The invention relates to an actuating device, in particular an actuating magnet, for actuating valves, having a housing and a coil element located therein, a coil element in which a switching component is guided, and which is provided with the winding of a conductor which is connected by a retaining device to contact components of a plug plate which is seated on the outer peripheral surface of the housing while maintaining a distance by means of a plug insert, the plug insert for seating an annular sealing component having a seating surface which extends in the form of a groove within the plug insert, and in the installed state, by pressing the sealing component, at least the gap, which is formed in the direction of the coil element between the plug plate and the outer peripheral surface of the housing, being closed to effect sealing.
These actuating devices which are also termed actuating magnets are known and are freely available commercially in a host of versions. The switching component is formed essentially from a tubular pin which, when the coil is electrically excited via a connector plug which can be connected to a plug plate, traverses a definable path and in this connection actuates an actuating or switching process, and, for example, in a valve enables blocking and routing of fluid flows. If these known actuating devices are used in regions with high humidity, as occurs among others things also with condensate formation, the moisture penetrates into the housing interior, especially to the coil element with the winding, and with the onset of corrosion leads to the device becoming unusable. To avoid this problem, it has already been suggested in the prior art that the housing of the actuating device be completely surrounded with a plastic potting mass which keeps moisture away; but this can lead to actuating devices of very large size which are not suited for use in automotive engineering, where fundamentally only little installation space is available. Moreover potting the switch housing with the plug plate can lead to an unattractive appearance of the actuating device.
To alleviate these disadvantages, in a generic actuating device as claimed in DE 43 41 087 A1 it has already been suggested that the plug insert for seating of an annular sealing component be provided with a seating surface which protrudes with a definable axial projection over the bottom of the plug plate facing the outer peripheral surface of the housing, such that in the installed state at least the gap which is formed in the direction of the coil element between the plug plate and the outer peripheral surface of the housing is closed to effect sealing by pressing the sealing component. In this way moisture can no longer travel into the housing interior at the site of the upper part of the plug plate and in particular cannot reach the coil element with the winding. In the known solution the plug insert has an inside thread and two insulation piercing inserts which are each provided with lengthwise teeth and which are separated from one another by a groove-shaped contact shoulder for holding the annular sealing component. In this way, with simple manufacture the plug insert can be securely joined both to the plug plate and also then together with the plug plate to the housing of the actuating device. Since in the known solution gap formation in the area of the plug plate between the potting mass and the outer peripheral surface of the housing is extremely narrow and in this respect is then closed by the annular sealing component in the pressed state, the sealing component in the direction of the gap is very greatly extended and compressed; this can lead to high material loading in the annular sealing component and especially due to the sharp-edge configuration of the insulation piercing inserts, damage to the sealing component is possible. This can adversely affect the sealing function such that in later operation failures of the actuating device occur, and consequently failures in the hydraulic circuits to which the actuating device is functionally connected.
On the basis of this prior art, the object of the invention is to devise an actuating device which is as small as possible and which is suited especially for use in automotive engineering and is still reliable in operation even at high humidity, even over a longer interval of use. This object is achieved by an actuating device with the features of claim 1 in its entirety.
In that, as specified in the characterizing part of claim 1, the groove depth is chosen such that in the unpressed state approximately half of the sealing component is held in the groove and that in the installation state the groove with the sealing component is completely filled except for a projection such that the gap which is formed is closed to effect sealing, the humidity at the site of the upper part of the plug plate can no longer travel into the housing interior and especially not to the coil element with the winding. In that the annular sealing component is enclosed in the groove of the plug insert, which moreover has a large volume of displacement space into which the sealing component can be displaced when injected in place with the plastic potting mass, harmful compression, shearing and transverse forces on the sealing component are also for the most part precluded; this ensures that even beyond longer periods of use the sealing function is reliably maintained. The enclosed sealing component especially to the outside preserves its partially annular sealing surface and in this way can effect sealing of the indicated gap with a high degree of elasticity. Since the groove in the plug insert can be provided on the groove bottom with rounded transitions to the transversely running side walls, sharp edge geometries which can adversely affect the sealing action within the plug insert are avoided. Without being pressed or displaced as shown in the prior art into a sealing gap which runs parallel to the lengthwise axis of the plug insert, the preferably O-ring-shaped cross section of the sealing component is preserved which for this purpose can best perform its sealing function for the gap.
Other advantageous embodiments of the actuating device as claimed in the invention are the subject matter of the other dependent claims.
The actuating device as claimed in the invention will be detailed below using one embodiment as shown in the drawings. The figures are schematic and not to scale.
