The present invention relates to an actuating device of a recirculation pump for a cooling circuit of an internal combustion engine.
As it is known, internal combustion engines are equipped with a cooling circuit in which a pump driven by the crankshaft circulates a coolant fluid adapted to subtract heat from the engine, in use, to maintain the temperature of the engine components within an acceptable range of values. According to a conventional solution, the pump is permanently driven by the crankshaft, via a belt transmission, and therefore cannot be deactivated.
In motor vehicles, there is the problem of letting the engine reach a warmed-up condition as rapidly as possible after start up, for the two-fold purpose of reducing polluting emissions and allowing the engine to rapidly reach maximum efficiency.
For this purpose, there have recently been proposed actuating devices of the coolant fluid recirculation pump adapted to deactivate the pump at engine ignition until such warmed-up condition is reached.
A known solution consists in driving the pump by a first friction wheel that takes motion from the crankshaft and drives by rolling friction a second friction wheel fitted on the pump shaft. The first friction wheel is controlled by an actuator so that it can be disconnected from the second friction wheel.
However, the described device is somewhat complex, cumbersome and costly. In particular, it is quite difficult to provide a friction wheel device that allows to maintain the recirculation pump activated in the event of a failure to the electrical system or to the actuator, and therefore ensure engine operation.
The object of the present invention is to provide an actuating device of a recirculation pump for an internal combustion engine which solves the aforesaid problems associated with the known devices.
Said object is achieved by a device according to claim 1.
For a better understanding of the present invention, several preferred embodiments will now be described, by way of non-limitative examples only and with reference to the accompanying drawings, in which:
With reference to
The device 1 comprises essentially a pulley 3 adapted to be connected to the crankshaft (not shown) of the engine via a transmission belt 4 and constituting a driving member, a driven member constituted by the input shaft 5 of the pump 2, and an electromagnetically operated coupling 6 interposed between the pulley 3 and the shaft 5 and adapted to selectively connect the two.
The shaft 5, having axis A, protrudes axially from a body 7 of the pump 1 with its end portion 8, on which the pulley 3 is rotatably supported via a bearing 9. The pulley 3 comprises integrally an internal cylindrical wall 10 mounted on the bearing 9, a radial flange 11 extending from one end of the wall 10 opposite to the pump 2 and a peripheral crown externally coaxial with the portion 10 and preferably provided with a plurality of grooves 13 for cooperating with the belt 4, preferably of the poly-V type.
The wall 10, the flange 11 and the crown 12 define an annular cavity 17 open towards the body 7 of the pump 2, in which the coupling 6 is housed, which therefore is contained within the space requirement of the pulley 3.
The coupling 6 comprises an electromagnet 18 mounted in fixed position on the body 7 of the pump 2 and in turn comprising an annular support 19 rigidly fastened to the body 7 and defining a C-shaped annular seat 20 open towards the flange 11 of the pulley, and a coil 21 housed inside the seat 20.
The coil 21 is adapted to be connected to a control unit (not shown), from which it is adapted to receive electrical energizing signals.
The electromagnet 18 also comprises a armature 24, consisting of a soft steel ring facing the coil and mounted on a first face 25 of an annular support 26 housed in the cavity 17 between the support 19 and the flange 11 of the pulley 3. The support 26 is in turn fastened to an external peripheral portion of a diaphragm spring 27 consisting of a steel plate disk preferably equipped with a plurality of radial slots 23, which is mounted on a supporting ring 28 force-fitted on the shaft 5. On a second axially opposite face 29 of the annular support 26, there is fastened a friction ring 30, which is adapted to cooperate with the flange 11 under an elastic load generated by the diaphragm spring 27.
The operation of the device 1 is as follows.
In the absence of excitation signals from the coil 21, the pulley 3 is rotationally connected to the shaft 5 via the friction coupling between the flange 11 and the friction ring 30 which is drivingly connected to the shaft 5 via the annular support 26, the diaphragm spring 27 and the supporting ring 28.
