outer surface of the plunger body may be suitably engineered to create the desired flow properties.
Embodiments of the disclosed plunger lift systems include “one-piece” (“integrated”) plunger configurations as well as “two-piece” configurations. The one-piece configurations include a plug mechanism physically integrated with the plunger body and having a closed position and an open position. In a one-piece configuration, the plug or valve mechanism travels with the plunger body during traversal of the wellbore in both directions. The open position of the plug is configured to permit the passage of continuous water (or water slug) past the exterior of the plug mechanism due to retraction of the actuatable external seal, and the open setting of the plug or valve mechanism within the plunger throughbore or flow channel of the plunger body. In some embodiments, the plug mechanism may extend from the plunger apparatus in a direction of travel and comprises a substantially streamlined profile.
The “two-piece” embodiments include a plunger body and a plug mechanism releasably connected to the plunger body and having a closed (connected) position and an open (released) position, such that in the released position, the plunger is separated into the two pieces. The open position is configured to permit the passage of continuous water through the throughbore flow channel while maintaining the open position, and passage of continuous water past the retracted external seal assembly, wherein the plug mechanism comprises a substantially streamlined profile.
Some embodiments of the disclosure include a two-stage locking mechanism. The function of the locking mechanism is to ensure that the selectable or actuatable internal valve element and/or external seal assembly remains in the desired position during plunger operations. The locking mechanism prevents the valve element and seal assembly from undesirably engaging or deploying when the plunger splashes into the accumulated wellbore liquid or water slug at a high descending velocity. On the other hand, the locking mechanism can be unlocked by an actuation force when the plunger reaches the subsurface bumper spring at the bottom of the well configured to engage the locking mechanism. Locking and actuation mechanisms may be engineered as needed or desired to accommodate the plunger technology being utilized. External seal assembly and internal valve (or plug) assembly interaction and actuation mechanisms may utilize or include generally any combination of mechanical, hydraulic, electric, and combinations thereof functional means. Numerous wellbore tools and components have been designed and utilized over the years that include deployable and retractable mechanisms. However, the presently disclosed technology of utilizing actuatable or selectively deployable and retractable external seal assemblies on wellbore plungers is lacking and needed in the plunger lift industry.
In plunger lift applications, the associated wellhead assembly of the system typically has two primary functions. The first is to actuate the plunger from a closed position to an open position when the plunger comes to the wellhead so that the plunger can fall back against fluid flows. The second is to absorb the impact from a plunger traveling at a high velocity to prevent potential equipment damage.
The application of the presently disclosed technology is not only limited to subsurface operation. Since control devices are not required, the system can be installed in the subsurface wellbore, which adds significant flexibility and makes different wellbore equipment configurations available.
One particular advantage of the present disclosure is to provide plunger lift systems that are applicable in high rate (e.g. over about 200 kscf/d) gas wells and capable of unloading more water than conventional, existing plunger lift systems. At the same time, embodiments of the plunger lift system are able to lift produced liquid to the surface while automatically cycling in a well. The capability of avoiding shutting-in the well and improving liquid unloading capacity make embodiments of this invention effective and economic field tools or devices for unloading liquid from gas wells.
Some of the advantages of the presently disclosed methods and apparatuses include: 1) The system can work automatically without the assistance of control equipment; 2) The plunger lift system can be installed or run subsurface in gas wells; 3) Expanded application range of plunger lift system to high rate gas wells; 4) Can be used in conjunction with control devices in order to optimize plunger operations; and 5) Permits use of multiple multi-stage automatic plungers.
In general, a plunger surrounded by flowing fluids is subject to four primary forces: gravity force, fluid drag force, pressure force, and friction force due to contact with tubular. The gravity force is always pointing downwards to the earth while the directions of the drag and pressure forces are the same as the direction of flow of fluids relative to the plunger, while the contact force acts opposite to the direction of travel of the plunger. In a producing well with a falling plunger, the drag, pressure, and contact forces are pointing upwards, i.e. against gravity. The magnitude difference between gravity force and drag, pressure, and contact forces determines whether the plunger descends, ascends, or remains suspended in the wellbore. When the gravity force is greater than the combined drag force, pressure force, and contact force, the plunger falls in the wellbore. Otherwise, the plunger will suspend or move upwards with the flowing fluids. The greater the difference is, the faster the plunger falls (e.g. the greater the plunger's “falling velocity”).
Improving the plunger falling velocity may be achieved by any one of the following strategies: 1) increasing the weight of plunger so as to increase gravity force; 2) mitigating the pressure force on the plunger by reducing restriction to flow, e.g. the effective cross-sectional area (normal to the flow) of the plunger; 3) mitigating the drag force on the plunger by streamlining the profile of the plunger; and 4) reducing the frictional force due to contact between the plunger and the tubular. In the following exemplary embodiments of the disclosure, some combination of these strategies will be used.
The presently disclosed technology facilitates the ability to utilize improved plunger descending travel velocity due to improved fluid passage within the plunger through-bore and valve or plug. However, the presently disclosed technology still further improves plunger descending travel velocity by facilitating improved fluid passage external to the plunger boy, by retracting the external seals into a retracted position. Selective actuation of the external seal assembly may facilitate reduced external fluid drag past the plunger body as the plunder falls within the wellbore tubular. Still further velocity improvements and control may be achieved through use of “smart” technology in combination with the actuatable external seals and controllable internal valve assemblies. The addition of smart technology to the plunger may still further facilitate the ability to utilize both or either of the internal valve assembly and actuatable external seal assembly to regulate the velocity of the plunger within the wellbore, even more particularly to regulate plunger velocities at different locations within the wellbore, as desirably selected.
In one exemplary embodiment, the disclosed plunger may be a one-piece plunger utilizing an axially movable plug as the internal valve member and an actuatable external seal assembly provided on or within an outer surface of the plunger body. The actuatable external seal assembly may be actuatable operate between a deployed position and a retracted position.
The position of the external seal assembly may be directly responsive to and actuated in conjunction with the position of the plug as the plug operates between a closed position and open position.
Exemplary
Views 400 and 420 also illustrates one simplified example of a mechanical force actuation mechanism used to actuate the seal assembly between the retracted position and the expanded or deployed position. In this simple example, mandrel 450 may be positioned within an interior or throughbore of the plunger body, such that and end 452 of the mandrel 450 may engage a surface 414 of the plug 406. The mandrel 450 may reciprocate between the seal deployed position and seal retraction position such as within a groove or channel 440 in the plunger body. If desired, a spring or other biasing force may be utilized to position the mandrel in the position whereby the seals are retracted and disengaged. In some embodiments, mandrel 450 may be engaged with plunger 406 such that no separate biasing element is needed. A biasing force or may be created by engagement of the seal actuation member 450 with the plunger may ensure the seal deployment happens in conjunction with closure of plug 406. Biasing mandrel 450 may also act to safely prevent inadvertent activation of the seals into the deployed position while the plunger is falling in the downhole traversing mode. It is understood that seals 430 are illustrated as typical ring type seals. The seals 430 may be actuatable between expanded and retracted by mechanical, fluid, hydraulic, etc., forces, such as by elastic distortion or inflation, or by mechanical movement. Mechanical movement mechanisms may include sliding sleeves, sliding mandrels, uncoiling an overlapping seal, and combinations thereof. Multiple mandrels may be utilized to achieve a desired direction of expansion force on the perimeter of the plunger body.
