Actuated clot retrieval catheter

Information

  • Patent Grant
  • 11311304
  • Patent Number
    11,311,304
  • Date Filed
    Wednesday, March 4, 2020
    4 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
Abstract
Devices described herein include an actuated clot retrieval catheter system. The system includes a catheter having a frame disposed proximate the distal end of the catheter. The frame expands to form a seal with the inner wall of a vessel. In some examples, the frame also captures a clot for removal from the vessel. The frame is manufactured from a shape memory material that can be heat set into a predetermined shape. An electrical connection to an electronic circuit causes a current to run through the frame. The electrical resistance of the shape memory material causes the frame to heat and transition from a martensite to an austenite phase. When the frame is heat set into an expanded configuration, the current causes the frame heat and expand. When the frame is heat set into a closed configuration, the current causes the frame heat and collapse upon a clot.
Description
FIELD OF THE DISCLOSURE

The present disclosure generally relates to devices and methods for removing acute blockages from blood vessels during intravascular medical treatments. More specifically, the present disclosure relates to an actuated clot retrieval catheter.


BACKGROUND

Clot retrieval catheters and devices are used in mechanical thrombectomy for endovascular intervention, often in cases where patients are suffering from conditions such as acute ischemic stroke (AIS), myocardial infarction (MI), and pulmonary embolism (PE). Accessing remote areas such as the neurovascular bed is challenging with conventional technology, as the target vessels are small in diameter, distant relative to the site of insertion, and are highly tortuous.


The clot itself can complicate procedures by taking on a number of complex morphologies and consistencies, ranging from simple tube-shaped structures which assume the shape of the vessel to long, strand-like arrangements that can span multiple vessels at one time. The age of a clot can also affect its compliance, with older clots tending to be less compressible than fresh clots. Fibrin rich clots also present a challenge in having a sticky nature that can cause a clot to roll along the outer surface of a mechanical thrombectomy device rather than being gripped effectively. Combinations of soft and firm clot regions can also separate during aspiration, with fragmentation leading to distal embolization which can occur in vessels that cannot be reached with currently available devices. Additionally, breaking the bonds adhering the clot to the vessel wall without damaging fragile vessels is a significant challenge.


Conventional clot retrieval catheters, especially those for operating in the neurovascular blood vessels, can suffer from a number of drawbacks. First, the diameters of the catheters themselves must be small enough to be advanced into the vasculature, which is very small in the context of the neurovascular system. The catheter must also be sufficiently flexible to navigate the vasculature and endure high strains, while also having the axial stiffness to offer smooth advancement along the route. Once at the target site, typical objects to be retrieved from the body can be substantially larger in size than the catheter tip, making it more difficult to retrieve objects into the tip. For example, fibrin-rich clots can often be difficult to extract as they can become lodged in the tip of traditional fixed-mouth catheters. This lodging can cause softer portions of the clot to shear away from the firmer regions, leading to distal embolization.


Small diameters and fixed tip sizes can also be less efficient at directing the aspiration necessary to remove blood and thrombus material during the procedure. The aspiration suction must be strong enough such that any fragmentation occurring through the use of a mechanical thrombectomy device or other methods can, at the very least, be held stationary so that fragments cannot migrate and occlude distal vessels. When aspirating with a traditional fixed-mouth catheter, however, a significant portion of the aspiration flow ends up coming from vessel fluid proximal to the tip of the catheter where there is no clot. This significantly reduces aspiration efficiency, lowering the success rate of clot removal.


The disclosed design is aimed at providing an improved aspirating retrieval catheter which addresses the above-stated deficiencies.


SUMMARY

Examples presented herein include devices and methods for removing acute blockages from blood vessels during intravascular medical treatments. More specifically, the present disclosure relates to an actuated clot retrieval catheter system. An example system for retrieving an obstruction in a blood vessel can include a catheter, a first conductive wire, and an electronic circuit. The electronic circuit can provide a first current to the first conductive wire. A frame can be located near the distal end of the catheter and can be in electrical communication with the first conductive wire. The frame can include a shape memory material that enables the frame, or a portion thereof, to transition from a martensite phase to an austenite phase when heated to above the material's austenite finish temperature. At least a first portion of the frame can be expandable from a collapsed configuration to an expanded configuration upon being heated by the first current.


The shape memory material can have a transition temperature above approximately 37° C. In some examples, the shape memory material can have a transition temperature of from approximately 45° C. to 55° C.


The system can include a thermoelectric cooling circuit in electrical communication with the frame. The at least a first portion of the frame can be collapsible from the expanded configuration to the collapsed configuration upon removal of heat by the thermoelectric cooling circuit.


At least a second portion of the frame can be collapsible from an open configuration to a collapsed configuration upon being heated.


The system can include a second conductive wire in electrical communication with the second portion of the frame. The second conductive wire can receive a second current from the electronic circuit.


The system can include a membrane cover disposed around the frame.


The frame can be located within an inner lumen of the catheter. In other examples, the frame extends from the distal end, for example like a funnel, to capture the occlusion.


The system can include a thermocouple in electrical communication with the frame. The thermocouple can help to remove heat from at least a portion of the frame.


The shape memory material can be in a martensite phase when the at least a first portion of the frame is in the collapsed configuration. The shape memory material can be in an austenite phase when the at least a first portion of the frame is in the expanded configuration.


An example method of retrieving an occlusive thrombus from a blood vessel of a patient can include delivering a catheter comprising a frame to a target site. The frame can include a shape memory material. The method can include delivering a first current to the frame. The current running through the frame can heat the frame to cause at least a first portion of the frame to change from a collapsed configuration to an expanded configuration. The method can include aspirating the occlusive thrombus into the frame. The catheter can be withdrawn with the occlusive thrombus from the patient.


The shape memory material of the frame can have a transition temperature of from approximately 45° C. to 55° C.


The method can include deactivating the first current. By deactivating the first current, the at least a first portion of the frame can cool to cause the at least a first portion of the frame to collapse upon the occlusive thrombus.


The method can include cooling the at least a first portion of the frame with a thermoelectric cooling circuit to cause the at least a first portion of the frame to collapse upon the occlusive thrombus. The thermoelectric cooling circuit can include a Peltier chip, a thermoelectric wire, and the like.


The method can include delivering a second current to at least a second portion of the frame. The second current can create heat, through the resistance of the shape memory material, that causes the at least a second portion of the frame to change from an expanded configuration to a collapsed configuration and upon the occlusive thrombus.


The method can include monitoring a temperature of the frame with a thermocouple in communication with the frame. The method can include deactivating the first current when the temperature is above a first temperature. This can ensure the vessel is not damaged by excessive heat.


The frame can be located within an inner lumen of the catheter. In these examples, causing the at least a first portion of the frame to expand from a collapsed configuration to an expanded configuration can cause an inner diameter of the of the catheter to increase.


An example method of manufacturing an actuated clot retrieval system can include heat setting a first shape memory material into a first frame having an expanded configuration. The method can include allowing the first shape memory material to cool and the first frame to collapse into a collapsed configuration. The method can include connecting the first frame to a first end of a first conductive wire disposed within a catheter wall of a catheter. The method can include connecting a second end of the first conductive wire to an electronic circuit. The method can include applying a membrane to the first frame and to a distal end of the catheter.


The method can include heat setting a second shape memory material into a second frame having a collapsed configuration. The method can include connecting the second frame to a first end of a second conductive wire disposed within the catheter wall. The method can include connecting a second end of the second conductive wire to the electronic circuit. The method can include applying the membrane to the second frame.


The first shape memory material and the second shape memory material can different alloys, and the first frame and the second frame can be coaxial and connected to the distal end of the catheter. In other words, the second frame can be circumferentially positioned upon the second frame such that the second frame can close upon the first frame.


The first shape memory material and the second shape memory material can include the same alloy, and the first shape memory material and the second shape memory material can have different austenite finish temperatures.


The method can include providing a first catheter layer and disposing the first conductive wire on the first catheter layer. The method can include applying a second catheter layer over the first conductive wire and a first anchor strut of the first frame. Connecting the first frame to the first end of the first conductive wire can include connecting the first anchor strut to the first conductive wire prior to applying the second catheter layer.


The method can include encasing the first frame with a ring to hold the first frame in the collapsed configuration. Applying the membrane to the first frame can include dipping the first frame and the ring into a membrane material and allowing the membrane material to cool.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further aspects of this disclosure are further discussed with the following description of the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the disclosure. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation. It is expected that those of skill in the art can conceive of and combining elements from multiple figures to better suit the needs of the user.