The switching device has a coil element 10 of plastic material, the coil element 10 on the end side having two annular flanges 12 between which the winding stack 14 of a conductor 16 extends, this coil having been omitted in
The annular flange 12 of the coil element 10 which faces the vicinity forms an annular plate 20 (
The retaining device 22 on the end side on the plate-shaped center piece 32 has two pin-like prolongations 34 around which the ends of the conductor 16 are wound, in order in this way to ensure a fixed link of the conductor 16 to the retaining device 22. For further guidance of the conductor 16, on the top of the middle piece 32 in each respective outer region, there are two pairs of crosspieces 36 which each have a receiver with a V-shaped cross section into which the conductor 16 can be inserted. Located in the center on the middle piece 32 and between two crosspieces 36 of the retaining device 22 which are located directly adjacently opposite, there is a guide means (not detailed), by means of which the conductor 16 crossing in the indicated region and without touching at this point is routed to run toward the winding stack 14.
The conductor 16 is routed by the retaining device 22 over a definable path between the respective pairs of crosspieces 36 such that it is freely accessible to direct contact with two contact components 38 of one plug plate 40 from at least one side, but preferably from all sides. The respective contact component 38 of the plug plate 40 has a roof-like connecting piece 42 which can be seated from the top on the conductor piece between the two crosspiece pairs 36. The two free leg pieces of each connecting piece 42 which encompass the conductor 16 within the retaining device 22 can be can be pressed together and then welded to one another, a conductive connection arising between the respective contact component 38 and the assigned piece of the conductor 16. The roof-like connecting pieces 42 are each arranged offset to the outside toward the respective prolongation 34 and are connected to one respective flat contact path 44 each, on which arranged perpendicular to it and connected to it there is the lug 46 of the plug of the plug plate 40 which projects over the top of the switching device. This contact path 40 is shown in
All contact paths 44 and lugs 46 of plugs can be punched or cut out of a flat plate and are then potted with the plastic material of the plug plate 40. The plug plate 40 essentially in the middle has a plug insert 48 which is designed as a cylindrical sleeve. By means of this plug insert 48 the plug plate 40 can be seated on the outer peripheral surface 50 as the outside wall of the housing 18 while maintaining a distance.
The plug insert 48 for seating of the annular sealing component 52 (
The plug insert 48 is divided by the groove 56 made on the outer peripheral side into two regions 70, 72, of which one region 70 is held in the housing 18 such that the groove 56 with its one lower side wall 64 offset by a step 74 ends with the outer peripheral surface 50 of the housing 18. In this respect, the step 74 also limits the gap 58 which is to be sealed later. The other region 72 of the plug insert 48 tapers as an indentation in the direction of the plug plate 40, and on the side facing the groove 56 in the indentation 76 formed in this way, there is a seating surface 78 for the contact component 38 of the plug plate 40 which is used as the ground connection. In particular, the plug insert 48 is formed from an electrically conductive, especially metallic material and the plug insert 48 extends through the indicated ground connection in the form of the contact component 38. The height of the plug insert 48 is chosen such that it extends between the inside wall 80 of the housing 18 to the top 82 of the plug plate 40.
Between the outer peripheral surface 50 of the housing 18 and the plug plate 40 a supply space 84 is delineated which is used to supply the potting mass 28 for sealing purposes, when the parts shown in
The plug insert 48 is made as a smooth sleeve part on the outer peripheral side; but it would also be conceivable to provide ribbing or the like in order to facilitate the connection to the plastic potting mass 28. It is surprising to one with average skill in the art in the field of actuating and switching magnets that by using a conventional O-ring in a correspondingly shaped plug insert 48 relative to the known solutions a much improved sealing action is obtained for a long operating interval without the sealing component 52 preferably in the form of an O-ring being exposed to excessively damaging stresses. The component spaces 68a,b of the displacement space 68 which form the free spaces also form a receiving possibility for the O-ring, since temperature fluctuations, especially in the form of a temperature increase, can change the geometrical dimensions of the O-ring, especially in the form of a volumetric expansion which is accommodated by the component spaces 68a,b.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 029 185 | Jun 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/003419 | 4/1/2005 | WO | 00 | 11/22/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/124934 | 12/29/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3521823 | Horssen | Jul 1970 | A |
3922477 | Glowacz | Nov 1975 | A |
5038125 | Vogel | Aug 1991 | A |
6512440 | Suda | Jan 2003 | B2 |
6784778 | Stitz et al. | Aug 2004 | B2 |
7151427 | Muller et al. | Dec 2006 | B2 |
20040104795 | Stitz et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
43 41 087 | Jun 1995 | DE |
Number | Date | Country | |
---|---|---|---|
20070246668 A1 | Oct 2007 | US |