It is noted that due to the numerous engineering possibilities for providing external seal mechanisms on plunger bodies, only some of the exemplary seal embodiments are illustrated in the Figures, such as
View 420 of
Beneficially, the shape of the plug mechanism 406 and the inside profile of the plunger cylinder 403 are configured to mitigate the effects of hydrodynamic drag forces (“fluid-dynamically optimized”) generated by the internal flow as the plunger 402 falls against high rate upwards gas and/or liquid flows. The shape of each element of the plunger 402, including, but not limited to, the ball valve 406, the valve stem housing 405, and the plunger body 403 are carefully designed to reduce or mitigate such flow friction and to enhance the descending velocity of the plunger 402 against high rate fluid flows, while maintaining other plunger functionality such as sealing the produced gases from the water, repeatability of operation, and resistance to mechanical failure, as discussed above. As such, the plunger 402 can descend at an acceptable velocity even against high rate gas and liquid flows, thus making the plunger 402 applicable to high rate gas wells (e.g. over about 200 kscf/d).
Another illustrated aspect of the present disclosure includes the center cylindrical part 405 configured to hold the plug mechanism 406 and guide the valve stem portion of the plug mechanism 406. Advantageously, the ball plug 406 is aligned with the center line of plunger 402.
Still another exemplary aspect of the present disclosure is represented by the two-stage locking mechanism 407, and 416a-416c. One function of the locking mechanism is to ensure that the plug and valve element 406 remains in the desired position during plunger operations. The locking mechanism 407, and 416a-416c prevents the plug element 406 from undesirably engaging when the plunger 402 splashes at a high descending velocity into continuous water or a water slug. On the other hand, the locking mechanism 407, and 416a-416c can be unlocked by a small continuous force when the plunger 402 reaches a subsurface bumper spring at the bottom of the well. Such an arrangement beneficially allows the plunger 402 to have “automatic” actuation between the open and closed positions, rather than requiring external controls or signals to open or close the plunger. However, automatic operation of the plunger 402 does not require the elimination of control devices and may be used with control devices for certain circumstances (e.g. optimization of plunger lift operation). Note that the balls 416a and spring 416c locking elements are only one exemplary embodiment that may be used in the presently disclosed plunger 402. Other locking mechanisms may include magnetic latching means, compression ring engagement means, or some other equivalent arrangement known by persons of ordinary skill in the art.
In particular, the locking mechanism 407, and 416a-416c of plunger 402 comprises grooves 416b on both the actuation member 407 and center cylinder 404. There are two perforated grooves or holes (retaining the bearing balls 416a) on the inner cylinder of the plug mechanism 406, perpendicular to the axis, phasing 180 degrees, and crossing the center. The holes, together with the grooves 416b form a housing for the balls 416a. The balls 416a can move outwards or inwards depending on the force direction and availability of space (e.g. groove). If there is not space for the ball to move into, either outwards to the outmost cylinder 405 of the center body or inwards to the actuation member 407, then the ball 416a will lock the two pieces together that host the balls.
The actuation member 407 plays an important role for the locking mechanism. The mechanism is designed to lock the plug valve 406 in the outer center body 404 when the plunger descends against upwards fluid flow. When the actuation member 407 is at its lower most position, the groove 416b on the rod is away from the balls so that the mechanism is locked.
When the plunger 402 reaches the bottom of a well, the actuation member 407 touches the bumper head at a bottom bumper spring assembly and stops moving first while all other components of the plunger 402 continue descending under the gravity force. When the plug mechanism 406 is stopped by the bottom bumper spring, the actuation member 407 is pushed into the plug mechanism 406 so that the groove 416b on the actuation member 407 is facing the balls 416a. Since a space is opened for the balls 416a to move into, the mechanism is unlocked. As the result, the cylindrical body 403 and the center cylinder 404 are allowed to continue descending until the cylindrical body 403 contacts the plug 406 so that the plunger opening 414 is closed. Then, wellbore flow and pressure will push the plunger 402 and a water column upward to a surface.
When the plunger 402 is closed and travels upwards, the locking mechanism is ineffective because the differential pressure across the plunger 402 will keep the plunger plug valve 406 closed until the plunger 402 reaches the surface. When the plunger 402 reaches the surface, an extension rod on a wellhead assembly will knock the plug valve 406 open and push the balls 416a into the groove 416b on the center cylinder 404 so that the plunger 402 is locked open. As the result, the plunger 402 will descend in the wellbore starting a new tripping cycle.
One optional aspect of the present disclosure is represented by the internal fishing neck 419 on the inner profile of the tubular cylindrical plunger body 403. The fishing neck 419 can be used for retrieving the plunger 402 in the well in case of plunger failure.
Note that the plunger 402 may further include O-ring seals on both ends of each element that experiences relative movement (e.g. 404, 406, and 407). These seals are designed to prevent solids and debris such as formation sands or fine particles from entering the locking mechanism and thus endangering the functionality of the plunger.
Further note that there is also a support element connecting the cylinder body 403 and the center cylinder 404. This element is not shown in
In the embodiment of
The one-stage locking mechanism 496A-496B and 498A-498B is configured to impart a force on the plug mechanism 492 in the open position sufficient to maintain the plug mechanism in the open position as the plunger apparatus 491 falls through continuous water. In the closed position 495, the locking mechanism does not hold the plug mechanism 492 in place. Instead, the pressure from produced fluids (e.g. gas and some water) will force the plug mechanism into the plunger body to maintain the closed position as the plunger 491 trips up to the top of the wellbore. Beneficially, the one-stage locking mechanism does not require an actuation member 144 or 407 and may be easier to manufacture and more robust in operation than the two-stage locking mechanisms disclosed in
Yet another exemplary aspect of the present disclosure comprises the support or fin element 482, which may be configured to fasten to the center element 404 and house the locking mechanism 472-473. No particular requirement is given for the number of support elements 482, but minimal drag is desired.