FIGS. 1A and 1B are side-view illustrations of an exemplary actuated clot retrieval system, according to aspects of the present disclosure;



FIGS. 1C and 1D illustrate a method of delivering an exemplary actuated clot retrieval system to a target site within a vessel, according to aspects of the present disclosure;



FIG. 2 is a cross-sectional view of an exemplary frame within a vessel, according to aspects of the present disclosure;



FIGS. 3A-3C are illustrations of exemplary designs for providing current to a frame, according to aspects of the present disclosure;



FIGS. 4A-4F are side-view illustrations of exemplary frame designs, according to aspects of the present disclosure;



FIGS. 5A and 5B are illustrations of an exemplary frame having opposing funnels, according to aspects of the present disclosure;



FIG. 6 is a cross-sectional illustration of an exemplary balloon-shaped frame, according to aspects of the present disclosure;



FIG. 7 is a side-view illustration of an exemplary actuated clot retrieval system having a retractable frame, according to aspects of the present disclosure;



FIGS. 8A and 8B are cross-sectional illustrations of exemplary designs to expand the bore size of a catheter, according to aspects of the present disclosure;



FIGS. 9A-9F are illustrations of exemplary attachments to connect an anchor strut to a shape memory material, according to aspects of the present disclosure;



FIG. 10 is an illustration of an exemplary actuated clot retrieval system having a glove-shaped frame, according to aspects of the present disclosure;



FIG. 11 is a side-view illustration of an exemplary frame design, according to aspects of the present disclosure;



FIG. 12 is an illustration of an exemplary frame having a retractable distal spring, according to aspects of the present disclosure;



FIGS. 13A and 13B depict a frame having struts with a constant cross sectional area, according to aspects of the present disclosure;



FIGS. 14A and 14B depict a frame having struts that split into a v-shape for even flow of heat/electrical resistance, according to aspects of the present disclosure;



FIG. 15 is a perspective view of an example frame having a thermocouple wire connected to a dissipation strut, according to aspects of the present disclosure;



FIGS. 16-18B depict example designs for a frame, according to aspects of the present disclosure;



FIG. 19 is a flow diagram illustrating a method of retrieving an occlusive thrombus from a blood vessel of a patient, according to aspects of the present disclosure; and



FIG. 20 is a flow diagram illustrating a method of manufacturing an exemplary actuated clot retrieval system, according to aspects of the present disclosure.





DETAILED DESCRIPTION

The herein disclosed solution is directed to a clot retrieval catheter capable of providing local flow restriction/arrest via a modular distal frame. Flow restriction and large tipped designs offer substantially greater aspiration efficiency. Such advantages can also be especially beneficial in the case of stroke intervention procedures, where vessels in the neurovascular bed are particularly small and circuitous, and as a result a tailored axial and bending stiffness profile can inhibit kinking and binding. The catheter can also be compatible with relatively low-profile access sheaths and outer catheters, so that a puncture wound in the patient's groin (in the case of femoral access) can be easily and reliably closed. The catheter can also feature internal and/or external low-friction liners, and an outer polymer jacket or membrane disposed around the support structure. The membrane can be an elastomeric material that encapsulates the frame or is fitted over the frame so that the frame can move independently of the membrane. The membrane can be tight or loose fitting. A loose-fitting elastomeric membrane will be easier to open that a tight fitting membrane. The membrane can be baggy and made of a non-elastomeric material such that the force to open the membrane is low compared to that of a tight-fitting elastomeric membrane. The membrane can be inverted to extend distally from a proximal location radially inwardly of the frame before reverting back to extend proximally radially outwardly of the frame and wherein the inner and outer layers of the membrane are bonded or reflowed together at a proximal location or for the full length of the membrane. The membrane can comprise an inner and an outer tube, the proximal and distal ends of the inner and outer tube being bonded together or reflowed such that the two tubes form a sock around the frame, the frame being free to move/expand within the sock.


These improvements can lead to safe and more rapid access of a catheter and other devices to complex areas in order to remove occlusions and shorten procedure times. While the description is in many cases in the context of mechanical thrombectomy treatments, the systems and methods can be adapted for other procedures and in other body passageways as well.


Accessing the various vessels within the vascular system, whether they are coronary, pulmonary, or cerebral, involves well-known procedural steps and the use of a number of conventional, commercially-available accessory products. These products, such as angiographic materials, rotating hemostasis valves, and guidewires are widely used in laboratory and medical procedures. When these products are employed in conjunction with the system and methods in the description below, their function and exact constitution are not known in the related art.


The present systems and methods employ the characteristics of shape memory materials to customize the distal dimensions of a clot-retrieval device. Shape memory materials are those materials, such as alloys, that can be deformed when cold and then expand to a predetermined shape when heated. Once the heat is removed from the material, the material can return to it's collapsed, pliable shape. This can be achieved by heating the shape memory material beyond an austenite finish (AF) temperature. Below the AF temperature, the shape material exits its martensite phase, which is characterized by high elasticity, pliability, and flexibility. Above the AF temperature, the shape material exists in its austenite phase, which is characterized by a more rigid state. The shape memory material can be heat set to a predetermined shape above its AF temperature such that, when the material is reheated to the AF temperature, the material returns to that predetermined shape.


Various embodiments described herein can include frames that can resemble a funnel sheath that, once expanded, can exert a radial force on the vasculature. Fluid can be aspirated into the expanded funnel and then into a catheter to capture a thrombus within the funnel. The frame can include a membrane covering that directs the aspirate into the catheter. In other examples, the frame can be disposed within an inner lumen of the catheter. As the frame expands and collapses, the inner diameter of the catheter can be increased and decreased to adjust the flow rate into the catheter.


The present disclosure provides a mechanism for heating the frame to its AF temperature to cause the frame to transition into its austenite phase. One or more conductive lead wires can provide a current to the frame. The natural electrical resistance of the shape memory material can then cause the frame to heat above the AF temperature. A thermocouple can also be provided to monitor the temperature of the frame such that the frame does not overheat and cause trauma to the surrounding vasculature. In some examples, a thermoelectric cooling circuit, such as a Peltier chip, can be provided to transition the frame back into its martensite phase. The present disclosure provides various example designs for frames.


Various devices and methods are disclosed for providing an actuated clot retrieval catheter, and examples of the devices and methods will now be described with reference to the accompanying figures. FIGS. 1A and 1B provide an illustration of an example clot retrieval system 100. The system 100 can include a catheter 102 having a proximal end 104 proximal to a circuit housing 106 and a distal end 108. The catheter 102 can have a sufficiently small outer diameter to advance the catheter 102 through an outer catheter, such as an access sheath. The system 100 can include a frame 110 proximate the distal end 108 of the catheter 102. The frame 110 can extend beyond the distal end 108 of the catheter, as shown in FIGS. 1A and 1B. In some examples, the frame 110 can be disposed within an inner lumen of the catheter 102, as will be described in greater detail below. In another example, the frame 110 can be located along the length of the catheter 102 such the frame 110 can act as a closed “balloon,” as will be described below with reference to FIG. 6.


The frame 110 can be encapsulated within an inverted membrane, dual layer sealed membrane or an overmoulded or dipped membrane. Where the frame 110 is housed within an inner and outer membrane layer, the frame can have unhindered movement. Where an overmoulded membrane is supplied, there may be more resistance as the frame 110 may be required to stretch more discrete areas of membrane material. It is appreciated that, as an electrical current will be passed through the frame 110, it can be insulated in order to contain the electrical current. The membrane material can serve to insulate the frame 110. The frame 110, acting as a resistor, can thereby generate heat under a current load.


The frame 110 can have an expanded configuration and a collapsed configuration. FIG. 1A shows a frame 110 in the shape of a funnel in an expanded configuration, while FIG. 1B shows the same frame 110 in a collapsed configuration. The frame 110 can include a shape memory material that enables the frame 110 to transition from a collapsed configuration to an expanded configuration, or vice versa, upon being heated and return to its previous configuration upon cooling. The shape memory material of the frame 110 can include alloys that have shape memory effect such that the material can transition from a martensite phase to an austenite phase. These materials can include, but are not limited to, a Ni—Ti (Nitinol) alloy, a Ni—Al alloy, an In—Ti alloy, an Ag—Cd alloy, an Au—Cd alloy, a Cu—Al—Ni alloy, a Cu—Sn alloy, a Cu—Zn alloy, a Mn—Cu alloy, and similar alloys.


Shape memory materials enable devices to be manufactured such that, once heated above an AF temperature, the device can be pre-set into a predetermined shape. Considering the example funnel-shaped frame 110 of FIGS. 1A and 1B, the frame 110 can be provided in a collapsed configuration (FIG. 1B). The frame 110 can then be heated to above the AF temperature of the shape memory material and then shaped into its final configuration (FIG. 1A). At this stage, the frame 110 is in its austenite phase. Once the frame 110 is re-cooled to below the AF temperature of the material, the frame 110 can return to its un-set shape. At this stage, the frame 110 is in its martensite phase Due to the low heat capacity of the frame 110, cooling can be achieved easily through conduction with the wires and/or thermocouple wires, and subsequentially through the catheter 102 jacket materials and/or membrane material.