If the coil 21 is energized, the armature 24 is attracted by the coil 21, thereby detaching the friction ring 30 from the flange 11 of the pulley 3, and comes into contact with the support 19, against the action of the diaphragm spring 27 which biases it towards the flange 11.
In use, the coil 21 is energized at cold start-ups, so that the pump 2 is not rotationally driven. When the engine has reached a warmed-up condition, the coil 21 is de-energized and the diaphragm spring 27 returns the friction ring 30 against the flange 11 of the pulley, thereby reconnecting the pulley 3 to the shaft 5.
In the device 31, the armature 24 of the electromagnet 18 presents an L-section, being formed by a flat annular wall 32 and by a cylindrical axial wall 33 protruding from an internal edge of the flat annular wall 32 towards the pump body.
The coupling 6 moreover comprises a supporting ring 28 force-fitted on the shaft 5 in a position comprised between the body 7 of the pump 2 and the bearing 9. The supporting ring 28 comprises an axial cylindrical wall 35, which presents an external surface 36 aligned with the external surface 37 of the axial cylindrical wall 33 of the armature 24.
On the aforesaid surfaces 36, 37 there is fitted a bushing 38, conveniently made of low friction coefficient fluorinated plastic material, around which a helical spring 39 is arranged and axially compressed between a radial shoulder 40 external to the supporting ring 28 and the annular flat wall 32 of the armature 24, so that the armature 24 is held in contact with the flange 11 of the pulley 3 in the absence of excitation of the coil 21.
The cylindrical axial wall 35 of the supporting ring 28 presents a frontal annular seat 44 open towards the armature 24; this seat has an internal surface 45 aligned with an external surface 46 of the internal wall 10 of the pulley 3.
The coupling 6 finally comprises a helical band spring 47, wound on the aforesaid surfaces 45 and 46. The band forming the spring has a rectangular section elongated in the axial direction.
The band spring 47 has ends 48, 49 fastened to the supporting ring 28 and the armature 24 respectively, so as to be subjected to a traction load by the spring 39. The band spring 47 is dimensioned so as to exert, under the aforesaid traction load, a radial compression force on the surfaces 45, 46 and therefore to transmit the motion by friction between the pulley 3 and the supporting ring 28 when the coil 21 is not energized and the armature 24 is held by the spring 39 against the flange of the pulley 3.
When the coil 21 is energized, the armature 24 is attracted and the band spring 47 tension is released; therefore, the diameter of its turns tends to increase and release the pulley 3, which becomes idle with respect to the shaft 5.
When the coil is de-energized, the armature 24 is pushed against the flange 11 of the pulley 3 and receives from this a friction torque which tends to rotatably drive, with the armature itself, the end 49 of the band spring 47 and therefore to increasingly tighten the band spring 47 on the surfaces 45, 46.
Also in device 50, the releasable connection of the pulley 3 to the shaft 5 is obtained by means of a band spring 47 wound partly on the inner wall 10 of the pulley and partly on the supporting ring 28, where the end 48 of the band spring 47 is fastened. The spring 47 is mounted with radial preload so as to maintain the pulley 3 normally connected with the support 28 and therefore with the shaft 5. In this case, the end 49 of the spring 47 is radially bent outwardly, as will be better explained below.
The armature of the electromagnet 18 consists of an essentially conical annular diaphragm spring 24, having a circumferentially continue inner portion 51, and an outer portion interrupted by a plurality of radial slots 52, so as to define a plurality of elastic radial arms 53 each of which protrudes from the inner portion 51. The radial arms 53 are fastened at their own ends to an outer frontal edge 54 of the support 19 of the coil 21, for example by deformation machining (beading) of the latter. In undeformed conditions, the arms 53 are spaced with respect to an inner front edge 55 of the support 19 of the coil 21.
An appendix 56 extends axially from the inner portion 51 of the spring 24 towards the band spring 47. The appendix 56 does not interfere with the end of the band spring 47 when the spring 24 is undeformed but is adapted to intercept the end 49 when the spring 24 is attracted by the coil and the arms 53 are elastically deformed, thus allowing the appendix 56 to reach an advanced position illustrated by a dotted line in
The operation of the device 50 is as follows.