In the exemplary embodiment 440D, the side-wall or outer wall may include sealing mechanisms 418′ having a fluid sealing element in the cavity of the sealing mechanism configured to induce an azimuthal variation of the toroidal vortex (e.g. “3-D vortex generator”). The 3-D vortex generator may be understood as a “sharp” edge in a fluid flow cavity (e.g. the sealing mechanism 418′) configured to disrupt the axial-symmetry of the cavity such that the 3-D vortex generator creates a complex vortical structure when fluid flows over or through the 3-D vortex generator. Examples of a 3-D vortex generator include a small cut 418′ in the front edge of a turbulent sealer 418 (as shown in
Beneficially, the improved sealing mechanisms 418′ are configured to reduce or minimize both the downward flow of water and the upward flow of gas in the space between the outer surface of the plunger cylinder 403 and the tubular walls. This not only reduces the leak of lifted water during the ascent, but also maintains the gas pressure underneath the plunger 402, thus increasing the overall efficiency of the system. These sealing mechanisms are further described and disclosed in commonly assigned U.S. Provisional Patent Application Nos. 61/222,788 and 61/239,320 entitled “FLUID SEALING ELEMENTS AND RELATED METHODS” and filed on 2 Jul. 2009 and 2 Sep. 2009, respectively. Each of these applications are incorporated herein by reference in their entirety for all purposes, except the portions dealing with devices other than plungers.
It should be noted that the sealing mechanisms 418′ are configured to provide a continuous interface between a liquid and a pressurized gas when the plunger 402 ascends in a well with the plug mechanism 406 in the closed position. Additionally, the sealing mechanisms 418 may be slightly smaller than a diameter of a well tubular to account for irregularities and/or paraffin, wax, salt, or other buildup on the inside of the tubular walls. As discussed above, the outer diameter of the plunger body, with or without the sealing mechanisms 418, may be slightly less than the diameter of the tubular string in which the plunger is intended to travel. Other exemplary side-wall geometries include, for example, wobble washers (e.g. variable or shifting ring side-wall), a brush-type side-wall, an expanding blade assembly (e.g. spring-loaded interlocking pads), or any combination thereof. These geometries and their capabilities and limitations are well-known to those of skill in the art and may be found, for example in U.S. Pat. No. 7,383,878, the portions of which dealing with side-wall geometries are hereby incorporated by reference.
In another embodiment of the plungers 402, 451, 471, or 491 disclosed herein, a friction reducing coating (FRC) may be applied to some portion or all of the portions of the plunger, which may be exposed to dynamic fluid forces and which it is desired to reduce such forces. For example, such a coating may be applied to the ball or plug portion of the plug mechanism 406, the leading or front edge of the plunger body 403, the extended second end of the actuation member 410, the outer surface of the plunger (including sealers 418), or any other exposed portion. Further, it is desirable that the locking mechanism have increased durability. As discussed, the conditions of the plunger operation also require durability and resistance to wear, so such a coating or surface must also be hard and durable.
Examples of potentially viable coating or materials options for a FRC include diamond-like carbon (DLC), advanced ceramics (e.g. TiN, TiB.sub.2), near-frictionless carbon (NFC), TEFLON™, graphite, chemical-vapor deposition (CVD) diamond, and other such surface coatings.
In
In
Note that the disclosed method may be optimized, altered or improved in a variety of ways depending on the flow rate of the well, diameter of the well, composition of the fluids produced in the well, and other factors. One particular exemplary feature includes controlling the plunger lift cycle by catching the automatic plunger apparatus 402 or 491 at or near the top portion of the wellbore; holding the automatic plunger apparatus 402 or 491 for a period of time; and releasing the automatic plunger apparatus 402 or 491 upon the occurrence of a condition in the wellbore. One exemplary condition may be shut-in of the well for maintenance or safety reasons. Another exemplary condition may be that there is simply not much liquid loading in the well and therefore no need to immediately send the plunger to the bottom to bring up liquids.
The method may further include forming multiple turbulent sealers each having at least one vortex generator on an outer surface of the plunger body; and applying a friction reduced coating on at least a portion of the plunger, wherein the FRC is selected from the group consisting of: diamond-like carbon (DLC), advanced ceramics, graphite, and near-frictionless carbon (NFC). Any workable manufacturing technique may be applied, but it is contemplated that casting, welding, etching, and latching techniques may be used alternatively or in combination to manufacture the disclosed plunger apparatus.
Plunger 50 is located within a target region 38 of wellbore conduit 36. Target region 38 of wellbore conduit 36 may include and/or be any suitable portion of the wellbore conduit that is located downhole from surface tree 27, that is located and/or defined within subsurface region 24, that is located and/or defined within subterranean formation 26, and/or in which liquid 44 collects. As illustrative, non-exclusive examples, target region 38 may include, be located within, and/or be defined within a portion of subsurface region 24 that provides the wellbore fluid stream to the wellbore conduit and/or within a portion of the wellbore conduit that is distal from an uphole end of the wellbore conduit. As another illustrative, non-exclusive example, target region 38 may be at least a threshold distance from surface region 22 along a length of wellbore 30. Illustrative, non-exclusive examples of the threshold distance include threshold distances of at least 100 meters (m), at least 250 m, at least 500 m, at least 750 m, at least 1,000 m, at least 1,250 m, at least 1,500 m, at least 2,000 m, at least 3,000 m, at least 4,000 m, at least 5,000 m, at least 7,500 m, or at least 10,000 m.
As discussed in more detail herein, plunger 50 may be configured to have and/or define a low fluid drag state 64 and to rest, reside, remain and/or be located within target region 38 of wellbore conduit 36 while a wellbore fluid stream 42 flows past the plunger in an uphole direction 80 within the wellbore conduit. In addition, plunger 50 may be configured to selectively transition from the low fluid drag state to a high fluid drag state 66 responsive to a variable associated with the wellbore fluid stream being within a threshold range. Upon transitioning to the high fluid drag state, the plunger may be conveyed within wellbore conduit 36 in uphole direction 80, as illustrated in dashed lines in
The variable associated with the wellbore fluid stream may include any suitable variable that is indicative of the presence of, or the presence of at least a threshold volume of, liquid 44 within target region 38 of wellbore conduit 36. Additionally or alternatively, when greater than the threshold volume of liquid 44 is present within target region 38, the variable associated with the wellbore fluid stream is within the threshold range. Illustrative, non-exclusive examples of the variable associated with the wellbore fluid stream may be or include a pressure of the wellbore fluid stream, a density of the wellbore fluid stream, a temperature of the wellbore fluid stream, and/or a flow rate of the wellbore fluid stream. As discussed in more detail herein, the systems and/or methods may monitor and/or detect the magnitude and/or the rate of change of the variable.