FIGS. 1C and 1D provide an example method of using the transition characteristics of shape memory materials to actuate a clot retrieval system 100. The actuated clot retrieval system 100 including the catheter 102 and frame 110 can be advanced to a target site 20 in a vessel 30 containing a clot 40. This can be completed by advancing the system 100 through an outer catheter 10, as shown in the figure. However, as will be described below, the catheter 102 and frame 110 can be advanced to the target site 10 without the need for an outer catheter 10. Once the catheter 102 and frame 110 reach the target site 20, the frame 110 can be in its martensite phase, characterized by high elasticity, pliability, and flexibility of the material. This can enable the frame 110 to advance through the winding vessel 30 with ease. Once the frame 110 is at the target site 20, the frame 110 can be heated, which is described in greater detail below, to enable the frame 110 to transition from martensite phase to austenite phase. In the examples shown in FIG. 1D, the frame 110 was heat set into a funnel sheath in its austenite phase such that, when heated, the frame 110 expands to a funnel to exert a force on the vessel 30. The clot 40 can then be aspirated into the frame 110 and removed from the target site 20. In some examples, the frame 110 can be actively cooled such that the frame 110 collapses into its martensite phase to capture the clot 40. Alternatively, the frame 110 can automatically cool due to the low heat capacity of the frame 110.


Referring again to FIGS. 1A and 1B, various shape memory materials, including the alloys described above, have different AF temperatures, enabling the system 100 to be customized for the particular procedure. Further, materials processed with a certain AF temperature can be reprocessed through subsequent processes involving heat treatment in order to reset the AF temperature to the desired range. The shape memory material can be selected or processed such that the AF temperature is above human blood (e.g., above 37° C.) so that the frame 110 is not inadvertently activated prior to reaching the intended activation location in a vessel. The AF temperature can be between 35° C. and 200° C. (e.g., between 37° C. and 65° C., between 40° C. and 60° C., etc.). Ideally the AF temperature can be in the range of 45 to 55° C. This can help ensure martensite properties for a highly flexible delivery configuration while minimizing the energy required to heat the frame 110 for expansion and rigid properties.


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose. More specifically, “about” or “approximately” may refer to the range of values ±10% of the recited value, e.g. “about 50° C.” may refer to the range of values from 45.001° C. to 54.999° C.


The frame 110 can be heated by providing a current to the frame 110. The high electrical resistance of the shape memory material, for example Nitinol, can cause the frame 110 to heat in response to the electrical current and the heat in turn cause the transition from the martensite to austenite phase. The system 100 can include an electronic circuit 112 to provide the required current to the frame 110. The electronic circuit 112 can be disposed within a circuit housing 106. The electronic circuit 112 can be activated with a switch 114. The electronic circuit 112 can feed from approximately 300 mA to approximately 1500 mA (e.g., approximately 500 mA to approximately 1000 mA) to the frame 110 using a power supply ranging, for example, from approximately 3 to 12V, more preferably from approximately 5 to 9V. The current can be pulsed from 1 to 1000 msec, more preferable from 100 to 500 msec with a break in current of between 1 and 1000 msec, more preferably from 1 to 100 msec. Pulsing allows the temperature of the frame to be maintained between a set temperature range, the on segment of the pulses heating and the off segment of the pulse allowing the frame to cool such that the temperature is kept between a range. The temperature can be monitored by a thermocouple such that the pulses can be altered if the temperature goes out of range; for example, a continuous feed of current can be used to ramp up the temperature quickly and the pulses can be lowered keep the temperature of the frame under the upper range.


One or more conductive wires 116 (e.g., a positive lead 118 and a negative lead 120) can extend between the electronic circuit 112 and the frame 110 to provide the electrical current to heat the frame 110. Cutout A of FIG. 1A shows the positive lead 118 and negative lead 120 attaching to the frame 110. The conductive wire 116 can be embedded within layers of the catheter 102 so that the wire is not exposed on the outer or inner surface of the catheter 102. This can enable the system 100 to be advanced into an outer catheter without the wire restricting the movement of the catheter 102 through the outer catheter. The conductive wires 116 can comprise copper or any other material suitable to provide a current to the frame 110.


The system 100 can include a thermocouple 122 connected to the frame 110 to monitor the temperature of the frame 110. If the frame 110 is heated above a certain temperature, the frame 110 can burn the surrounding vasculature. To this end, the thermocouple 122 can monitor the temperature of the frame 110 as it is heated by the current. If the frame 110 exceeds a certain temperature, for example 50° C., the thermocouple 122 can communicate this information to the electronic circuit 112 to deactivate the current being supplied to the frame 110. The thermocouple 122 can comprise a platinum or stainless steel wire that can be welded between the frame 110 (e.g., at an anchor strut 206) and a conductive wire 116, where the electronic circuit 112 measures the difference in resistivity between the shape memory material and the thermocouple wire to determine the temperature of the frame 110. This can be calibrated and can have a linear temperature relationship.


The system 100 can include a thermoelectric cooling circuit 123 in electrical communication with the frame 110. The thermoelectric cooling circuit 123 can include, for example, a Peltier chip, disposed proximate the frame 110. As described above, when the frame 110 is cooled below the AF temperature, the shape memory material of the frame can transition back into the pliable, flexible martensite phase. This can be completed to capture the clot 40 in the frame 110. Instead of allowing the shape memory material to cool naturally, the thermoelectric cooling circuit 123 can pump heat from the frame 110 to cool the frame 110 more rapidly.


The frame 110 can be characterized by a plurality of struts 124 that can form closed cells 126, loops, or undulating patterns. A plurality of distal hoops or crown struts (which will be described below) can form the circumferential perimeter of the frame opening 128. The frame 110 can have a variety of shapes, including a low profile rounded tip, an open mouth funnel as shown, or other shapes that will be described herein. The plurality of struts 124 can be enclosed within a membrane 130. The membrane 130 can provide a means to direct fluid aspirate into the frame 110 and into the catheter 102. The membrane 130 can also maintain the position of the struts 124 when the frame 110 is in a collapsed configuration. Suitable membrane 130 materials can include elastic polyurethanes such as Chronoprene, Chronosil, Chronoflex, and other silicon and urethane polymers and the like that have high elasticity and insulative properties with good tear resistance. The membrane 130 can have a low hardness to enable the membrane 130 to stretch when the frame 110 is expanded. For example, the membrane 130 can have a Shore hardness typical of 00 ranges and Shore A0.1 to Shore A100 (e.g., Shore A40 to Shore A80). Because the membrane 130 is encapsulating the frame 110, which may be intended to expand, the membrane 130 can also have a degree of expandability, for example from 200-2200% (e.g., 400-800%).


The struts 124 can be coated with a film of material with high dielectric strength such as Parylene to insulate the struts from blood, which is a conductor, for example if the frame 110 is not fully encapsulated or sealed by the membrane 130.


Referring again to FIGS. 1C and 1D, the system 100 can be used in combination with an aspiration source 50. In many cases the expanded frame 110 can seal with the walls of the vessel 30 to direct aspiration to the distal end 108 of the catheter 102. In other words, the expanded frame 110 can also arrest flow and prevent the unwanted aspiration of blood proximal to the frame 110.



FIGS. 1C and 1D depict a system 100 wherein the catheter 102 for the frame 110 is inserted through an outer catheter 10. In some examples, however, the outer catheter 10 is not required. Instead the catheter 102 for the frame 110 can be the only catheter required to be advanced from a guide catheter (guide catheter not shown in FIG. 1C or 1D). The catheter 102 and frame 110, for example, can travel farther away from a guide catheter because the system is highly flexible and self-actuating (i.e., the frame 110 does not need to be unsheathed from a catheter to change from a closed configuration to an open configuration). Therefore, the guide catheter can reside in the internal carotid artery, for example, and catheter 102 and frame 110 can extend entirely to an M1 or M2 vessel.



FIG. 2 is a cross-section illustration of an example funnel-shaped frame 110 in an expanded configuration. The length of the frame 110 can be longer or shorter than the one shown. The length can be increased, for example, to provide more surface-area contact with the vessel wall 35 or increase the reception space for a clot within the frame 110. The frame 110 can include a plurality of annular crowns 202 around the circumference of the frame 110. The annular crowns 202 can form the distal tip 412 of the frame 110 and/or provide radial support at any other location along the length of the frame 110. The frame 110 can include one or more longitudinal struts 204 that can connect peaks of the annular crowns 202. The annular crowns 202 and longitudinal struts 204 can form cells 126, or openings. The cells 126 can be spaced to promote even expansion of the frame 110 and membrane 130.