When the coil 21 is not energized, the spring 47 is elastically tightened around the inner wall 10 of the pulley 3 and connects it to the support 28. Therefore, the pulley 3 turns with the shaft 5. The same spring 47 rotates rigidly with the pulley 3, the support 28 and the shaft 5.
When the coil 21 is energized, the spring 24 is attracted and the appendix 56 moves to the advanced position. Therefore, it blocks the rotation of the end 49 of the spring 47, torsionally loading the spring. Given the direction of rotation of the pulley 3, the direction of winding of the band spring 47 is such that the aforesaid torsion load on the spring 47 (in the band compression-stressing direction) tends to expand the turns and release the wall 10 of the pulley 3. Therefore, the pulley 3 can idly turn on the bearing 9 but the torque is not transmitted to the shaft 5 and the pump is therefore deactivated.
According to a fourth embodiment of the present invention (
The armature 61 is axially interposed between the pulley flange 11 and the electromagnet 18, and has a friction lining 64 on its side facing the wall 11. A Belleville washer 65, resting on a shoulder 66 of the hub 62, biases the armature 61 towards the pulley flange 11.
In use, washer 65 holds armature 61 against flange 11 allowing power transmission and, when water pump is not necessary, coil 21 is energized and armature 60 separates from flange 11 and disengages shaft 5 from pulley 3.
According to a further embodiment of the present invention (
Furthermore, device 80 comprises an annular armature 85 having a splined inner edge formed by radial projections 86 spaced by cavities 87 (
In particular, each blind hole 89 is parallel to axis A, is located on cylindrical wall 83 between two adjacent frontal teeth 84 and defines a radial constraint for the respective spring 88 against centrifugal force.
Operation is similar to that of device 60 of
From a review of the devices 1, 31, 50, 60, 80 made according to the present invention, the advantages that it allows to achieve are evident.
In particular, the selective operation of the pump 2 is made possible by means of a very simple, compact and cost-effective device which guarantees, in the event of an electrical failure, that pump 2 is though driven by the pulley 3 and therefore guarantees the engine cooling.
Number | Date | Country | Kind |
---|---|---|---|
TO2004A0824 | Nov 2004 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
2939561 | Rudisch | Jun 1960 | A |
3358667 | Gubb et al. | Dec 1967 | A |
4408953 | Nasvytis et al. | Oct 1983 | A |
4926992 | Linnig | May 1990 | A |
5076216 | Ro | Dec 1991 | A |
5636719 | Davis et al. | Jun 1997 | A |
5791558 | Hoshino et al. | Aug 1998 | A |
5897056 | Morikawa et al. | Apr 1999 | A |
6915887 | Faller et al. | Jul 2005 | B2 |
7475764 | Schultheiss et al. | Jan 2009 | B2 |
20050178635 | Schultheiss et al. | Aug 2005 | A1 |
20060165539 | Boffelli et al. | Jul 2006 | A1 |
20100151979 | Baer et al. | Jun 2010 | A1 |
20110005476 | Park | Jan 2011 | A1 |
20110236230 | Ikegawa et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
10013252 | Oct 2001 | DE |
10131792 | Oct 2002 | DE |
10232138 | Jan 2004 | DE |
1353051 | Oct 2003 | EP |
2391048 | Jan 2004 | GB |
2004293430 | Oct 2004 | JP |
WO 2004007923 | Jan 2004 | WO |
Entry |
---|
International Preliminary Report on Patentability in PCT Appln. No. PCT/EP2005/0054247, dated May 30, 2007 [5 pages]. |
International Search Report in PCT Appln. No. PCT/EP2005/0054247, dated Nov. 10, 2005 [3 pages]. |
International Written Opinion in PCT Appln. No. PCT/EP2005/0054247, dated Nov. 8, 2005 [4 pages]. |
JP Appln. No. 2007-541888 Dec. 17, 2010 JPO Office Action. |
Number | Date | Country | |
---|---|---|---|
20120192815 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11791368 | US | |
Child | 13447807 | US |