Subsequent to being conveyed in uphole direction 80, plunger 50 may transition back to the low fluid drag state 64. This transitioning may occur, for example, after the plunger reaches an uphole end of wellbore conduit 36, and/or urges liquid 44 and/or solid material 46 in uphole direction 80 and/or from wellbore conduit 36. This may permit the plunger to fall, such as under the influence of gravity, in a downhole direction 82 and/or toward target region 38 within wellbore conduit 36. The plunger then may rest, reside, remain and/or be located within the target region of the wellbore conduit, such as for at least a threshold maintaining time, before once again transitioning to the high fluid drag state and being conveyed in uphole direction 80 with wellbore fluid stream 42. This process may be repeated any suitable number of times and/or with any suitable frequency to remove liquid 44 and/or solid material 46 from the wellbore conduit.
Wellbore conduit 36 may be defined by any suitable structure and/or conduit body 34. As an illustrative, non-exclusive example, wellbore conduit 36 may be defined by (or conduit body 34 may be) wellbore 30. As another illustrative, non-exclusive example, wellbore conduit 36 may be defined by (or conduit body 34 may be) a casing string that extends within wellbore 30. As yet another illustrative, non-exclusive example, wellbore conduit 36 may be defined by (or conduit body 34 may be) a tubing or production string that extends within wellbore 30.
As illustrated in
As illustrated in solid lines in
Target region 38 of wellbore conduit 36 may include and/or be any suitable portion of the wellbore conduit that is located downhole from surface tree 27, that is located and/or defined within subsurface region 24, that is located and/or defined within subterranean formation 26, and/or in which liquid 44 collects. As illustrative, non-exclusive examples, target region 38 may include, be located within, and/or be defined within a portion of subsurface region 24 that provides the wellbore fluid stream to the wellbore conduit and/or within a portion of the wellbore conduit that is distal from an uphole end of the wellbore conduit. As another illustrative, non-exclusive example, target region 38 may be at least a threshold distance from surface region 22 along a length of wellbore 30. Illustrative, non-exclusive examples of the threshold distance include threshold distances of at least 100 meters (m), at least 250 m, at least 500 m, at least 750 m, at least 1,000 m, at least 1,250 m, at least 1,500 m, at least 2,000 m, at least 3,000 m, at least 4,000 m, at least 5,000 m, at least 7,500 m, or at least 10,000 m.
As illustrated in
Well 20 also may include an uphole support structure 28. Uphole support structure 28 which may be associated with, near, and/or proximal to an uphole end of wellbore 36, may be associated with, near, and/or proximal to a surface tree 27 that is associated with well 20 and/or that is configured to selectively regulate flow of wellbore fluid stream 42 from well 20. As a further example, uphole support structure 28 may be located within a lubricator 32 of surface tree 27. Similar to downhole support structure 97, uphole support structure 28 may include an uphole electrical connection 29 and/or an uphole data structure 31, which may be at least substantially similar to downhole electrical connection 98 and or downhole data transfer structure 99. When plunger 50 is conveyed in uphole direction 80, near surface region 22, into surface tree 27, and/or into contact with uphole support structure 28, the plunger may be retained on uphole support structure 28 to permit charging of power source 94 and/or to permit data transfer to and/or from the plunger.
Plunger 50 may include any suitable structure that may be conveyed within wellbore conduit 36 to selectively define and/or transition between low fluid drag state 64 and high fluid drag state 66, and/or may urge or otherwise remove liquid 44 and/or solid material 46 from wellbore conduit 36. Plunger 50 further is configured to define and/or transition between low fluid drag state 64 and high fluid drag state 66, and/or may urge or otherwise remove liquid 44 and/or solid material 46 from wellbore conduit 36. As an illustrative, non-exclusive example, plunger 50 may include a drag-regulating structure 60, which is configured to selectively vary a fluid drag therepast, thereby transitioning, or permitting plunger 50 to transition, between the low fluid drag state and the high fluid drag state. High fluid drag state merely means a drag value that is greater than the low fluid drag state, but generally means wherein the plunger is transitioned from a state that permits the plunger to fall within the wellbore or remain at rest within the wellbore, to a state that permits the plunger to move uphole toward the surface, such as when unloading liquid from the wellbore. As another illustrative, non-exclusive example, plunger 50 may include and/or at least partially define a flow-through opening 62, which is configured to permit wellbore fluid stream 42 to flow therethrough at least when plunger 50 is in low fluid drag state 64. Illustrative, non-exclusive examples of plungers 50, drag-regulating structure 60, flow-through openings 62, components thereof, features thereof, and/or operation thereof are discussed in more detail herein. For purposes herein the drag-regulating structures may refer to components within the plunger throughbore or central flow passage, as well as the actuatable external seal assembly that is operatively provided on or within an outer surface of the plunger body. In the presently disclosed embodiments, the drag-regulating structures will always include at least the actuatable external seal assembly components, and may optionally (e.g., may or may not) include components fluid flow regulating valve components that regulate or control fluid flow through the internal passage or throughbore of the plunger body. Some embodiments may include both the actuatable external seal assembly and the internal valve mechanisms, while other embodiments may include the actuatable external seal assembly and a plug-type valve, as illustrated in Figures for controlling fluid flow through the internal throughbore of the plunger body. The external seal assembly may be actuatable either independent from actuation of the internal valve mechanisms (or plug) or the external seal assembly may be actuatable in conjunction with or responsive to actuation of the internal valve mechanisms. For example, a controller may control each of the external seal assembly independent from control of the internal valve assembly, or may control one or the other such that adjustment of one translates to both.
As discussed herein, the low fluid drag state may define a lower relative resistance to fluid flow past the plunger within the wellbore conduit, while the high fluid drag state may define a higher relative resistance to fluid flow past the plunger within the wellbore conduit.
Thus, transitioning from the low fluid drag state to the high fluid drag state also may be referred to herein as increasing the resistance to fluid flow past the plunger (internally, externally, or both) within the wellbore conduit. Conversely, transitioning from the high fluid drag state to the low fluid drag state also may be referred to herein as decreasing the resistance to fluid flow past the plunger within the wellbore conduit. The resistance to fluid flow past the plunger may correspond to a pressure drop across the plunger within the wellbore conduit (with a higher resistance to fluid flow corresponding to a higher pressure drop) and/or to a fluid drag force on the plunger within the wellbore conduit (with a higher resistance to fluid flow corresponding to a higher fluid drag force). As discussed in more detail herein, transitioning between the high fluid drag state and the low fluid drag state may include changing a cross-sectional area of flow-through opening 62, though this is not required in all embodiments, as deploying the external seal assembly alone will also change the cross-sectional flow area and fluid drag force and changing the external seal assembly is all that is required to change the fluid drag force according to this present disclosure. The high and low fluid drag states additionally or alternatively may synonymously be referred to as high and low fluid drag configurations, expanded and contracted configurations, deployed and retracted seal configurations, and/or conveying and maintaining configurations.