In some examples, the frame 110 does not include longitudinal struts 204, but instead the multiple annular crowns 202 can connected at each peak such that the cells 126 form a diamond-shaped lattice structure. Uniform spacing of the diamond-shaped cells 126 can also promote even expansion of the frame 110 and membrane 130. In yet other examples, the frame 110 does not include longitudinal struts 204, and the multiple annular crowns 202 are not connected at peaks. In these examples, the annular crowns 202 can instead be held into place by the membrane 130.


The shapes and configurations of the frame 110 described herein can be created by laser cutting the design into a tube. After laser cutting the design, the frame 110 can be positioned into its desired configuration and heat set such that the frame 110 can return to that desired configuration when heated during a procedure.


The frame 110 can include one or more anchor struts 206 extending proximally. The conductive wire 116 can be connected to the one or more anchor struts 206 to provide the current to the frame 110. As shown in FIG. 2, the membrane 130 can encapsulate at least a portion of the distal end 108 of the catheter 102.


The frame 110 can be kept short with minimal travel path (length of strut 124 and cross section, long length and large cross section will have greatest resistance) for current such that resistance is kept to a minimum so that the basket of the frame 110 can heat up and expand rapidly.



FIGS. 3A-3C depict an example design for providing current to a frame 110. As described above, one or more of the struts 124 defining the structure of the frame 110 can be anchor struts 206 that connect to a positive lead 118 or a negative lead 120 to receive current to heat the frame 110. The positive lead 118 and/or negative lead 120 can extend through the construction layers of the catheter 102 and connect with the anchor struts 206 within the construction layers. Embedding this electrical connection within the catheter 102 can prevent separation of the wires from the frame 110 and insulate from a conductive medium such as blood. In other examples, the positive lead 118, negative lead 120, and/or anchor struts 206 can be wound around the outer surface of the catheter 102 or within an inner lumen 302 of the catheter 102. The positive lead 118 and/or negative lead 120 can extend longitudinally along the length of the catheter 102 or in a spiral, weave, braid, or other pattern that may be used to improve stiffness or flexibility of the catheter 102 as desired. The profile of the wire can be varied longitudinally to fine tune stiffness/flexibility. In some examples, the anchor struts 206 can be pushed through openings formed in the catheter 102 wall.


Certain junctions between struts 124 can be connected with an insulating junction 304 such the current does not pass from one side of the insulating junction 304 to the other. This enables heat to be applied to the frame in a controlled pattern. Controlling the heat applied to different areas of the frame 110 enables certain portions of the frame to transition into an austenite phase while other portions do not transition. In some examples, as described above, insulating certain portions of the frame 110 also enables the frame 110 to have a distinct activation sequence. A first portion of the frame 110 can be configured to expand upon receiving current and a second portion of the frame can be configured to collapse upon receiving current. This can enable the user to collapse the frame 110 by applying a current to one portion of the frame 110 instead of waiting for the shape memory material to cool. Current can flow through a negative lead 120 into one side of a frame 110 and flow in an even electrical resistance path to the other side of the frame 110 where it returns through a positive lead 118. For example, if an anchor strut 206 of the frame 110 is connected to a v-shaped expansion strut of the frame 110, the anchor strut 206 can be approximately twice the cross-sectional area of each of the struts 124 that form the v-shaped expansion strut. This will allow for even flow of resistance between struts. Segments of the expansion frame can be divided by insulators and different segments can each have independent sets of positive and negative lead wires.



FIGS. 4A-4F depict example designs for a frame 110. FIG. 4A illustrates a frame 110 having four anchor struts (i.e., anchor struts 206A,206B,206C,206D). As described above, the anchor struts 206A,206B,206C,206D can be embedded within the construction layers of the catheter 102 (catheter not shown in FIG. 4A). The individual anchor struts 206A,206B,206C,206D can have electrical connections 401 to different components of the system 100. In other words, the electrical connections 401 that are connected to the anchor struts 206A,206B,206C,206D can be connections to a positive lead 118, a negative lead 120, a thermocouple 122, a thermoelectrical cooling circuit 123, or any combination thereof. For example, two of the anchor struts 206A,206B,206C,206D can be connected to a positive lead 118 and a negative lead 120 to provide current for heating the frame 110; and/or one of the anchor struts 206A,206B,206C,206D can be connected to the thermocouple 122; and/or one of the anchor struts 206A,206B,206C,206D can be connected to the thermoelectric cooling circuit 123; and/or two anchor struts could be connected to a positive lead 118 and two anchor struts 206 to a negative lead 120; and/or any combination thereof. In some examples, two anchor struts can be connected to a positive lead 118 for more balanced flow of current through the frame 110 with two negative return leads.


In some examples, two of the anchor struts (e.g., anchor struts 206A and 206C) can connect to a positive lead 118 and a negative lead 120 for a first portion of the frame 110 (e.g., first portion 111A); and two of the anchor struts (e.g., anchor struts 206B and 206D) can connect to a positive lead 118 and a negative lead 120 for a second portion of the frame 110 (e.g., second portion 111B). This can enable the first portion 111A of the frame 110 to have a different activation characteristic than the second portion 111B of the frame 110. The first portion 111A of the frame 110 can be heat-set into an expanded configuration. By providing a current, and thus creating heat through resistance, the first portion 111A can expand during the procedure. The second portion 111B of the frame 110 can be heat-set into a collapsed configuration. By providing a current, and thus creating heat through resistance, the second portion 111B can collapse during the procedure. This enables a user of the system to advance the system 100 to the target site 20, direct a first current to the first portion 111A to expand frame 110, and aspirate the clot 40 into the frame 110. The user can then direct a second current to the second portion 111B to collapse the frame 110 and capture the clot 40. As is described above, the individual anchor struts 206A,206B,206C,206D can have electrical connections 401 to different components of the system 100. For examples with a first portion 111A and a second portion 111B, this means that two of the electrical connections 401 can include a second positive lead wire and a second negative lead wire, respectively, to heat one of the frame portions independently of the other, each circuit being insulated from the other.


The first portion 111A and second portion 111B of the frame 110 can comprise the same shape memory material and each material can have the same AF temperature. In other examples, the two portions can comprise the same material but have different AF temperatures. The first portion 111A and second portion 111B can comprise different shape memory materials, which can also enable the portions to have different AF temperatures, if needed. In examples having two portions with different AF temperatures, one portion can have an AF temperature below that of human blood (e.g., below 37° C.) such that it expands once delivered to the target site 20 and contacts blood; the other portion can have an AF temperature above 37° C. such that it only collapses upon being heated by a current. Conversely, one portion can have an AF temperature below that of human blood such that it collapses as it is heated by blood.


The first portion 111A and second portion 111B can be interconnected to form the cells 126 of the frame. When the first portion 111A and the second portion 111B of the frame 110 are intended to have different activation characteristics, heat from one portion can be shielded from the other portion by using an insulating junction 304 like the one shown in FIG. 3C. Instead of the first portion 111A and the second portion 111B being location at different sites of the frame 110, the first portion 111A and the second portion 111B can include two separate, coaxial frames that are not interconnected with one another. For example, the example frame 110 shown in FIG. 2 can have a second frame disposed over the frame shown in the figure that can circumferentially wrap around the inner frame. The outer frame (i.e., the outer portion) can be heat-set into a collapsed configuration and the inner frame (i.e., the inner portion) can be heat set to an expanded configuration. The inner frame can be expanded to receive the clot 40, and the outer frame can be activated to close, compress the inner frame, and capture the clot 40. In these examples, the inner and outer frame would be working against each other. In some examples, certain annular crowns 202 can have a different activation characteristic than other annular crowns 202, some expanding when heated while others collapsing when heated.



FIG. 4B illustrates a frame 110 having split collar 402. A first side 404 of the split collar 402 can be in electrical communication with a positive lead 118 while a second side 406 of the split collar 402 can be in electrical communication with a negative lead 120. The split collar 402 can provide a surface for the catheter 102 (catheter not shown in FIG. 4B) to lock with the frame 110. For example, the split collar 402 can be disposed within the construction layers of the catheter 102. In other examples, the split collar 402 can rest on the outer surface of the catheter 102, and the positive lead 118 and/or negative lead 120 can extend through a hole in the catheter 102 wall to connect to the split collar 402. The split collar 402 can also be disposed within the inner lumen 302 of the catheter 102. In other examples, the frame 110 can include a solid collar 408, as shown in FIG. 4C, which can be similar to the split collar 402. In the case of a solid collar 408, the positive lead 118 and/or negative lead 120 can be directly connected to the struts 124 so that the current is not overly resisted by the solid collar 408 leading to slow heating of the expansion frame.



