1. Field of the Invention
The present invention relates to an actuating device with a motorized drive for driving a movable component from a normal position into an open position and a free wheel permitting uncoupling of the movable component from the motorized drive in the open position.
2. Description of the Related Art
In an actuating device for actuating a flap, it is known that when the motorized drive is switched off and the opened flap is manually closed, a driving pinion for motorized pivoting of the flap is uncoupled from the motorized drive by a free wheel. The free wheel may be configured as a free-wheeling hub or as a switchable coupling, which is arranged on the drive shaft of the motorized drive. This design of an actuating device is complex and costly.
An object of the present invention is to provide an actuating device for actuating a movable component such as a flap with a simple construction of the movable component along with a motorized drive which allows manual actuation with little manual force.
The object is achieved in that a driving element is movably drivable by a reversible motorized drive and engages in a crank recess extending along the path of motion of the movable component, the length of the crank recess corresponding at least to the path of motion of the driving element between its normal position and its open position or partially open position. A switching device is operatively arranged so that after adjustably driving the movable component into its open position, the driving element may be returned by the motorized drive into the normal position.
The object is also achieved in that a crank component is movably drivable by the reversible motorized drive and comprises a crank recess extending along the path of motion of the movable component, into which a driving element arranged on the movable component engages, the length of the crank recess corresponding at least to the path of motion of the driving element between its normal position and its open position or partially open position. A switching device is operatively arranged so that after adjustably driving the movable component into its open position, the crank component may be returned by the motorized drive into the normal position.
In these embodiments, after motorized movement of the movable component into its open position, the driving element and/or the crank component is/are again returned in a motorized manner into its/their normal position. If the movable component is now to be moved manually from its open position into its normal position, the driving element is able to move freely and without resistance in the crank recess.
Furthermore, if the movable component is movably drivable by the reversible motorized drive by the driving element or the crank component from its open position into its normal position and, by the switching device, after adjustably driving the movable component into its normal position, the driving element or the crank component may be returned by the motorized drive into its normal position, the ability to move the movable component manually and substantially without resistance from its normal position into its open position is, therefore, also possible.
The switching device may simply comprise switching elements, which detect when the driving element has reached the end or ends of the crank recess.
A simple design for moving the movable component is for one or both ends of the crank recess to form stops against which the driving element may bear and, by moving the driving element or by moving the crank component, the movable component is movably drivable.
An emergency cut-out is achieved in that the stop or stops, when impinged upon by the driving element towards the end of the crank recess, are spring stops which may be deflected counter to a set spring force, the set spring force being greater than the force applied by the driving element when the driving element or the crank component is driven by the motorized drive. When the spring stops are deflected by the driving element, either a switch generating a switch signal is actuated or an increased power consumption of the motor is identified. The motorized drive is able to be switched off in response to the switch signal or the increased power consumption of the motor.
Thus, normal motorized driving of the movable component does not result in compression of the spring stops by the driving element. In the case of misuse, if the motorized drive is manually engaged on the movable component counter to the drive direction, the spring stop is deflected by the set spring force being overcome and the switch actuated so that the motorized drive is switched off. Thus, the motorized drive is protected against damage.
Alternatively, however, an overload clutch, such as for example a slip clutch may be arranged in the drive train between the motorized drive and the movable component.
The motorized drive may be a linear drive or a rotary drive. For force transmission, the driving element or the crank component may preferably be driven by the motorized drive via a gear mechanism. The motorized drive may be a pneumatic drive or a hydraulic drive. Preferably, however, the motorized drive is an electromotor. The movable component may, for example, be held by a latching device in its open position.
If force is able to be applied to the movable component by a spring in the direction of motion from the normal position into the open position, the spring preferably being a pneumatic spring, this results not only in retaining the movable component in the open position but also in supporting the motorized drive during movement of the manually lowered and then raised, the driving element 14 moving freely in the crank recess 13.
For motorized closing, the electromotor 1 is switched on, which drives the crank gear 5 anticlockwise, so that the first stop 15 drives the driving element 14 and the four bar linkage 8 anticlockwise (
By means of the electromotor 1, the crank gear 5 is then moved again as far as its normal position as is shown in
A further embodiment of a crank gear 5′ is shown in
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 055 788.0 | Nov 2005 | DE | national |