Plunger 50 further may include a controller 90. The controller may be adapted, configured, designed, and/or programmed to control the operation of plunger 50. As an illustrative, non-exclusive example, controller 90 may be programmed to control and/or regulate the transitioning of plunger 50 between the low fluid drag state and the high fluid drag state. As another illustrative, non-exclusive example, controller 90 may be programmed to perform any suitable portion of methods 100, which are discussed in more detail herein. This may include performing at least the maintaining at 120 and the transitioning at 135 of subsequently discussed methods 100. This also may include storing the methods within an internal memory 96 of the controller and/or retrieving the methods from the internal memory to permit and/or facilitate execution of the methods.
Plunger 50 also may include and/or controller 90 may be in communication with detector 92, as discussed in more detail herein. In addition, plunger 50 may include a transmitter 91 and/or a receiver 93. Transmitter 91 and/or receiver 93 may permit controller 90 to transmit and/or receive data, as discussed in more detail herein.
It is within the scope of the present disclosure that plunger 50 and/or controller 90 thereof may be adapted, configured, designed, and/or programmed to release, or regulate a release of, supplemental material 54 into wellbore conduit 36. As an illustrative, non-exclusive example, plunger 50 may include a supplemental material reservoir 52, and controller 90 may direct plunger 50 to release supplemental material 54 from supplemental material reservoir 52 and into the wellbore conduit. As another illustrative, non-exclusive example, plunger 50 and/or downhole support structure 97 may be configured to release supplemental material 54 upon and/or concurrent with transitioning of the plunger to the high fluid drag state. As a further illustrative, non-exclusive example, controller 90 may direct supplemental material 54 to be released into wellbore conduit 36 from surface region 22. Illustrative, non-exclusive examples of supplemental material 54 include any suitable foaming agent, soap, surfactant, lubricant, and/or mixtures thereof. Additional illustrative, non-exclusive examples of supplemental material 54 include inhibitors, such as a scale inhibitor, corrosion inhibitor, paraffin inhibitor, etc.
As discussed in more detail herein, plunger 50 may be adapted, configured, sized, and/or designed to permit wellbore fluid stream 42 to flow there-past when the plunger is located within target region 38 of wellbore conduit 36 and the plunger is in the low fluid drag state. It is within the scope of the present disclosure that the wellbore fluid stream may flow past the plunger in any suitable manner. As an illustrative, non-exclusive example, and as illustrated in
As another illustrative, non-exclusive example, and as illustrated in
Wellbore fluid stream 42 may include any suitable wellbore fluid 40 that may flow from subterranean formation 26, may flow through wellbore conduit 36, and/or may be produced from gaseous hydrocarbon well 20. Generally, wellbore fluid stream 42 will include and/or be a gaseous stream and/or a vaporous stream, and illustrative, non-exclusive examples of wellbore fluid stream 42 include a gaseous hydrocarbon stream, a vaporous hydrocarbon stream, a methane stream, and/or a natural gas stream.
Liquid 44 may include any suitable liquid that may accumulate within wellbore conduit 36, may be present within wellbore conduit 36, and/or may (at least partially) restrict flow of wellbore fluid stream 42 within wellbore conduit 36. Illustrative, non-exclusive examples of liquid 44 include water and/or a liquid hydrocarbon. Solid material 46 may include any suitable solid, solid-like, and/or gel material that may accumulate within wellbore conduit 36, may be present within wellbore conduit 36, and/or may (at least partially) restrict flow of wellbore fluid stream 42 within wellbore conduit 36. Illustrative, non-exclusive examples of solid material 46 include a paraffin, a wax, and/or scale. Liquid 44 and/or solid material 46 present in wellbore conduit 36 generally may be referred to herein as wellbore material 48.
As used herein, uphole direction 80 may include any suitable direction that is along (or parallel to) a respective length (or portion) of wellbore conduit 36 and that is directed toward, or closer to, an intersection of the wellbore conduit with surface region 22 and/or toward surface tree 27, when present. Additionally or alternatively, moving an object in the uphole direction also may be described as moving the object in a direction along a trajectory of wellbore conduit 36 that tends to decrease a distance between the object and a surface terminal end 37 of wellbore conduit 36.
Conversely, downhole direction 82 may include any suitable direction that is along (or parallel to) the respective length (or portion) of wellbore conduit 36 and that tends to move away from the intersection of the wellbore with surface region 22, away from surface tree 27, away from surface terminal end 37, toward a subterranean terminal end 39 of wellbore conduit 36, and/or toward a toe 41 (when present) of wellbore conduit 36.
Surface tree 27 may include and/or be any suitable structure that may be configured to control and/or regulate at least a portion of the fluid flows into and/or out of well 20. As illustrative, non-exclusive examples, surface tree 27 may include one or more valves, spools, and/or fittings. Surface tree 27 also may be referred to herein as a Christmas tree 27, a surface valve assembly 27, and/or as a surface flow control assembly 27.
Locating the plunger within the target region of the wellbore conduit at 105 may include locating the plunger within any suitable target region of the wellbore conduit in any suitable manner. As an illustrative, non-exclusive example, the locating at 105 may include lubricating the plunger into the wellbore conduit. As another illustrative, non-exclusive example, the locating at 105 may include permitting the plunger to fall within the wellbore conduit under the influence of gravity and/or permitting the plunger to fall within the wellbore conduit concurrently with (and/or in a direction that is opposed to) the flowing at 115. It is within the scope of the present disclosure that the locating at 105 may include locating the plunger within the target region of the wellbore conduit without shutting in the well and/or without exposing the wellbore conduit to ambient atmospheric conditions and/or ambient atmospheric pressure.
As used herein, the phrase, “shutting in” may include and/or refer to sealing the hydrocarbon well, ceasing production of the wellbore fluid stream from the hydrocarbon well, and/or ceasing flow of the wellbore fluid stream in the uphole direction within the wellbore conduit. Traditional plungers may require that the hydrocarbon well be shut in to permit the traditional plunger to move in a downhole direction within the wellbore conduit. However, plungers according to the present disclosure, which define the low fluid drag state, may be configured to move in the downhole direction under the influence of gravity while the wellbore fluid stream is flowing in the uphole direction within the wellbore conduit.
Powering the plunger at 110 may include powering any suitable portion of the plunger in any suitable manner. As an illustrative, non-exclusive example, the powering at 110 may include providing an electric current to and/or from any suitable portion of the plunger. As another illustrative, non-exclusive example, and as discussed, the plunger may include a power source, such as a battery, and the powering at 110 may include powering with the power source. When methods 100 include the powering at 110, methods 100 further may include charging and/or re-charging the power source. This may include charging and/or re-charging the power source while the plunger is located within the target region of the wellbore conduit (as illustrated in
Flowing the wellbore fluid stream within the wellbore conduit at 115 may include flowing the wellbore fluid stream within the wellbore conduit in an uphole direction. This may include flowing the wellbore fluid stream past the plunger while the plunger is located within the target region of the wellbore conduit, flowing the wellbore fluid stream in contact with the plunger while the plunger is located within the target region of the wellbore conduit, flowing the wellbore fluid stream through the plunger while the plunger is located within the target region of the wellbore conduit, and/or flowing the wellbore fluid stream through a flow-through opening that is at least partially defined by the plunger while the plunger is located within the target region of the wellbore conduit.