FIG. 4D illustrates a frame 110 with a coiled collar 410. The coiled collar 410 can be similar to the split collar 402 and/or solid collar 408 above in that it can be disposed within intermediate layers of the catheter 102, on the outer surface of the catheter 102, or within an inner lumen 302 of the catheter 102. The coiled collar 410 can provide pushability and flexibility while reducing complexity of construction to minimize wall thickness required at the distal end 108 of the catheter 102. The coiled collar 410 can be formed by the lead wires 116 or can be integral with the frame 110. Insulated lead wires of a highly conductive material (such as copper) can be braided to provide good pushability for the catheter construction. Stainless steel can also be used for the lead wires. While having less conductivity than copper, steel can offer better stiffness characteristics, and a larger diameter wire can be used to both counteract the lower conductivity while offering higher stiffness at the same time.



FIG. 4E illustrates an example strut 124 configuration for a frame 110. The axial force provided by the funnel-shaped frame 110 can be customized by changing the angles 414 between struts 124 (e.g., crown peaks 416). Acute angles offer less radial force and require less percentage elongation at break for the membrane 130, while obtuse angles offer more radial force and require more percentage elongation at break for the membrane 130. Acute angles can be achieved by lengthening struts 124 and/or increasing the number of crown peaks 416 per annular crown 202. Additionally, crown peaks 416 can be enlarged (i.e., rounded) to improve resistance to microcracks and fractures as the frame 110 expands. In another example, crown peaks 416 can form a large round curve extending substantially in a semi-circle from the proximal end of adjacent struts 124. Such large round semi-circular profiles will be atraumatic to a blood vessel


As shown in FIGS. 4A-4D, a distal tip 412 of the frame 110 can taper or curve radially inwardly to decrease trauma to the vessel wall 35. In other examples, the distal tip 412 can be flared radially outward to improve apposition to the vessel wall 35. In some examples, the frame 110 can include wings 418 that extend proximal on the frame 110, as shown in FIG. 4F. By extending proximally, the wings 418 are less likely to puncture the vessel wall 35 if the frame 110 is advanced distally towards the target site 20. The wings 418 can extend outwardly beyond the other struts 124 of the frame 110 and further increase the radial force on the vessel wall 35. This configuration also enables the distal tip 412 to be flared inwardly to decrease the likelihood of trauma to the vessel wall 35 while also enabling the wings 418 to expand to contact the vessel wall 35 and create a fluid-tight seal in the vessel 30. In another example, the crowns of the wings 418 can be connected to a proximal strut, as described below with reference to FIGS. 5A and 5B.



FIGS. 5A and 5B depict an example frame 110 having a distal portion 502 and a proximal portion 504. The distal portion 502 of the frame 110 can be similar to any of the frames 110 described herein. The proximal portion 504 can oppose the distal portion 502 and be directed toward a catheter hub (catheter hub not shown in FIG. 5A or 5B). The proximal portion 504 can have an expanded configuration and an open configuration, similar to the configurations described for any of the frame 110 embodiments described above. In a collapsed configuration, the proximal portion 504 can rest upon or adjacent to the distal end 108 of the catheter 102. Once opened into its expanded configuration, the proximal portion 504 can create a proximal-facing funnel to counteract blood pressure/blood flow and prevent the unwanted aspiration of blood proximal to the frame 110. The proximal portion 504 and/or distal portion 502 can include a membrane 130. The proximal portion 504 and distal portion 502 can be connected with a solid collar 408 or any of the other collars described herein. In some examples, the proximal portion 504 and distal portion 502 can be connected to different conductive wires such that one portion can be opened or closed with a first current and one portion can be opened or closed with a second current, as described above. In another example, struts 124 can extend proximally from the proximal crowns of the proximal portion to a second collar positioned proximally of the solid collar 408. Either or both collars can be segmented. Connecting the proximal peaks of the proximal portion to a proximal collar can aid in reducing the likelihood of the frame snagging on an outer guide sheath or vessel side branch as it is retracted proximally.



FIG. 6 illustrates a design for a system 100 that enables the frame 110 to act as a closed balloon. The frame 110 can be positioned along the length of the catheter 102 proximate the distal end 108 of the catheter 102. Unlike many of the designs described herein, the frame 110 does not extend beyond the distal end 108 of the catheter 102 in this example. The frame 110 can include a fixed collar 602 at one end and a floating collar 604 at the other end. The fixed collar 602 can be connected to the outer surface or can be embedded within the construction layers of the catheter 102 such that it does not slide along the length of the catheter 102; the floating collar 604 can, conversely, slide along the length of the catheter 102. The plurality of struts 124 can be connected to both collars 602,604 and extend between the two. In some examples, the struts 124 can be integral struts (as shown in FIG. 6), while in other examples the struts can be overlapping (e.g., a weave pattern). When a current is applied to the frame 110, the frame 110 can expand, and the floating collar 604 can contract towards the fixed collar 602. As the floating collar 604 contracts, the struts 124 expand and force the membrane 130 balloon to expand outwardly to create a seal against the vessel wall 35. When the shape memory material cools, the frame 110 can then collapse under the compression force exerted by the expanded elastomeric balloon. The frame 110 can float inside the balloon material or the frame 110 can be encapsulated in the balloon material. In some examples, the membrane 130 can include a first seal 606 and a second seal 608 at the ends of the membrane 130. The first seal 606 and/or second seal 608 can create a fluid-tight junction between the membrane 130 and the catheter 102. The first seal 606 and/or second seal 608 can be permanently fixed to the catheter 102, and the membrane 130 can stretch as the struts 124 expand. In other examples, one of the first seal 606 and/or second seal 608 can contract along with the floating collar 604. In these cases, the first seal 606 and/or second seal 608 can be a gasket, like an O-ring, that can slide along the outer surface of the catheter 102.



FIG. 7 illustrates a design for a system 100 that enables an anchor strut 206 to expand or contract as a spring, thereby moving the position of the frame 110 along the catheter 102. The end of the catheter 102 proximal the frame 110 can include a narrow section 702. An anchor strut 206 extending from the frame 110 can coil around the narrow section 702. The anchor strut 206 can be connected at one end to a floating collar 604 that can move along the length of the narrow section 702. The opposite end of the anchor strut 206 can be connected to a conductive wire 116 (e.g., a positive lead 118 or a negative lead 120). The anchor strut 206 can be heat-set in a collapsed configuration such that, as the anchor strut 206 is heated, it contracts to pull the frame 110 proximal along the catheter 102. The distal end 108 of the catheter 102 can include a catheter tip 704 having an outer diameter larger than an inner diameter of the floating collar 604. The catheter tip 704 can prevent the frame 110 from sliding off of the catheter 102 distally. This mechanism enables the distal tip 412 of the frame 110 to be aligned with the distal end 108 of the catheter 102 when the anchor strut 206 is fully contracted. In some examples, the anchor strut 206 can be contracted and the frame 110 expanded while fluid is aspirated into the catheter 102. Once the clot is pulled proximal to the distal end 108 of the catheter 102, the anchor strut 206 can be returned to an extended configuration, and, simultaneously, the frame 110 can collapse around the clot for removal from the vessel. The anchor strut 206 and the frame 110 can be heated by the same current (i.e., by the same positive lead 118 and negative lead 120), or the anchor strut 206 and the frame 110 can include separate electrical connections such that they can be heated independently. The distal end 412 can be advanced in the collapsed configuration through activation of the anchor strut 206, which acts as a linear movement actuator, so that the tip 412 is closer to the clot, and the tip 412 can be actuated to seal the vessel prior to aspiration.


In an alternative embodiment, the distal end 108 of the catheter 102 itself can instead be actuated by a springing mechanism. For example, the catheter 102 can include a flexible portion that includes a shape memory material disposed therein. As the shape memory material in the catheter 102 expands with heat, the distal end 108 of the catheter 102 can extend through the funnel formed by the frame 110 and towards the clot.



FIGS. 8A-8B illustrate a design for a system 100 that enables the frame 110 to adjust the bore size of the catheter 102. The frame 110 can extend from the distal end 108 of the catheter 102 (catheter not shown in the figure) to form the distal-most portion of the catheter 102. When the catheter 102 reaches the clot 40, the frame 110 can expand to increase the bore size of the catheter 102 and thus increase the flow into the catheter 102. This can be especially beneficial for larger or stiffer clots. For example, as the catheter 102 aspirates the clot, if the clot is resisting being pulled into the catheter, the operator can supply the current to the frame 110 to increase the flow into the catheter 102. The frame 110 can be a laser cut lattice design, a shape set wire design, a wire braid design, and/or the like. The frame 110 can be covered with a membrane 130, as described above. The frame 110 can also be designed to expand for the full length of the catheter 102.


