This application is a non-provisional application of U.S. Ser. No. 61/259,111, filed Nov. 6, 2009, the entirety of which is incorporated herein by reference.
The present invention generally relates to a suction device for use in surgical procedures and more particularly to a surgical suction device for removing debris from a surgery site.
Suction devices are commonly used in a variety of medical applications to evacuate various fluids from a patient for a variety of purposes. For example, during surgery, blood and other body fluids are commonly removed to permit visual inspection of the surgical site and disposal of fluids. Suction wands may also provide for the production of positive pressure (usually air or water) to irrigate the surgical site. One such example is disclosed in Lester, U.S. Pat. No. 4,526,573 which shows a suction conduit from sucking debris away from the surgery site and an irrigation conduit for directing irrigation fluid to a surgery site.
Prusmack US Publication No. 2007/0213667 discloses a suction irrigation cleaner configured to apply negative air pressure by connecting a first port to a suction source for removing debris and fluid from a surgical site. There is also an irrigation/positive pressure line to deliver positive air/vapor pressure by connecting a second port to a positive pressure source. The positive pressure fluid is used for irrigation and alternatively to unclog the device if tissue or clot is sucked into the device. The apparatus disclosed in Prusmack is not ideal because the tissue and clot can travel through device all the way to the valve mechanisms, potentially damaging the device. The irrigation function is complicated as it requires both turning of a stopcock and operation of a button to move the irrigation channel into the main flow path. Also, it does not inhibit larger potentially clogging debris from being sucked into the device beyond the point where the declogging function can be effective.
Historically, suction wands (commonly referred to as “sucker tips”) were fabricated from metal and were reusable only after suitable cleaning and sterilization. With the recent advent of disposable surgical equipment, however, metal suction wands have been almost entirely replaced by cheaper, light weight, disposable suction wand systems fabricated from plastics.
In orthopedic surgery, suction wands are vital for keeping the surgical site ‘dry’ improving visualization of tissues and for recovery of lost blood through means of ‘cell savers’ or devices that allow for the re-infusion of blood that may have oozed from the tissues of the surgical site. As shown in the Prusmack publication, a major obstacle to the optimal performance of sucker wands is the obstruction that occurs when bone bits and other debris are sucked into the suction line, effectively clogging the egress of fluids away from the surgical site and blocking the suction. A secondary problem has been the relatively high flow of air through the wand during the surgical procedure which leads to the potential deposition of airborne bacteria on the tip of the wand. And because the wand tip is moistened by the egress of fluid during suction, the wand tends to attract dust or debris which are then expelled to the surgical site when positive pressure is produced. Studies have shown that a sucker wand may be one of the highest sources of contamination during a surgical procedure.
Therefore, there exists a need for a suction wand device that allows for the egress of fluids being removed from a surgical site, but still provides the operator the ability to conveniently unclog or unplug the device without the fear of contaminating the surgical site or damaging the device. The present invention also offers an efficient design that can be constructed with disposable plastic materials and easily disassembled for cleaning purposes.
Briefly, therefore, the invention is directed to a suction wand comprising a handle, a suction conduit at least partially disposed in the handle and partially defining a suction path, and a suction tip at an end of the suction conduit. The suction path extends from the suction tip and through the handle, wherein the suction conduit is adapted to communicate with a vacuum source at a vacuum source end of the suction path remote from the suction tip. There is a filter screen for retaining bone debris, wherein the filter screen is disposed in the suction path and has a first side facing a tip direction and an opposite second side facing a vacuum source direction. There is a CO2 gas conduit adapted for fluid communication with a gas source and at least partially disposed in the handle and partially defining a CO2 path, the CO2 gas conduit including a CO2 gas main conduit section through which CO2 gas flows and is directed into the suction conduit in a direction toward the tip such that the CO2 gas passes through the filter screen from the second side facing in the vacuum direction, in the tip direction and out the first side of the filter screen facing in the tip direction, for expelling debris from the first side of the filter. There is also a CO2 gas conduit valve operable between an open position in which CO2 gas flows through the CO2 gas conduit and into the suction conduit toward the suction tip and a closed position in which CO2 gas does not flow into the suction conduit.