Maintaining the plunger in the low fluid drag state at 120 may include maintaining the plunger in the low fluid drag state while the variable associated with the wellbore fluid stream is outside a threshold range. The maintaining at 120 may include maintaining the plunger in the low fluid drag state during the flowing at 115, and a fluid drag on the plunger when the plunger is in the low fluid drag state may be sufficiently low to permit the plunger to remain within the target region of the wellbore conduit despite and/or during the flowing at 115. Additionally or alternatively, the maintaining at 120 also may include maintaining the plunger within the target region of the wellbore conduit, maintaining the plunger at least substantially motionless within the wellbore conduit, and/or maintaining the plunger in contact with a downhole support structure.
It is within the scope of the present disclosure that the maintaining at 120 may include maintaining the plunger in the low fluid drag state for at least a threshold maintaining time. Illustrative, non-exclusive examples of the threshold maintaining time include threshold maintaining times of at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 5 hours, at least 12 hours, at least 1 day, at least 2 days, at least 3 days, or at least 1 week.
During the maintaining at 120, and as illustrated in
Detecting the variable associated with the wellbore fluid stream at 125 may include detecting the variable with any suitable type and/or number of detector(s). The detecting at 125 may include detecting any suitable variable that is associated with the wellbore fluid stream, is indicative of one or more properties of the wellbore fluid stream, and/or is indicative of the presence of liquid within the target region of the wellbore conduit. The detecting at 125 may include detecting that the variable associated with the wellbore fluid stream is within the threshold range and/or outside the threshold range. Illustrative, non-exclusive examples of the variable associated with the wellbore fluid stream are discussed herein.
Collecting downhole data at 130 may include collecting any suitable downhole data with the plunger, with the detector, and/or with a controller that forms a portion of the plunger and/or that is in communication with the detector. The collecting at 130 may include collecting the downhole data while the plunger is within the target region of the wellbore conduit and/or during the maintaining at 120. Illustrative, non-exclusive examples of the collected downhole data include a downhole pressure of the wellbore fluid stream, a downhole flow rate of the wellbore fluid stream, a downhole temperature of the wellbore fluid stream, and/or a downhole density of the wellbore fluid stream. It is within the scope of the present disclosure that the collecting at 130 may include collecting a single data point, collecting the downhole data at a single point in time, and/or collecting the downhole data as a function of time. It is also within the scope of the present disclosure that the downhole data may include and/or be the variable associated with the wellbore fluid stream and/or that the collecting at 130 may be performed concurrently with, and/or may be a result of, the detecting at 125.
The collecting at 130 may include generating a database of downhole data. This database of downhole data may, at least temporarily, be stored within the plunger, such as within a memory device thereof. Additionally or alternatively, the downhole data and/or the database of downhole data may be transferred from the plunger, stored on another device, and/or utilized to document and/or model the behavior and/or performance of the hydrocarbon well. As an illustrative, non-exclusive example, and when methods 100 include the collecting at 130, the methods further may include conveying the data from the plunger and/or to the surface region. This may include conveying the data from the plunger in any suitable manner and/or at any suitable time during methods 100, such as during the charging and/or re-charging that is discussed herein with reference to the powering at 110 and illustrated in
Transitioning the plunger to the high fluid drag state at 135 may include transitioning responsive to the variable associated with the wellbore fluid stream being within the threshold range. The transitioning at 135 may include increasing a resistance to fluid flow past the plunger within the wellbore conduit, which may increase fluid drag on the plunger and/or provide a motive force for the conveying at 145.
It is within the scope of the present disclosure that the transitioning at 135 may be performed and/or accomplished in any suitable manner. As an illustrative, non-exclusive example, and when the plunger includes the detector and the controller, the transitioning at 135 may be regulated and/or controlled by the controller, such as responsive to the detecting at 125. Under these conditions, the transitioning at 135 may be initiated by the controller automatically and/or without user intervention. However, it is also within the scope of the present disclosure that the transitioning at 135 may include transitioning responsive to receipt of a transition initiation signal by the controller. Such a transition initiation signal may originate within the surface region and/or from a user.
As another illustrative, non-exclusive example, the plunger may include a passive transition device. The passive transition device may be configured to passively transition the plunger from the low fluid drag state to the high fluid drag state responsive to the variable associated with the wellbore fluid stream transitioning from outside the threshold range to within the threshold range. Additionally or alternatively, the passive transition device also may be configured to passively transition the plunger from the high fluid drag state to the low fluid drag state responsive to the variable associated with the wellbore fluid stream transitioning from within the threshold range to outside the threshold range.
The transitioning at 135 may be accomplished in any suitable manner. As an illustrative, non-exclusive example, the transitioning at 135 may include increasing an outer diameter of the plunger. As another illustrative, non-exclusive example, the transitioning at 135 may include decreasing a cross-sectional area of an annular space that is defined by the plunger and a conduit body that defines the wellbore conduit. As yet another illustrative, non-exclusive example, and as illustrated in
It is within the scope of the present disclosure that the threshold range of the variable associated with the wellbore fluid stream may be defined in any suitable manner. As an illustrative, non-exclusive example, the variable associated with the wellbore fluid stream may include and/or be the pressure of the wellbore fluid stream. Under these conditions, the transitioning at 135 may include transitioning responsive to the pressure of the wellbore fluid stream exceeding a threshold maximum wellbore fluid stream pressure, responsive to a predetermined temporal pattern in the pressure of the wellbore fluid stream, responsive to a rate of change of the pressure of the wellbore fluid stream, and/or responsive to the rate of change of the pressure of the wellbore fluid stream being less than a threshold minimum rate of change of the pressure of the wellbore fluid stream.
As another illustrative, non-exclusive example, the variable associated with the wellbore fluid stream may include and/or be the temperature of the wellbore fluid stream.
Under these conditions, the transitioning at 135 may include transitioning responsive to the temperature of the wellbore fluid stream being greater than a threshold maximum wellbore fluid stream temperature, responsive to a rate of change of the temperature of the wellbore fluid stream, and/or responsive to the rate of change of the temperature of the wellbore fluid stream being less than a threshold minimum rate of change of the temperature of the wellbore fluid stream.