In some examples, instead of extending from the catheter 102, the frame 110 can be positioned within an inner lumen 302 of the catheter 102. In a similar manner, as the frame 110 expands inside the inner lumen 302, the bore size of the catheter 102 can increase to adjust the flow.



FIGS. 9A-9F depict example designs for attaching the conductive wire 116 to the anchor strut 206 of the frame 110. The conductive wire 116 can be connected to the anchor strut 206 by a variety of mechanical means. FIG. 9A depicts a mechanical connector 802 that includes a “T” connection at one end and a hook at the other end, the hook grabbing and holding the “T” connection. FIG. 9B depicts a coiled connector 804. A third material can be coiled over the conductive wire 116 and the anchor strut 206 to create the electrical connection. FIG. 9C depicts a mechanical crimp 806. The crimp 806 can include a third material that crimps the conductive wire 116 at one end and the anchor strut 206 at the other end. FIG. 9D depicts a forked crimp 808. One end of either the conductive wire 116 or the anchor strut 206 can include a fork that can be crimped upon the other end of the connection. FIG. 9E is an alternative forked crimp 810 including teeth 812 that can assist in gripping the material between the forks. FIG. 9F depicts a heat shrink method of bonding the conductive wire 116 and the anchor strut 206. Other examples for connecting the conductive wire 116 to the anchor strut 206 include, but are not limited to, overmoulding, soldering, adhering, or welding the two components. Adhesives for adhering conductive wires 116 to shape memory materials can include cyanoacrylate and epoxy. Welding methods for bonding the conductive wires 116 to shape memory materials include, for example laser, welding, plasma welding, tungsten inert gas (TIG) welding, and the like.



FIG. 10 depicts an example system 100 with a frame 110 that opens like a glove. As can be seen, it is not required that the frame comprise a plurality of cells 126. The frame 110 can instead include a simple loop of the struts 124 that can open like a glove when heated. FIG. 10 also shows that, in some examples, the leads 118,120 and/or anchor struts 206 can spiral within construction layers of the catheter 102, as shown in cutaway B. Spiraling the anchor struts 206 can increase the length of, and thus the electrical resistance of, the shape memory material, which can increase the heat supplied to the frame 110. In another example, to conserve energy, the anchor struts 206 can be kept short and the leads can be configured straight to reduce the effect of inductance from a coil. In another embodiment, the frame 110 can be supplied as a number of simple loops each heated independently from a single lead pair or from a set of lead pairs.



FIG. 11 depicts a frame 110 having a distal tip 412 turned slightly inward in an expanded configuration. Turning the distal tip 412 radially inwardly can create an atraumatic profile should the user inadvertently push the device distally during use. The feature can also aid in grasping a fibrin rich clot 40 for safe extraction from a vessel 30.



FIG. 12 depicts a frame 110 having a distal spring 1202. The distal spring 1202 can contract upon heating. The contracting distal spring can deform a distal collar membrane 1204, which expands outwardly through inversion to create a funnel shape. The distal collar membrane 1204 can comprise a stiffer material than other membranes 130 described above such that the distal collar membrane 1204 can expand radially when it is contracted with the distal spring 1202. The distal collar 1204 can be a composite of a braid and a membrane or a braid and a fine weave mesh, the braid acting as a reinforcement to promote inversion.



FIGS. 13A and 13B depict a frame 110 having struts 124 with a constant cross sectional area 1302. The constant cross section area 1302 can enable even transfer of current across the entirety of the frame 110. As shown in FIG. 13B, the example design also enables the frame 110 to decrease slightly in length as the frame 110 transitions from a closed configuration to an open configuration. In a closed configuration, the frame 110 can have a first length 1304, and as current is provided, and heat is created through resistance, the frame 110 can open like a funnel with a shorter, second length 1306.



FIGS. 14A and 14B depict a frame 110 having struts 124 that split into a v-shape for even flow of heat/electrical resistance. A frame 110 can also include dissipation struts 1402 positioned at crown peaks 416 that can remove heat from the struts 124 (e.g., to allow the struts 124 to cool) and also provide support for a membrane 130 cover. The design can also enable the frame 110 to decrease slightly in length as the frame 110 transitions from a closed configuration to an open configuration, as described above with reference to FIGS. 13A and 13B.



FIG. 15 is a perspective view of an example frame 110 having a thermocouple 122 that is a wire connected to a dissipation strut 1402. The thermocouple 122 wire can include a material such as platinum or stainless steel can be attached to the frame 110 at an attachment 1502. The attachment 1502 can include a weld or adhesive. The thermocouple 122 wire can be in electrical communication with the electronic circuit 112, and the electronic circuit 112 can measure the difference in resistivity between the frame 110 material and the thermocouple 122 to determine the temperature of the frame 110. This can be calibrated and can have a linear temperature relationship.



FIGS. 16-18B depict example designs for a frame 110. FIG. 16 depicts an example frame 110 having no collar (e.g., neither a split collar 402 nor a solid collar 408). A first anchor strut 206A and a second anchor strut 206B can extend from a frame 110 having a single annular crown 202. The single annular crown 202 can be held in place by a membrane 130 (not shown in FIG. 16).



FIGS. 17A and 17B depict an example frame 110 having a split collar 402. The distal tip 412 of the frame 110 can open to four distinct points (e.g., points 1702, 1704, 1706, 1708), as shown in the end view of FIG. 17B. The frame 110 can include a membrane 130 to encapsulate the distal tip 412 of the frame 110 and connect the points 1702, 1704, 1706, 1708 into a rounded funnel shape.



FIGS. 18A and 18B depict an example frame 110 having a plurality of distal points 1802. The frame 110 can include a membrane 130 to encapsulate the distal tip 412 of the frame 110 and connect the plurality of distal points 1802 into a rounded funnel shape, as shown in the end view of FIG. 18B.



FIG. 19 is a flow diagram illustrating a method of retrieving an occlusive thrombus from a blood vessel of a patient. The method steps in FIG. 19 can be implemented by any of the example means described herein or by similar means, as will be appreciated. Referring to method 1900 as outlined in FIG. 19, in step 1905, a catheter can be delivered to a target site. The catheter can be advanced, for example, through an outer catheter or access sheath. The catheter can comprise a frame manufactured from a shape memory material. The frame can have a funnel shape, can be disposed within an inner lumen of the catheter, can be disposed along the length of the catheter, or can have any of the other shapes described herein.


In step 1910, method 1900 can include delivering a first current to the frame. The first current can be delivered through a conductive wire connecting the frame to an electronic circuit. The user can activate the electronic circuit outside of the patient.


In step 1915, method 1900 can include heating the frame to cause at least a first portion of the frame to change from a collapsed configuration to an expanded configuration. The heating of the frame is caused by the electrical resistance of the shape memory material as the current runs through the frame. At least a first portion of the frame means the entire frame can expand, though it is not necessary that the entire frame expands. As described above, the frame can have multiple portions with different transformation characteristics. For example, a first portion of the frame can be heated to expand while a second portion is not heated. The second portion, for example, can be heated in a later step to capture the thrombus. A shape memory funnel frame can be restricted from expanding by an electrically actuated member, removing the electric current allows the restraining member to release and the shape memory material expands from the heat of blood.


At step 1920, method 1900 can include aspirating the occlusive thrombus into the frame. The aspiration can be directed into the catheter by the frame, which can include a membrane covering that directs fluid.


At step 1920, method 1900 can include withdrawing the catheter with the occlusive thrombus from the patient. With the thrombus captured within the frame, the thrombus can be pulled from the vessel of the patient without worry of the thrombus dislodging from the catheter due to poor capture.


Method 1900 can end after step 1925. In other embodiments, additional steps according to the examples described above can be performed. For example, method 1900 can include deactivating the first current to cool the at least a first portion of the frame. Cooling the shape memory material can cause the at least a first portion to collapse upon the occlusive thrombus to improve the capture the thrombus for removal.


In some examples, method 1900 can include delivering a second current to at least a second portion of the frame. The second portion can have a different transformation characteristic than the first portion. For example, the second portion can be pre-set into a collapsed configuration in its austenite phase, which means that, once heated, it can collapse upon the thrombus. Accordingly, method 1900 can include heating, via the second current, the second portion of the frame to cause the second portion of the frame to change from an expanded configuration to a collapsed configuration and upon the occlusive thrombus.


Method 1900 can also include cooling the at least a first portion of the frame with a thermoelectric cooling circuit to cause the at least a first portion of the frame to collapse upon the occlusive thrombus. A thermoelectric cooling circuit, such as a Peltier chip, can pump heat from a system. Using this effect, the thermoelectric cooling circuit can cause the at least a first portion of the frame to cool and collapse more rapidly around the occlusive thrombus.