In another aspect, the invention is directed to a suction wand for use in aspirating a surgical site during an orthopedic surgical operation which yields bone debris and generally comprises a handle and a suction conduit at least partially disposed in the handle and partially defining a suction path. A suction tip is at an end of the suction conduit. The suction path is adapted to communicate with a vacuum source at a vacuum source end of the suction path remote from the suction tip such that the suction path extends from the suction tip through the suction conduit to the vacuum source. A CO2 gas conduit is adapted for fluid communication with a gas source and is at least partially disposed in the handle and partially defines a CO2 path. A CO2 gas conduit valve is operable between an open position in which CO2 gas flows from the gas source through the CO2 conduit and out the suction tip and a closed position in which CO2 gas does not flow out of the suction tip. A filter screen is disposed in the suction path for retaining bone debris produced during the operation. The filter screen comprises a wire mesh including a set of parallel horizontal wires and a set of parallel vertical wires woven with the horizontal wires forming gaps between the wires. The gaps are sized and arranged to retain the bone debris on the screen when the wand is in a suction mode and permit a high blast of CO2 to impinge upon the retained debris when the wand is in a CO2 pressure mode to expel the debris from the screen.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring to the illustrated embodiment, and in particular
A mount 21 (
Referring to
A first mount port 55 extends distally from a base 57 of the mount 21 and is received in a first connector port 59 of the connector 23 to fluidly connect the first mount port to the connector. A second mount port 61 of the mount 21, below the first mount port 55, also extends distally from the base 57 and is receive in a second connector port 63 of the connector 23 to fluidly connect the second mount port to the connector.
The first connector port 59 extends distally through the connector 23 into the head portion 25. The first mount port 55 and first connector port 59 broadly define a positive pressure conduit. The second connector port 63 opens into an interior space 65 in the connector 23 which opens into an interior space 67 in the head portion 25. The second mount port 61, second connector port 63, connector interior space 65 and head portion interior space 67 broadly define a suction conduit. The suction conduit extends around the positive pressure conduit to the tip 29 of the head portion 25. In this embodiment the longitudinal axes of the suction conduit and positive pressure conduit are coincident such that they are disposed on a common central axis CA (
Referring to
Conversely, a positive pressure path is illustrated by a series of arrows in
Referring to
In use, the inflow tube 75 is preferably connected to a positive pressure source comprising a CO2 tank. Carbon dioxide is preferred because of its safety, surgical compatibility, and availability. Additionally, the relatively small inner diameter ID of the distal end 71 of the first connector port 59 (about 3/32 in.) produces a high gas flow at the tip 29 of the head portion 25. As shown in
Also, because the longitudinal axis of the positive pressure conduit is coincident with the longitudinal axis of the suction conduit, the CO2 blast produced by the positive pressure source will get a “running start” since there are no turns or bends in the CO2 path which could slow down the gas flow. The linear CO2 path also reduces the risk of any “dead spots” that can result from a build up of turbulence at the bends. Finally, the alignment of the positive pressure conduit and suction conduit ensures that the blast of CO2 impacts the filter screen 27 in a directly perpendicular manner.
The high pressure, focused blast of CO2 that results from this construction is needed so that a sufficient amount of gas impinges upon any captured debris in the filter screen 27 to expel the debris. The open areas 77 in the filter screen 27 ensure that a sufficient amount of air can impinge upon the captured debris to expel the debris from the screen. It was found that the range of about 12 to about 30 open areas 77 per square in. is the preferred range to retain bone chips large enough to clog the wand 11 while still providing enough open area to produce a high blast of CO2 through the screen 27 to expel the debris, and enough open area to provide the desired suction in normal operation.
A second embodiment of a suction wand 111 of the present invention is shown in
An outflow tube 119 extends through the handle 113 and connects to a suction conduit 123 in the handle. The suction conduit 123 also extends through the handle 123 and out the distal end of the handle to the tip portion 125. The positive pressure conduit 121 and suction conduit 123 converge in the handle 113 at a permanent Y-junction 131. In the closed position, the outflow tube 119 can create a negative pressure gradient at the tip portion 125 by activation of a suction source (not shown) in fluid communication with the outflow tube.
A third embodiment of a suction wand 211 of the present invention is shown in
A fourth embodiment of a suction wand 311 of the present invention is shown in
Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Date | Country | |
---|---|---|---|
61259111 | Nov 2009 | US |