As yet another illustrative, non-exclusive example, the variable associated with the wellbore fluid stream may include and/or be the flow rate of the wellbore fluid stream. Under these conditions, the transitioning at 135 may include transitioning responsive to the flow rate of the wellbore fluid stream being less than a threshold minimum flow rate of the wellbore fluid stream and/or responsive to a change (or decrease) in the flow rate of the wellbore fluid stream that is greater than a threshold rate of change (or decrease) in the flow rate of the wellbore fluid stream.
As another illustrative, non-exclusive example, the variable associated with the wellbore fluid stream may include and/or be the density of the wellbore fluid stream. Under these conditions, the transitioning at 135 may include transitioning responsive to the density of the wellbore fluid stream being greater than a threshold wellbore fluid stream density.
It is within the scope of the present disclosure that the transitioning at 135 may include transitioning responsive to a single variable associated with the wellbore fluid stream. Additionally or alternatively, it is also within the scope of the present disclosure that the transitioning at 135 may include transitioning responsive to a plurality of variables associated with the wellbore fluid stream (or that the variable associated with the wellbore fluid stream includes a plurality of variables associated with the wellbore fluid stream). This may include transitioning responsive to at least two, at least three, or more than three variables associated with the wellbore fluid stream being within respective threshold ranges. As a more specific but still illustrative, non-exclusive example, the transitioning at 135 may include transitioning responsive to the temperature of the wellbore fluid stream, the pressure of the wellbore fluid stream, and the density of the wellbore fluid stream all being within respective threshold ranges.
Releasing the supplemental material into the wellbore conduit at 140 may include releasing any suitable supplemental material into the wellbore conduit in any suitable manner. Illustrative, non-exclusive examples of the supplemental material are disclosed herein.
As an illustrative, non-exclusive example, the releasing at 140 may include releasing the supplemental material from the plunger while the plunger is within the target region of the wellbore conduit. As another illustrative, non-exclusive example, the releasing at 140 also may include releasing the supplemental material from the plunger while the plunger is being conveyed in the uphole direction within the wellbore conduit. As yet another illustrative, non-exclusive example, the releasing at 140 also may include releasing the supplemental material into an annular space that may be defined between the conduit body and the wellbore.
It is within the scope of the present disclosure that the releasing at 140 may be based upon and/or initiated responsive to any suitable criteria. As an illustrative, non-exclusive example, the releasing at 140 may be based, at least in part, on a value of the variable associated with the wellbore fluid stream. As another illustrative, non-exclusive example, the releasing may be initiated based upon, responsive to, concurrently with, and/or prior to the transitioning at 140 and/or the conveying at 145.
Conveying the plunger in the uphole direction within the wellbore conduit at 145 may include conveying the plunger in the uphole direction with, or within, the wellbore fluid stream to convey the liquid in the uphole direction. This may include providing a motive force for removal of the liquid from the wellbore conduit and/or producing the liquid from the wellbore conduit and/or from the gaseous hydrocarbon well and is illustrated in
As also discussed herein, it is within the scope of the present disclosure that the wellbore conduit may include and/or be a tapered wellbore conduit and/or that a cross-sectional shape and/or area of the wellbore conduit may vary along a length of the wellbore conduit. Under these conditions, methods 100 further may include selectively adjusting an outside diameter of the plunger, during the conveying, to correspond to a diameter of a portion of the wellbore conduit that includes the plunger.
It is also within the scope of the present disclosure that the plunger may be operated under conditions in which the flow of the wellbore fluid stream may be insufficient to convey the plunger in the uphole direction. Under these conditions, the plunger further may include a propulsion source that is configured to provide a motive force to convey the plunger in the uphole direction, and the conveying at 145 further may include actuating the propulsion source.
Determining the status of the plunger during the conveying at 150 may include determining any suitable property and/or status of the plunger during the conveying. As an illustrative, non-exclusive example, the determining at 150 may include determining a location of the plunger within the wellbore conduit, such as with the controller. As a more specific but still illustrative, non-exclusive example, the plunger may include a collar locator, and the determining may include counting tubing and/or casing collars with the collar locator as the plunger is conveyed there-past, comparing the counted collars to a collar log of collars that are present within the hydrocarbon well, and determining the location of the plunger based upon the comparison of the collar count to the collar log.
As another illustrative, non-exclusive example, the determining at 150 also may include determining a velocity of the plunger within the wellbore conduit, such as with the controller. As an illustrative, non-exclusive example, the plunger may include an accelerometer, and the determining at 150 may include determining the velocity based upon and/or utilizing the accelerometer. As another illustrative, non-exclusive example, the determining at 150 may include determining the velocity based upon, or utilizing the collar locator and/or the collar log.
As yet another illustrative, non-exclusive example, the determining at 150 may include determining an acceleration of the plunger with the accelerometer. As another illustrative, non-exclusive example, the plunger may include a gyroscope, and the determining at 150 may include determining a trajectory of the plunger within the wellbore conduit with the gyroscope.
Regulating the motion of the plunger at 155 may include regulating the motion of the plunger in any suitable manner. As an illustrative, non-exclusive example, the regulating at 155 may include regulating the velocity and/or velocity of the plunger within the wellbore conduit. This may include determining the velocity of the plunger with the controller, such as via the determining at 150, and subsequently regulating the velocity of the plunger with the controller, such as by controlling and/or regulating the fluid drag on the plunger within the wellbore conduit. This is illustrated in
It is within the scope of the present disclosure that the regulating at 155 may include decreasing the velocity of the plunger in the uphole direction by any suitable amount, ceasing the motion of the plunger in the uphole direction, and/or even initiating motion of the plunger in the downhole direction. Additionally or alternatively, the regulating at 155 also may include increasing the velocity of the plunger in the uphole direction. This increasing and/or decreasing may be based upon real-time data that is collected by the plunger during the conveying at 145 and/or upon historical data that has been previously collected by the plunger.
As an illustrative, non-exclusive example, the regulating at 155 may include maintaining the velocity of the plunger below a threshold plunger speed. As another illustrative, non-exclusive example, the regulating at 155 may include increasing the fluid drag past the plunger within the wellbore conduit to increase the velocity of the plunger while the plunger is conveyed in the uphole direction. As yet another illustrative, non-exclusive example, the regulating at 155 also may include decreasing the fluid drag past the plunger within the wellbore conduit to decrease the velocity of the plunger while the plunger is conveyed in the uphole direction.
As another illustrative, non-exclusive example, the regulating at 155 also may include regulating a portion and/or fraction of a length of the wellbore conduit through which the plunger is conveyed during the conveying at 145. This may prevent contact between the plunger and a terminal end, such as at the surface region, of the wellbore conduit, thereby decreasing wear of and/or damage to the plunger and/or a remainder of the hydrocarbon well due to motion of the plunger within the wellbore conduit.