Method 1900 can include delivering the current in a series of pulses so as to maintain a steady frame temperature, and the electronic circuit can monitor the temperature and adjust the pulse duration and/or length accordingly.


Method 1900 can also include monitoring a temperature of the frame with a thermocouple. In some examples, the thermocouple can monitor to determine if the frame exceeds a certain temperature, for example 50° C., and deactivate the first current if the frame exceeds the temperature.



FIG. 20 is a flow diagram illustrating a method of manufacturing an exemplary actuated clot retrieval system. The method steps in FIG. 20 can be implemented by any of the example means described herein or by similar means, as will be appreciated. Referring to method 2000 as outlined in FIG. 20, in step 2005, a first shape memory material can be heat set into a first frame having an expanded configuration. As described throughout this disclosure, heat setting the shape memory material can include heating the frame to above its AF temperature, forming the frame into a desired shape, and then allowing the frame to cool.


In step 2010, method 2000 can include allowing the first shape memory material to cool and the frame to collapse into a collapsed configuration. Once cooled, the frame is more flexible and pliable, as it is in its martensite phase. The collapsed frame can return to its predetermined shape by reheating the frame to above the AF temperature.


In step 2015, method 2000 can include connecting the first frame to a first end of a first conductive wire disposed within a wall of a catheter (e.g. catheter wall 306 of FIG. 3). The frame can have an electrical connection, for example, to a positive and a negative lead to provide current to heat the frame. This electrical connection can be made within the construction layers of the catheter itself, thereby protecting the connection from inadvertent separation. The electrical connection can be made within the construction layers by providing a first catheter layer (e.g., first layer 308 in FIG. 3) and then disposing the first conductive wire on the first catheter layer. At this point, the frame can be attached to the conductive wire, for example by attaching the conductive wire to an anchor strut of the frame. A second catheter layer (e.g., second layer 310 in FIG. 3) can be applied over the first conductive wire and the first anchor strut to encapsulate the connection in the construction layers of the catheter.


In step 2020, method 2000 can include connecting a second end of the first conductive wire to an electronic circuit. The electronic circuit can be positioned distal to the frame. The electronic circuit can be disposed within a housing that includes a switch to activate the current.


In step 2025, method 2000 can include applying a membrane to the first frame and to a distal end of the catheter. The membrane can be applied by a variety of methods. One method is to apply a thin base layer of material to a dipping mandrel with the catheter in place, followed by injection molding an intermediate layer with collapsed frame held in place by an outer mold, and a final top layer can be applied using a second outer mold or through a final dip coating process. In some examples, a preformed ring of a material that will not form a bond with the encapsulation membrane can be used to hold the frame in a collapsed position. After sufficient material has encapsulated the frame through a dipping or molding process, the preformed ring can be removed before a final dipping or molding process to fill in the void left by the ring. Alternatively, a preformed ring of the same material can be used to avoid the necessity to remove the ring.


Method 2000 can end after step 2025. In other embodiments, additional steps according to the examples described above can be performed. For example, method 2000 can include heat setting a second shape memory material into a second frame having a collapsed configuration. The second frame can be heat set in a similar manner as described above for the first frame. The second frame can be heat set into a collapsed configuration such that, once heated, the second frame can return to the collapsed configuration (e.g., to capture a clot). Method 2000 can include allowing the second shape memory material to cool and then connecting the second frame to a first end of a second conductive wire disposed within the catheter wall. Method 2000 can include connecting a second end of the second conductive wire to the electronic circuit so that the second frame can receive a current. The membrane can be applied to the second frame in a similar manner to the method described for the first frame. The first shape memory material and the second shape memory material can be the same alloys or can be different alloys. Providing different alloys can enable the two frames to have different transformation characteristics (e.g., they can transform from martensite to austenite phases at different temperatures). The first frame and the second frame can be coaxial and connected to the distal end of the catheter. In this manner, the first frame can expand when heated, and the second frame can collapse upon the first frame to capture the clot when heated.


The descriptions contained herein are examples of embodiments of the disclosure and are not intended in any way to limit the scope of the disclosure. As described herein, the disclosure contemplates many variations and modifications of the aspiration device including using alternative geometries of structural elements, combining shapes and structural elements from various example embodiments, using alternative materials, etc. These modifications would be apparent to those having ordinary skill in the art to which this disclosure relates and are intended to be within the scope of the claims which follow.

Claims
  • 1. A system for retrieving an obstruction in a blood vessel, the system comprising: a catheter;a first conductive wire;an electronic circuit providing a first current to the first conductive wire;a frame in electrical communication with the first conductive wire and comprising a shape memory material, at least a first portion of the frame being expandable from a collapsed configuration to an expanded configuration upon being heated by the first current; anda thermoelectric cooling circuit in electrical communication with the frame,wherein the at least a first portion of the frame is collapsible from the expanded configuration to the collapsed configuration upon removal of heat by the thermoelectric cooling circuit.
  • 2. The system of claim 1, wherein the shape memory material has a transition temperature of from approximately 45° C. to 55° C.
  • 3. The system of claim 1, wherein at least a second portion of the frame is collapsible from an open configuration to a collapsed configuration upon being heated.
  • 4. The system of claim 3, further comprising a second conductive wire in electrical communication with the second portion of the frame, the second conductive wire receiving a second current from the electronic circuit.
  • 5. The system of claim 4, further comprising an insulating junction connecting the first portion of the frame to the second portion of the frame, such that the first current does not reach the second portion of the frame and the second current does not reach the first portion of the frame.
  • 6. The system of claim 1, further comprising a membrane cover disposed around the frame.
  • 7. The system of claim 1, wherein the frame is disposed within an inner lumen of the catheter.
  • 8. The system of claim 1, further comprising a thermocouple in electrical communication with the frame.
  • 9. The system of claim 1, wherein: the shape memory material is in a martensite phase when the at least a first portion of the frame is in the collapsed configuration; andthe shape memory material is in an austenite phase when the at least a first portion of the frame is in the expanded configuration.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority, and benefit under 35 U.S.C. § 119(e), to U.S. Provisional Patent Application No. 62/813,723, filed 4 Mar. 2019, which is incorporated herein by reference as if fully set forth below.

US Referenced Citations (741)
Number Name Date Kind
4243040 Beecher Jan 1981 A
4324262 Hall Apr 1982 A
4351342 Wiita et al. Sep 1982 A
4575371 Nordqvist et al. Mar 1986 A
4719924 Crittenden et al. Jan 1988 A
4738666 Fuqua Apr 1988 A
4767404 Renton Aug 1988 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5092839 Kipperman Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5123840 Nates Jun 1992 A
5171233 Amplatz Dec 1992 A
5234437 Sepetka Aug 1993 A
5256144 Kraus et al. Oct 1993 A
5372124 Takayama Dec 1994 A
5385562 Adams Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5396902 Brennen et al. Mar 1995 A
5449372 Schmaltz Sep 1995 A
5520651 Sutcu May 1996 A
5538512 Zenzon et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5645558 Horton Jul 1997 A
5658296 Bates Aug 1997 A
5662671 Barbut Sep 1997 A
5695519 Summer et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5728078 Powers, Jr. Mar 1998 A
5769871 Mers Kelly Jun 1998 A
5779716 Cano Jul 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Danniel et al. Sep 1998 A
5827304 Hart Oct 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911725 Boury Jun 1999 A
5935139 Bates Aug 1999 A
5938645 Gordon Aug 1999 A
5947995 Samuels Sep 1999 A
5968057 Taheri Oct 1999 A
5971938 Hart et al. Oct 1999 A
5997939 Moechnig et al. Dec 1999 A
6063113 Kavteladze May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6146396 Konya et al. Nov 2000 A
6146404 Kim Nov 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6238412 Dubrul May 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6306163 Fitz Oct 2001 B1
6309379 Willard Oct 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak Mar 2002 B1
6375668 Gifford et al. Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer Jun 2002 B1
6409683 Fonseca et al. Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6346116 Brooks et al. Nov 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6511492 Rosenbluth Jan 2003 B1
6517551 Driskill Feb 2003 B1
6520934 Lee et al. Feb 2003 B1
6520951 Carrillo, Jr Feb 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592616 Stack Jul 2003 B1
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hanoock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6702782 Miller Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6730104 Sepetka May 2004 B1
6726703 Broome et al. Aug 2004 B2
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
6997939 Linder Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7153320 Euteneuer et al. Dec 2006 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7220269 Ansel May 2007 B1
7220271 Clubb May 2007 B2
7226464 Garner et al. Jun 2007 B2
7229472 DePalma et al. Jun 2007 B2
7232462 Schaeffer Jun 2007 B2
7288112 Denardo et al. Oct 2007 B2
7306618 Demond Dec 2007 B2
7316692 Huffmaster Jan 2008 B2
7323001 Cubb Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder Sep 2009 B2
7604649 McGuckin et al. Oct 2009 B2
7618434 Santra et al. Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7736385 Agnew Jun 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7780696 Daniel et al. Aug 2010 B2
7819893 Brady et al. Oct 2010 B2
7828815 Mazzocchi Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357893 Xu et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8372133 Douk et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osbourne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Grandfield et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8900265 Ulm, III Dec 2014 B1
8939991 Krolick et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9149609 Ansel et al. Oct 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9221132 Bowman Dec 2015 B2
9232992 Heidner Jan 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642635 Vale et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
10028759 Wallace et al. Jul 2018 B2
10149692 Turjman et al. Dec 2018 B2
10265086 Vale Apr 2019 B2
10716915 Ogle et al. Jul 2020 B2
10610668 Burkholz et al. Aug 2020 B2
20010001315 Bates May 2001 A1
20010016755 Addis Aug 2001 A1
20010041899 Foster Nov 2001 A1
20010044598 Parodi Nov 2001 A1
20010051810 Dubrul Dec 2001 A1
20020002383 Sepetka et al. Jan 2002 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020049468 Streeter Apr 2002 A1
20020052620 Barvut May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020188276 Evans Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030023204 Vo et al. Jan 2003 A1
20030040769 Kelley et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030125798 Matrin Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030153940 Nohilly et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 Wlite Aug 2003 A1
20030171769 Barbut Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030212430 Bose Nov 2003 A1
20030216611 Vu Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040010280 Adams et al. Jan 2004 A1
20040010282 Kusleika Jan 2004 A1
20040014002 Lundgren Jan 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais Apr 2004 A1
20040093065 Yachia et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153118 Clubb Aug 2004 A1
20040193107 Pierpont et al. Sep 2004 A1
20040199202 Dubrul et al. Oct 2004 A1
20040260333 Dubrul et al. Dec 2004 A1
20050015047 Shah Jan 2005 A1
20050020974 Noriega Jan 2005 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050125024 Sepetka Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050267491 Kellett et al. Aug 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050288686 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20060009785 Maitland Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060010636 Vacher Jan 2006 A1
20060030933 DeLeggge et al. Feb 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman Mar 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060155322 Sater et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287701 Pal Dec 2006 A1
20070088383 Pal et al. Apr 2007 A1
20070142858 Bates Jun 2007 A1
20070149996 Coughlin Jun 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070213765 Adams et al. Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288038 Bimbo Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080097398 Mitelberg Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080188928 Salahieh Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090024157 Anukhin Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090131908 McKay May 2009 A1
20090163846 Aklog et al. May 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090221967 Thommen et al. Sep 2009 A1
20090270815 Stamp et al. Oct 2009 A1
20090281610 Parker Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299374 Tilson et al. Dec 2009 A1
20090299393 Martin Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100030186 Stivland Feb 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnett et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100292726 Olsen et al. Nov 2010 A1
20100305604 Pah Dec 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110009942 Gregorich Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110077620 deBeer Mar 2011 A1
20110098683 Wiita et al. Apr 2011 A1
20110054504 Wolf et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110130756 Everson, Jr Jun 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110218564 Drasler et al. Sep 2011 A1
20110224707 Miloslavaski et al. Sep 2011 A1
20110264132 Strauss et al. Oct 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 diPama et al. Mar 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120116440 Leynov et al. May 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120215250 Grandfield et al. Aug 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184703 Shireman et al. Jul 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140046359 Bowman et al. Feb 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140135812 Divino et al. May 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140188127 Dubrul et al. Jul 2014 A1
20140194919 Losardo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140257362 Eldenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277053 Wang et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140364896 Consigny Dec 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150081003 Wainwright et al. Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150142043 Furey May 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150238314 Bortlein Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150351770 Fulton, III Dec 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160066921 Brady et al. Mar 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160121080 Cottone May 2016 A1
20160135829 Holochwost May 2016 A1
20160143653 Vale et al. May 2016 A1
20160151079 Aklog et al. Jun 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160228134 Martin et al. Aug 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160262880 Li et al. Sep 2016 A1
20160317168 Brady et al. Nov 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170065401 Fearnot et al. Mar 2017 A1
20170071614 Vale et al. Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172554 Bortlein et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180042623 Batiste Feb 2018 A1
20180193591 Jaroch et al. Jul 2018 A1
20180235743 Farago et al. Aug 2018 A1
20190021759 Krolik et al. Jan 2019 A1
20190046219 Marchand et al. Feb 2019 A1
20190192175 Chida et al. Jun 2019 A1
20190209206 Patel et al. Jul 2019 A1
20190216476 Barry et al. Jul 2019 A1
20190255290 Snyder et al. Aug 2019 A1
20190365411 Avneri et al. Dec 2019 A1
Foreign Referenced Citations (92)
Number Date Country
1972728 May 2007 CN
103071195 May 2013 CN
104507380 Apr 2015 CN
104905873 Sep 2015 CN
105307582 Feb 2016 CN
105726163 Jul 2016 CN
106232059 Dec 2016 CN
20 2009 001 951 Apr 2010 DE
10 2009 056 450 Jun 2011 DE
10 2010 010 849 Sep 2011 DE
10 2010 014 778 Oct 2011 DE
10 2010 024 085 Dec 2011 DE
10 2011 014 586 Sep 2012 DE
2301450 Mar 2011 EP
2628455 Aug 2013 EP
3302312 Apr 2018 EP
2498349 Jul 2013 GB
9-19438 Jan 1997 JP
WO 9304722 Mar 1993 WO
9424926 Nov 1994 WO
9727808 Aug 1997 WO
9738631 Oct 1997 WO
9920335 Apr 1999 WO
9956801 Nov 1999 WO
9960933 Dec 1999 WO
0121077 Mar 2001 WO
0202162 Jan 2002 WO
0211627 Feb 2002 WO
0243616 Jun 2002 WO
02070061 Sep 2002 WO
02094111 Nov 2002 WO
03002006 Jan 2003 WO
03018085 Mar 2003 WO
03030751 Apr 2003 WO
03051448 Jun 2003 WO
2004028571 Apr 2004 WO
2004056275 Jul 2004 WO
2005000130 Jan 2005 WO
2005027751 Mar 2005 WO
2005027779 Mar 2005 WO
2006021407 Mar 2006 WO
2006031410 Mar 2006 WO
2006107641 Oct 2006 WO
2006135823 Dec 2006 WO
2007054307 May 2007 WO
2007068424 Jun 2007 WO
2008034615 Mar 2008 WO
2008051431 May 2008 WO
2008131116 Oct 2008 WO
2009019664 Feb 2009 WO
2009031338 Mar 2009 WO
2009076482 Jun 2009 WO
2009086482 Jul 2009 WO
2009105710 Aug 2009 WO
WO 2009103125 Aug 2009 WO
2010010545 Jan 2010 WO
2010046897 Apr 2010 WO
2010075565 Jul 2010 WO
2010102307 Sep 2010 WO
2010146581 Dec 2010 WO
2011013556 Feb 2011 WO
2011066961 Jun 2011 WO
2011082319 Jul 2011 WO
2011095352 Aug 2011 WO
2011106426 Sep 2011 WO
2011110316 Sep 2011 WO
2012052982 Apr 2012 WO
2012064726 May 2012 WO
2012081020 Jun 2012 WO
2012110619 Aug 2012 WO
2012120490 Sep 2012 WO
2012156924 Nov 2012 WO
2013016435 Jan 2013 WO
2013072777 May 2013 WO
2013105099 Jul 2013 WO
2013109756 Jul 2013 WO
2014081892 May 2014 WO
2014139845 Sep 2014 WO
2014169266 Oct 2014 WO
2014178198 Nov 2014 WO
2015061365 Apr 2015 WO
2015134625 Sep 2015 WO
2015179324 Nov 2015 WO
WO 2015179377 Nov 2015 WO
2015189354 Dec 2015 WO
2016010995 Jan 2016 WO
WO 2017004234 Jan 2017 WO
2018193603 Oct 2018 WO
WO 2018178979 Oct 2018 WO
WO 2019064306 Apr 2019 WO
WO 2019079296 Apr 2019 WO
WO 2020139979 Jul 2020 WO
Non-Patent Literature Citations (3)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
Extended European Search Report dated Jul. 28, 2021 issued in European Patent Application No. 20 21 0069.
Extended European Search Report dated Aug. 5, 2021 issued in European Patent Application No. 21 16 7037.
Related Publications (1)
Number Date Country
20200281611 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62813723 Mar 2019 US