As an illustrative, non-exclusive example, the wellbore conduit may define a distance between the surface region and the target region of the wellbore conduit, as measured along the length of the wellbore conduit. The regulating at 155 may include calculating, during the conveying at 145, that a velocity of the wellbore fluid stream is sufficient to convey the liquid to the surface region and decreasing the fluid drag on the plunger to cease conveying the plunger in the uphole direction. This may permit the plunger to be returned to the target region of the wellbore conduit prior to the plunger traversing the entire distance between the surface region and the target region of the wellbore conduit and/or prior to the liquid being produced from the wellbore conduit. This is illustrated in
It is within the scope of the present disclosure that the plunger may traverse any suitable portion of the distance between the surface region and the target region of the wellbore conduit. As illustrative, non-exclusive examples, the plunger may traverse less than 100%, less than 95%, less than 90%, less than 85%, less than 80%, less than 70%, less than 60%, or less than 50% of the distance between the surface region and the target region of the wellbore conduit.
Collecting traverse data with the plunger at 160 may include collecting any suitable downhole data with the plunger during the conveying at 145. As illustrative, non-exclusive examples, the collecting at 160 may include collecting the pressure of the wellbore fluid stream as a function of location within the wellbore conduit, collecting the temperature of the wellbore fluid stream as a function of location within the wellbore conduit, collecting the flow rate of the wellbore fluid stream as a function of location within the wellbore conduit, and/or collecting the density of the wellbore fluid stream as a function of location within the wellbore conduit. Additionally or alternatively, the collecting at 160 also may include collecting a traverse survey of the wellbore conduit and/or generating a database of traverse data.
Producing the liquid from the gaseous hydrocarbon well at 165 may include producing the liquid in any suitable manner. This may include removing the liquid from the gaseous hydrocarbon well, such as via a surface tree 27, as illustrated in
Adjusting the threshold range at 170 may include adjusting the threshold range in any suitable manner and/or based upon any suitable criteria. As illustrative, non-exclusive examples, the adjusting at 170 may include increasing a lower and/or an upper limit of the threshold range, decreasing the lower and/or upper limit of the threshold range, broadening the threshold range, and/or narrowing the threshold range. As additional illustrative, non-exclusive examples, the adjusting at 170 may include adjusting the threshold range based, at least in part, on previously collected downhole data and/or previously collected traverse data.
Repeating the methods at 175 may include repeating any suitable portion of methods 100. As an illustrative, non-exclusive example, and as illustrated in
It is within the scope of the present disclosure that the repeating at 175 may include repeating without shutting in the hydrocarbon well and may be performed a plurality of times to remove a respective plurality of volumes of liquid from the wellbore conduit. Methods 100 may be repeated automatically, such as under the control of the controller.
When methods 100 include the repeating at 175, the collecting at 130 may include collecting downhole data when the plunger is maintained within the target region of the wellbore conduit and/or generating a database of downhole data as a function of time. Similarly, and when methods 100 include the repeating at 175, the collecting at 160 may include collecting traverse data when the plunger is being conveyed within the wellbore conduit and/or generating a database of traverse data as a function of time.
Referring more specifically to the process flow of
While the wellbore fluid stream is flowing past the plunger, liquid 44 may collect within the wellbore conduit and/or on uphole side 56 of the plunger. When the variable associated with the wellbore fluid stream is within the threshold range, which indicates that removal of liquid 44 from the wellbore conduit would improve the flow of the wellbore fluid stream within the wellbore conduit, and/or which indicates that removal of liquid 44 from the wellbore conduit would be beneficial to the operation of the hydrocarbon well, and as illustrated in
Transitioning plunger 50 to high fluid drag state 66 may increase a resistance to the flow of wellbore fluid stream 42 past the plunger, which may generate a motive (or pressure) force that may convey the plunger in uphole direction 80, as illustrated in
As discussed with reference to the determining at 150 of methods 100, the plunger may be configured to determine one or more status thereof while being conveyed in the uphole direction. In addition, and as discussed with reference to the regulating at 155 of methods 100, the plunger may be configured to regulate the motion thereof while being conveyed in the uphole direction. Thus, the plunger may be configured to selectively vary a resistance to fluid flow there-past while being conveyed in the uphole direction. This is illustrated in
As an illustrative, non-exclusive example, and as discussed herein with reference to the regulating at 155, plunger 50 may determine that it is unnecessary to be conveyed the entire distance to the surface region and instead may transition to low fluid drag state 64 prior to reaching surface tree 27. This may permit the plunger to fall away from liquid 44 in downhole direction 82 back to target region 38 while liquid 44 continues to flow in uphole direction 80 and/or from the hydrocarbon well. This is illustrated in
Alternatively, and as illustrated in
Plunger 50 also includes a controller 90. Controller 90 may be programmed to maintain drag-regulating structure 60 of plunger 50 in the low fluid drag state (as illustrated in
As illustrated in
Regardless of the exact configuration, and as discussed, drag-regulating structure 60 may be configured to selectively vary the cross-sectional area of flow-through opening 62 to selectively vary the resistance to flow of wellbore fluid stream 42 therethrough. This is illustrated in
When flow-through opening 62 is defined between the external surface of plunger 50 and the internal surface of conduit body 34, the flow-through opening also may be referred to herein as an external flow-through opening 68. In such a configuration, drag-regulating structure 60 may be located within any suitable area and/or region along the external surface of plunger 50. Thus, and as illustrated in dashed lines, the drag-regulating structure may be located along a portion of a length of the external surface. Alternatively, and as illustrated in dash-dot lines in
When drag-regulating structure 60 is located along the external surface of plunger 50, the drag-regulating structure may include and/or be an expandable and/or a resilient drag-regulating structure 60 that may be configured to expand and/or contract to conform to a shape and/or diameter of wellbore conduit 36. This may permit the drag-regulating structure to maintain at least a threshold resistance to fluid flow past plunger 50 despite changes in the shape and/or diameter of wellbore conduit 36.
As an illustrative, non-exclusive example, drag-regulating structure 60 may include and/or be a cone 78 and screw 79 assembly. Under these conditions, screw 79 may be drawn toward a remainder of plunger 50, thereby expanding cone 78 and decreasing the cross-sectional area of flow-through opening 62, as illustrated in
The systems and methods disclosed herein are applicable to the oil and gas industries.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
While the presently disclosed technology may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. However, it should be understood that the invention is not intended to be limited to the particular embodiments disclosed herein. Indeed, the presently disclosed inventions include all alternatives, modifications, and equivalents falling within the true spirit and scope of the invention as defined by the following appended claims.
This application claims benefit of U.S. Provisional Application No. 62/271,714, filed Dec. 28, 2015, the entirety of each of which is incorporated by reference herein. This case is related to U.S. Non-Provisional application, Attorney Docket Number 2015EM427, filed concurrently herewith on Dec. 28, 2016.
Number | Date | Country | |
---|---|---|---|
62271714 | Dec 2015 | US |